The Role of the Cumulus Oocyte Complex During Ovulation

Emily Renee Alvino

Robinson Institute
School of Paediatrics and Reproductive Health
Research Centre for Reproductive Health
Discipline of Obstetrics and Gynaecology
University of Adelaide, Adelaide
Australia

Thesis submitted to the University of Adelaide in fulfilment of the requirements for admission to the degree Doctor of Philosophy

October 2010
NOTE:
This image is included in the print copy of the thesis held in the University of Adelaide Library.

© Gary Larson Far Side®
“Just because something doesn't do what you planned it to do doesn't mean it's useless.”

Thomas Edison

“Somewhere, something incredible is waiting to be known.”

Carl Sagan
Abstract

Ovulation is fundamentally crucial to the reproductive success of all mammals. Despite this fact there remain major knowledge gaps in our understanding of how the Luteinizing Hormone (LH) surge, which initiates ovulation, controls this process. There have been numerous theories regarding this phenomenon, yet the underlying mechanisms involved remain relatively unknown. In this thesis I sought to elucidate mechanisms involved in ovulation, with a particular focus on the role played by the expanded cumulus oocyte complex (COC). Specifically, I investigate whether the cumulus cells and their associated matrix following expansion could contribute actively to its own extrusion from the ovarian follicle during ovulation.

I developed a novel hypothesis whereby the cumulus cells transition to an adhesive, motile and invasive cell phenotype in response to an ovulatory stimulus, hCG an analog of LH. I investigate whether the cumulus cells from expanded COCs are capable of cell adhesion to various extracellular matrices found in the follicle wall, and whether this is dependent upon hormonal stimulation by comparison to cumulus cells from unexpanded COCs, not receiving such stimulation.

Further, I investigate whether the cumulus oocyte complex is capable of transitioning to a migratory cell phenotype. I tested this with established methods used in the study of cancer cell metastasis. I determine whether this phenotype is firstly dependent on an ovulatory stimulus, and whether it is cumulus cell specific. I attempt to elucidate the molecular mechanisms involved by investigating expression of the well-characterised CD44 cell migration pathway in COCs, during an ovulation time-course. I then use specific antagonists to this pathway, to inhibit cell migration.
The final step in our hypothesis involves the investigation of the invasive capacity of the expanded COC. I analyse whether the expanded COCs are capable of degrading an extracellular matrix barrier during migration assays, and I compare this ability to characterised invasive and non-invasive breast cancer cell lines. I also investigate possible mechanisms involved in the invasive phenotype by inhibiting the matrix metalloprotease system, proposed to play an important role in the degradation of the follicle wall during follicle rupture, and by examining the Adamts1 null mouse, as Adamts1 is a protease shown to be crucial during ovulation.

This thesis demonstrates novel and exciting properties of the cumulus oocyte complex during ovulation; offering new insight into our understanding of this complex process. It shows that the oocyte and its surrounding cumulus cells are not merely a passive entity, as previously thought, but rather may play an active role during this vital reproductive process.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent for this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Emily Renee Alvino

October 2010
Acknowledgements

Firstly, I would like to thank my supervisors Dr Rebecca Robker and Dr Darryl Russell, for giving me a fantastic opportunity. For helping me to develop a scientific way of thinking. Providing me with the freedom in the lab to make my own decisions and develop new techniques, has enabled me extend myself and learn a great deal along the way. Thank you for all of your support and encouragement.

To Dr Kylie Dunning, I would like to express my gratitude for the endless support you have offered me during my entire candidature. Thank you for your assistance in preparation of this thesis, general laboratory techniques, never-ending advice and offering me a second home. Thank you for being a fantastic mentor but most importantly a wonderful friend.

Thank you to members of the Ovarian Cell Biology Lab for technical assistance, but also support, especially Lisa Akison, Brenton Bennett, Laura Watson, Kathryn Gebhardt, Hannah Brown, and Kara Cashman. Thank you to Kate Frewin for assistance in cell culture.

To my fellow students and colleagues at the research centre thank you for the support over the past few years and most importantly the pub lunches.

These studies were financially supported with grant funding from the National Health and Medical Research Council. I would like to acknowledge financial support from the University of Adelaide, the Discipline of Obstetrics and Gynaecology and the Research Centre for Reproductive Health for international and domestic travel opportunities and my postgraduate scholarship.

Finally, to my family and friends, thank you for always being there. Thank you for constant support, nights out, coffee breaks and laughs. To Mum, Dad, Samuel, Nicholas and Andrew, thank you for giving me perspective, and reminding me what matters.
Abstracts arising from this thesis

2009

ALVINO ER, Robker RL and Russell DL. An active role for the Cumulus Oocyte Complex During Ovulation. Biol Reprod, June 15, 2009 81 (1 Supplement) 51 Annual meeting of the Society for the Study of Reproductive Biology, International Conference, 18 – 21 July, Pittsburgh, Pennsylvania, USA

ALVINO ER, Robker RL and Russell DL. (2009) An Active Role for the Cumulus Oocyte Complex During Ovulation. Australian Society for Medical Research, State Conference, 4 June, Adelaide South Australia, Australia

2008

ALVINO ER, Robker RL and Russell DL. (2008) Demonstrating an active role for the cumulus oocyte complex during ovulation in Mice. Australian Society for Medical Research, State Conference, 4 June, Adelaide South Australia, Australia

2007

ALVINO ER, Robker RL and Russell DL. (2007) An Active Role for the Cumulus Oocyte Complex During Ovulation. Australian Society for Medical Research, State Conference, 6 June, Adelaide South Australia, Australia
Table of Contents

Abstract ... i

Declaration .. iii

Acknowledgements ... iv

Abstracts arising from this thesis .. v

Table of Contents ... vi

List of Figures .. xi

List of Tables ... xiv

Abbreviations ... xv

CHAPTER 1 INTRODUCTION ... 1

1.1 BACKGROUND ... 2

1.2 LUTEINISING HORMONE SIGNALLING TO INITIATE OVULATION 5

1.2.1 Cumulus oocyte complex expansion ... 8

1.2.2 Role of cumulus cells and the extracellular matrix in ovulation 9

1.3 MECHANISMS OF OVULATION .. 10

1.3.1 Inflammatory reactions at ovulation .. 10

1.3.2 Proteolytic degradation of the follicle wall .. 16

1.3.3 Smooth muscle cell contraction and intra-follicular pressure 21

1.4 AN ACTIVE ROLE FOR THE CUMULUS OOCYTE COMPLEX 25

1.5 SUMMARY ... 30
CHAPTER 2 MATRIX ADHESIVE PROPERTIES OF THE CUMULUS OOCYTE COMPLEX ...35

2.1 INTRODUCTION .. 36

2.2 MATERIALS AND METHODS .. 41

 2.2.1 Animals and hormonal stimulation protocol and Tissue Collection 41

 2.2.2 Adhesion Assays .. 41

 2.2.3 Statistics ... 43

2.3 RESULTS ... 44

 2.3.1 Adhesion of cumulus cells to ECM substrates following hormonal stimulation. 44

2.1 DISCUSSION ... 46

CHAPTER 3 EXPRESSION OF MIGRATORY GENES IN THE CUMULUS OOCYTE COMPLEX DURING OVULATION .. 50

3.1 INTRODUCTION .. 51

 3.1.1 Cell migration mechanism ... 51

 3.1.2 CD44 isoform specific functions .. 52

 3.1.3 CD44 in the ovary ... 55

 3.1.4 Rationale .. 55

3.2 MATERIALS AND METHODS .. 56

 3.2.1 Animals, hormonal stimulation protocol and tissue collection 56

 3.2.2 RNA isolation and reverse transcription (RT) .. 56

 3.2.3 Polymerase Chain Reaction (PCR) .. 57
CHAPTER 5 THE INVASIVE CAPACITY OF THE CUMULUS OOCYTE COMPLEX104

5.1 INTRODUCTION ...105

5.2 MATERIALS AND METHODS ...109

5.2.1 Animals and hormonal stimulation protocol and Tissue Collection109

5.2.2 Genotyping of Adamts1 null mouse line ...110

5.2.3 Cell lines ..111

5.2.4 Transwell invasion assays ...111

5.2.5 MMP inhibitor ...112

5.2.6 Statistics ...112

5.1 RESULTS ..112

5.1.1 Invasive capacity of cumulus cells compared to characterised breast cancer cell lines.. ..112
5.1.2 Inhibiting cell invasion by treatment with a protease inhibitor and utilising the protease
deficient Adanmt1 null mouse .. 115

5.1 DISCUSSION ... 118

CHAPTER 6 CONCLUSIONS AND FUTURE DIRECTIONS .. 122

6.1 The active role of the cumulus oocyte complex during ovulation 123

6.2 Future Directions ... 127

6.3 Significance ... 129

CHAPTER 7 APPENDIX ... 133

7.1.1 Rac1 activation pull-down assay .. 134

7.1.2 Western blot detection of active Rac1 ... 135

7.2 IDENTIFICATION OF ACTIVE GTP-BOUND RAC1 DURING OVULATION 135

BIBLIOGRAPHY .. 138

Alvino x
List of Figures

Figure 1.1 Schematic representation of folliculogenesis ...3
Figure 1.2 LH responsive gene expression in the ovulating follicle ..7
Figure 1.3 Novel hypothesis of an active role for the cumulus oocyte complex in ovulation26
Figure 2.1 Schematic representation of a cross section of the ovarian follicle wall37
Figure 2.2 Representative example of mouse ovarian follicles following hormonal stimulation39
Figure 2.3 Time-course of hormonal stimulation protocol ..42
Figure 2.4 Adhesion assay to investigate cumulus cell affinity for extracellular matrices45
Figure 3.1 Known mechanisms of CD44-mediated motility in mammalian cells53
Figure 3.2 Schematic representation of the alternatively spliced isoforms of CD44 and their association with metastatic cancers ...54
Figure 3.3 Detection of CD44 isoforms ...65
Figure 3.4 CD44 is significantly induced in cumulus oocyte complexes in response to ovulatory hormones ..67
Figure 3.5 Rac1 and Tiam1, essential components of the CD44 mediated migratory complex, are constitutively expressed in both the COC and granulosa cells during the periovulatory period. 68
Figure 3.6 Expression of RhoA, a downstream target of CD44, is hormonally regulated in the cumulus oocyte complex and mural granulosa cells ...70
Figure 4.1 Schematic representation of sites of action of characterised inhibitors of CD44-mediated motility in mammalian cells ...80
Figure 4.2 Cumulus cell migration/invasion assay protocol ..84
Figure 4.3 Method of phase analysis to determine percentage of migratory/invasive cells85
Figure 4.4 Schematic representation of experimental design to determine culture conditions for subsequent migration assays ...87
Figure 4.5 Dissociated cumulus cells do not retain cumulus specific gene expression of intact COCS after culture...89

Figure 4.6 Morphology of cumulus cells from unexpanded and pre-ovulatory expanded cumulus oocyte complexes on the underside of migration assay filters..90

Figure 4.7 Expanded cumulus oocyte complexes show significantly greater migration than unexpanded cumulus oocyte complexes...92

Figure 4.8 Migration of preovulatory expanded cumulus oocyte complexes is greater than migration of granulosa cells..93

Figure 4.9 Migration of cumulus oocyte complexes was not inhibited with the addition of a neutralising antibody against CD44. ..95

Figure 4.10 Migration of cumulus oocyte complexes was not inhibited by the addition of a NSC23766, a small molecule inhibitor of Rac1. ..96

Figure 4.11 Migration of cumulus oocyte complexes was not inhibited by the addition of Y-27632, an inhibitor of Rock. ..98

Figure 5.1 Schematic representation of proposed invasive action of the cumulus oocyte complex.107

Figure 5.2 Pre-ovulatory expanded cumulus oocyte complexes are as invasive as a known invasive cancer cell line...114

Figure 5.3 Treatment of cumulus oocyte complexes with the broad-spectrum protease inhibitor GM6001 did not block cell invasion...116

Figure 5.4 Invasion of Adamts1 null versus Adamts1 heterozygous cumulus oocyte complexes117

Figure 6.1 Schematic representation of ovulation hypotheses including the novel “active cumulus oocyte complex” hypothesis...124

Figure 6.2 Schematic representation of the “active cumulus oocyte complex” hypothesis following an ovulatory stimulus...131
Figure 7.1 Rac1 activation pull-down assay..136
List of Tables

Table 1.1 Null mutations resulting in severe ovulatory defects and associated with defects in matrix formation or cell signalling events ... 11

Table 3.1 Murine PCR primer sequences (*primer will detect CD44s and any alternate isoforms of CD44 present in cumulus oocyte complexe .. 56

Table 5.1 Primers used in genotyping of Adamts1 null mutant mouse line ... 107
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>αMEM</td>
<td>Minimum Essential Medium alpha</td>
</tr>
<tr>
<td>Adamts</td>
<td>a disintegrin-like and metallopeptidase (reprolysin type) with thrombospondin type 1 motif</td>
</tr>
<tr>
<td>Ambp</td>
<td>alpha 1 microglobulin/bikunin</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>Ar</td>
<td>Androgen receptor</td>
</tr>
<tr>
<td>ART</td>
<td>artificial reproductive technology</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>Bmp15</td>
<td>bone morphogenetic protein 15</td>
</tr>
<tr>
<td>CD44</td>
<td>CD44 antigen</td>
</tr>
<tr>
<td>cAMP</td>
<td>cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>Cebpb</td>
<td>CAAT/enhancer binding protein (C/EBP), beta</td>
</tr>
<tr>
<td>COC</td>
<td>cumulus oocyte complex</td>
</tr>
<tr>
<td>Csf2</td>
<td>colony stimulating factor 2 (granulocyte-macrophage)</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethyl sulfoxide</td>
</tr>
<tr>
<td>dNTP</td>
<td>Deoxyribonucleotide</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>eCG</td>
<td>equine chorionic gonadotropin</td>
</tr>
<tr>
<td>ECM</td>
<td>extracellular matrix</td>
</tr>
<tr>
<td>Egf</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Egf-L</td>
<td>Egf-like ligand</td>
</tr>
<tr>
<td>Egfr</td>
<td>epidermal growth factor receptor</td>
</tr>
<tr>
<td>EMT</td>
<td>epithelial to mesenchymal transition</td>
</tr>
<tr>
<td>ERK1/2</td>
<td>Extracellular-signal-regulated kinase 1 and 2</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal calf serum</td>
</tr>
<tr>
<td>F1</td>
<td>first filial</td>
</tr>
<tr>
<td>FSH</td>
<td>follicle stimulating hormone</td>
</tr>
<tr>
<td>GC</td>
<td>granulosa cell</td>
</tr>
<tr>
<td>Gdf9</td>
<td>growth differentiation factor 9</td>
</tr>
<tr>
<td>GDP</td>
<td>guanosine diphosphate</td>
</tr>
<tr>
<td>GEF</td>
<td>Guanine nucleotide exchange factor</td>
</tr>
<tr>
<td>GTP</td>
<td>guanosine triphosphate</td>
</tr>
<tr>
<td>GTPase</td>
<td>guanosine triphosphatase</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>HA</td>
<td>hyaluronan</td>
</tr>
<tr>
<td>Has2</td>
<td>hyaluronan synthase 2</td>
</tr>
<tr>
<td>HC</td>
<td>heavy chain</td>
</tr>
<tr>
<td>hCG</td>
<td>human Chorionic Gonadotropin</td>
</tr>
<tr>
<td>Hmmr</td>
<td>hyaluronan mediated motility receptor (RHAMM)</td>
</tr>
<tr>
<td>HSC-3</td>
<td>human head and neck squamous carcinoma cell line</td>
</tr>
<tr>
<td>I(\alpha)I</td>
<td>inter-(\alpha) trypsin inhibitor</td>
</tr>
<tr>
<td>Ifna</td>
<td>interferon alpha</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>i.p.</td>
<td>intraperitoneal</td>
</tr>
</tbody>
</table>
IU international units
IVF invitro fertilisation
IVM in vitro maturation
KO knock out
LB luria broth
LH Luteinizing hormone
Lhcgr luteinising hormone/choriogonadotropin receptor
LPS lipopolysaccharide
Lyve1 lymphatic vessel endothelial hyaluronan receptor 1
MAPK Mitogen-activated protein kinase
MI metaphase I
MII metaphase II
min minute
mIU milli international units
MMP matrix metalloproteinase
mRNA Messenger RNA
Nrip1 Nuclear receptor interacting protein 1
°C degrees Celsius
OSF oocyte secreted factor
OSE ovarian surface epithelium
PB polar body
PBS Phosphate Buffered Saline
Ptg prostaglandin
Ptger2 prostaglandin E receptor 2 (subtype EP2)
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>Pde4d</td>
<td>phosphodiesterase 4D, cAMP specific</td>
</tr>
<tr>
<td>Pgr</td>
<td>progesterone receptor</td>
</tr>
<tr>
<td>Plg</td>
<td>plasminogen</td>
</tr>
<tr>
<td>Plat (tPA)</td>
<td>plasminogen activator, tissue</td>
</tr>
<tr>
<td>Plau (uPA)</td>
<td>plasminogen activator, urokinase</td>
</tr>
<tr>
<td>PGRKO</td>
<td>Progesterone receptor knockout</td>
</tr>
<tr>
<td>Ptgr2</td>
<td>prostaglandin E receptor 2, subtype EP2</td>
</tr>
<tr>
<td>Ptgs2</td>
<td>prostaglandin-endoperoxide synthase 2</td>
</tr>
<tr>
<td>Ptx3</td>
<td>pentraxin related gene</td>
</tr>
<tr>
<td>PVDF</td>
<td>polyvinylidene difluoride</td>
</tr>
<tr>
<td>Rac1</td>
<td>RAS-related C3 botulinum substrate 1</td>
</tr>
<tr>
<td>Rcf</td>
<td>Relative centrifugal force</td>
</tr>
<tr>
<td>RhoA</td>
<td>ras homolog gene family, member A</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>Rock</td>
<td>Rho-associated coiled-coil containing protein kinase</td>
</tr>
<tr>
<td>Rpl19</td>
<td>ribosomal protein L19</td>
</tr>
<tr>
<td>Rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>RT</td>
<td>reverse transcription</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>reverse transcription polymerase chain reaction</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl sulphate</td>
</tr>
<tr>
<td>SDS-PAGE</td>
<td>Sodium Dodecyl sulphate - polyacrylamide gel electrophoresis</td>
</tr>
<tr>
<td>TBE</td>
<td>tris borate EDTA</td>
</tr>
</tbody>
</table>
Tgfb transforming growth factor, beta
Tiam1 T-cell lymphoma invasion and metastasis 1
TIMP tissue inhibitor of metalloproteinase
TLR toll like receptor
Tnfaip6 Tumor necrosis factor alpha-induced protein 6
Tnfa tumour necrosis factor alpha