“INVESTIGATION OF THE ROLE OF OXIDATIVE STRESS IN MALE INFERTILITY”

OZLEM TUNC
BSc BioMed (Hons)
Grad Dip. Clinical Biochemistry
Discipline of Obstetrics and Gynaecology
School of Paediatrics and Reproductive Health
Faculty of Health Sciences
The University of Adelaide
South Australia
Australia

Thesis submitted for the total fulfilment for the degree of
Doctor of Philosophy (PhD)

November 2010
DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

....................................

Ozlem Tunc
November 2010
ACKNOWLEDGMENT

It is a pleasure to finally be able to thank those that have helped me complete this project. I thank Dr. Kelton Tremellen for providing me with such a significant opportunity, for steering the project and for critically assessing this thesis. Kelton also enhanced my awareness of the effort needed to achieve quality, completeness and relevance, an invaluable lesson. I sincerely thank my co-supervisor Associate Professor Jeremy Thompson for providing the clarity needed on many aspects of this work and for his insights and sharing knowledge with patient support.

I would like to thank the staff of the Department of Obstetrics and Gynaecology for their advice and help with technical and administrative issues. In particular I would like to acknowledge the assistance of David Froiland for his technical assistance in establishing sperm DNA damage measurement and LPO experiments. He taught me the techniques of using fluorescence microscopy and taking images.

My gratitude also goes to the staff of Andrology Laboratory in Repromed, especially Margaret Szemis for collecting the sperm samples and her assistance in recruitment of patients. I would sincerely like to express my thanks to Michele Kolo for imparting her expertise in Endocrinology and her encouragement.

Much of the work and data in this thesis was made possible through a grant from the Colin Matthews Research Fund and Faculty of Health Sciences Postgraduate Scholarship. It is gratefully acknowledged.

Finally, I would like to thank my family and friends; for their unwavering support and encouragement and my daughter, Alinda, who makes my life worthwhile. I thank you for your patience and the cheer you bring to my life.
CHAPTER 1: INTRODUCTION

1.1 General Overview: Free Radicals and Reactive Oxygen Species (ROS)
 1.1.1 Definition of Free Radicals

1.2 Antioxidant Defence Systems

1.3 Oxidative Stress
 1.3.1 Oxidative Stress and Male Infertility
 1.3.2 Physiological Role of Reactive Oxygen Species in Sperm Cells

1.4 Sources of Free Radicals in semen
 1.4.1 Production of ROS by Leukocytes in semen
 1.4.2 Production of ROS by Spermatozoa
 1.4.3 Susceptibility of Spermatozoa to Oxidative Stress

1.5 Protection of Spermatozoa from ROS
 1.5.1 Sperm Chromatin Structure
 1.5.2 Antioxidant Mechanisms in semen
 1.5.2.1 Enzymatic Antioxidants
 1.5.2.2 Non-enzymatic Antioxidants

1.6 Oxidative Stress in Male Infertility
 1.6.1 Pathophysiology of Oxidative Stress in Spermatozoa

1.7 Origins of Oxidative Stress
 1.7.1 Lifestyle Factors
 1.7.1.1 Smoking
 1.7.1.2 Alcohol Consumption
 1.7.1.3 Advanced Paternal Age
 1.7.1.4 Psychological Stress
 1.7.2 Infections
 1.7.2.2 Male Accessory Sex Gland Infection (MAGI)
 1.7.3 Environmental Factors
 1.7.3.1 Toxins and Chemicals
 1.7.3.2 Radiation
 1.7.3.3 Drugs and Chemotherapy
 1.7.4 Iatrogenic
 1.7.5 Varicoceles

1.8 Assessment of Seminal Oxidative Stress
 1.8.1 ROS Measurement by Chemiluminescence
 1.8.2 Lipid Peroxidation Markers
 1.8.3 Other Markers for ROS Measurement
CHAPTER 2: MATERIALS AND METHODS

2.1 Introduction
2.2 Study Subjects
2.3 Sample collection and Semen Analysis
2.4 Sample Preparation
 2.4.1 Sperm Swim-up Procedure
 2.4.2 Isolation of Leukocytes from Peripheral Blood
2.5 Determination of Leukocytes in Semen
 2.5.1 Immunocytochemistry Procedure for CD-45
 2.5.2 PMN Elastase Assay
 2.5.3 Determination of macrophage activity in semen (Neopterin Assay)
2.6 Measurement of Reactive Oxygen Species
 2.6.1 Lipid Peroxidation Test (LPO Test)
 2.6.2 Nitro Blue Tetrazolium Assay (NBT Assay)
 2.6.2.1 Formazan Production for Standard Curve in NBT Assay
2.7 Detection of Defective Sperm Chromatin Packaging
 2.7.1 Chromomycin A₃ Assay
2.8 Assessment of DNA Damage
 2.8.1 TUNEL (Tdt-mediated Terminal dUTP Nick-end Labeling) Assay
2.9 Assessment of Aberrant Apoptosis
 2.9.1 Annexin V Assay
2.10 Assessment of sperm global DNA Methylation
 2.10.1 Immunohistochemical 5-methylcytosine Staining
2.11 Assessment of epididymal function
 2.11.1 α-Glucosidase assay
2.12 Assessment of testicular function (Serum Reproductive Hormones)
 2.12.1 Measurement of Serum Reproductive Hormone Levels
 2.12.2 Measurement of AMH (Anti Mullerian Hormone) level in serum
2.13 Serum Homocysteine assay

CHAPTER 3: Development of the NBT Assay as a marker of sperm Oxidative Stress

3.1 Abstract
3.2 Introduction
3.3 Materials and Methods
 3.3.1 Subjects and Study Design
 3.3.2 Sample Preparation
 3.3.3 Statistical Analysis
3.4 Results
 3.4.1 Standardization of assay conditions
 3.4.2 Relationship between ROS production and measures of sperm health
3.5 Development of Normal Ranges
3.6 Discussion
PUBLICATIONS AND ABSTRACTS ARISING FROM THIS THESIS

PUBLICATIONS

1 - "Development of the NBT assay as a marker of sperm oxidative stress"
 Ozlem Tunc, Jeremy Thompson, Kelton Tremellen

2 - “Improvement in sperm DNA quality using an oral antioxidant therapy”
 Ozlem Tunc, Jeremy Thompson, Kelton Tremellen

3 - “Oxidative DNA damage impairs global sperm DNA methylation in infertile men”
 Ozlem Tunc, Kelton Tremellen

4 - "Macrophage activity in semen significantly correlated with sperm quality in infertile Men"
 Kelton Tremellen, Ozlem Tunc
 International Journal of Andrology 2010 Dec; 33(6):823-31

5 - “Impact of Body Mass Index on sperm oxidative stress”
 Ozlem Tunc, Hassan Bakos, Kelton Tremellen
 Andrologia (accepted in Aug 2009, anticipated online publication in December 2010)

ABSTRACTS

“A novel assay for identification of oxidative stress related male infertility”
Poster presentation The Fertility Society of Australia 9-12 September 2007
Hobart, Tasmania

"Optimization of sperm DNA quality by using an oral antioxidant therapy”
Gene, environment, lifestyle interaction and Human reproduction 7-10 February 2008 Malmo, Sweden

“Optimization of sperm DNA quality with the use of an oral antioxidant therapy”
Oral Presentation in the Fertility Society of Australia 19-22 October 2008
Brisbane, Australia
ABBREVIATIONS

8-OHdG ... 8-hydroxy-2-deoxyguanosine
A.U ... Arbitrary Units
AMH .. Anti-mullerian hormone
ANOVA ... Analysis of Variance
ART .. Assisted Reproductive Technology
BSA .. Bovine serum albumin
°C .. Degrees celsius
CK ... Creatine kinase
DMSO ... Dimethyl sulphoxide
DNA .. Deoxyribonucleic acid
DTT .. Dithiothretiol
ELISA ... Enzyme-linked immunosorbet assay
FSH .. Follicle stimulating hormone
GPx .. Glutathione peroxidise
GSR .. Glutathione reductase
H2O2 .. Hydrogen peroxide
HBSS ... Hanks buffered salt solution
Hcy .. Homocysteine
HNE ... Hydroxynonenal
HPLC ... High Performance Liquid Chromatography
HRP .. Horse Radish Peroxidase
IFNγ .. Interferon gamma
IU .. International unit
KOH .. Potassium hydroxide
kg ... Kilogram
LDH .. Lactic acid dehydrogenase
LH .. Luteinizing Hormone
MDA ... Malondialdehyde
µg .. Microgram
µl ... Microliter
mL ... Milliliter
mg ... Milligram
NaCl ... Sodium Chloride
NAG ... neutral alpha glucosidase
NBT .. Nitroblue Tetrazolium
NO ... Nitric oxide
NOS ... Nitric oxide synthase
PBS ... Phosphate buffered saline
PCR ... Polymerase chain reaction
PFA ... Paraformaldehyde
PMN ... Polymorphonuclear Neutrophils
Rcf ... Relative centrifugal force
ROC .. Receiver operating characteristic
ROS ... Reactive oxygen species
SD ... Standard Deviation
SDS ... Sodium dodecyl sulphate
SOD ... Superoxide dismutase
TAC .. Total antioxidant capacity
TBAR .. Thiobarbituric acid
TBARS ... Thiobarbituric acid-reacting substances
TNFα ... Tumor Necrosis Factor Alpha
X ... Xanthine
XO ... Xanthine oxidase

TBARS ... Thiobarbituric acid-reacting substances

TNFα ... Tumor Necrosis Factor Alpha

X ... Xanthine

XO ... Xanthine oxidase
ABSTRACT

In recent years, there has been some suggestion of an increase in male factor infertility in the industrialized countries with a decline in sperm counts and a rise in sperm pathology. Male factor infertility is a multifactorial phenomenon that is observed in approximately half of infertile couples and affects one man in 20 in the general population. The potential causes of male infertility arise from a number of factors including genetic, lifestyle factors and chronic diseases. However, a high proportion of infertile male patients have now been shown to have defective sperm functions related to oxidative stress.

Oxidative stress in semen has been speculated as one of the major factors causing male infertility and has been identified in 30-80% of cases of male infertility. While oxidative stress is accepted as a significant pathology, there is currently an inadequate knowledge of the exact mechanisms by which oxidative stress develops in male infertility, as well as a lack of an easy and reliable method for the measurement of seminal oxidative stress in routine clinical use.

The main objective of this doctoral thesis is to investigate the underlying causes for oxidative stress in infertile men and the mechanisms by which oxidative stress develops. Furthermore it will also examine the effectiveness of an oral antioxidant therapy for treatment of seminal oxidative stress.

During these doctoral studies experiments were designed with the aims of:

• Developing a standardized protocol for the measurement of seminal oxidative stress, that can be conducted in the average clinical laboratory with minimal additional equipment (NBT Assay)
• Examining the causes for oxidative stress in semen. Obesity has previously been identified as a cause of systemic oxidative stress. Therefore I examined if obesity causes oxidative stress to sperm. Seminal inflammation and its role in oxidative damage in semen are also investigated.
• Determination if antioxidant supplementation is an effective treatment of oxidative sperm damage.
• Assessment of the relation between Oxidative stress and sperm DNA methylation. Previous studies have linked male infertility with epigenetic abnormalities of the male genome. Since oxidative stress has been shown to interfere with somatic cell epigenetic programming I investigated the possibility of a similar link in sperm.

It is hoped that advances outlined in this thesis will have made a significant contribution to the diagnosis, prevention and treatment of the male infertility.