Enhancing Adsorption Capacity of Bentonite for Dye Removal: Physiochemical Modification and Characterization

Manjot Kaur Toor
M.Eng. (Chemical Engineering)

Thesis submitted for the degree of
Masters in Engineering Science

School of Chemical Engineering
The University of Adelaide

October 2010
# TABLE OF CONTENTS

Table of Contents iii  
List of Figures ix  
List of Tables xii  
Abbreviations xiii  
Abstract xiv  
Declaration xvii  
Acknowledgement xviii  

## Chapter 1 Introduction  
1.1 Background 01  
1.2 Aims and objectives 08  

## Chapter 2 Literature Review  
2.1 Introduction 10  
2.2 Dyes and Water Pollution 11  
2.3 Current Dye Removal Techniques 16  
  2.3.1 Biodegradation 16  
      2.3.1.1 Aerobic Degradation 17  
      2.3.1.2 Anaerobic Degradation 21  
      2.3.1.3 Living/ Dead Microbial Biomass 23  
  2.3.2 Electrochemical Methods 24  
      2.3.2.1 Electrocoagulation 24  
      2.3.2.2 Electrochemical Reduction 25  
      2.3.2.3 Electrochemical Oxidation 25  
      2.3.2.4 Photoassisted Electrochemical Methods 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.3 Chemical Methods</td>
<td>29</td>
</tr>
<tr>
<td>2.3.3.1 Oxidation</td>
<td>29</td>
</tr>
<tr>
<td>2.3.3.2 Photocatalysis</td>
<td>33</td>
</tr>
<tr>
<td>2.3.4 Physicochemical Methods</td>
<td>35</td>
</tr>
<tr>
<td>2.3.4.1 Coagulation</td>
<td>35</td>
</tr>
<tr>
<td>2.3.4.2 Filtration</td>
<td>35</td>
</tr>
<tr>
<td>2.3.4.3 Ion Exchange</td>
<td>36</td>
</tr>
<tr>
<td>2.3.4.4 Adsorption</td>
<td>36</td>
</tr>
<tr>
<td>2.4 Drawbacks of Current Dye Removal Techniques</td>
<td>37</td>
</tr>
<tr>
<td>2.5 Adsorbents</td>
<td>42</td>
</tr>
<tr>
<td>2.5.1 Activated Carbon</td>
<td>42</td>
</tr>
<tr>
<td>2.5.2 Low-Cost Adsorbents</td>
<td>44</td>
</tr>
<tr>
<td>2.5.2.1 Biosorbents</td>
<td>45</td>
</tr>
<tr>
<td>2.5.2.2 Agricultural and Industrial by-products</td>
<td>46</td>
</tr>
<tr>
<td>2.5.2.3 Natural Clays</td>
<td>49</td>
</tr>
<tr>
<td>2.6 Modification of Clays</td>
<td>55</td>
</tr>
<tr>
<td>2.7 Methods of Modification of Clay Minerals</td>
<td>56</td>
</tr>
<tr>
<td>2.7.1 Pillared Clays</td>
<td>56</td>
</tr>
<tr>
<td>2.7.2 Polymer Modified Clays</td>
<td>57</td>
</tr>
<tr>
<td>2.7.3 Organoclays</td>
<td>59</td>
</tr>
<tr>
<td>2.7.4 Thermal Activation</td>
<td>61</td>
</tr>
<tr>
<td>2.7.5 Acid Activation</td>
<td>62</td>
</tr>
<tr>
<td>2.7.5.1 Mechanism of Acid Activation</td>
<td>63</td>
</tr>
<tr>
<td>2.7.5.2 Advantages of Acid Activation</td>
<td>67</td>
</tr>
<tr>
<td>2.7.5.3 Applications of Acid Activated Clays</td>
<td>68</td>
</tr>
<tr>
<td>2.8 Conclusions</td>
<td>69</td>
</tr>
</tbody>
</table>
Chapter 3 Materials and Methods

3.1 Materials 70
  3.1.1 Bentonite 70
  3.1.2 Congo Red 71

3.2 Modification and Activation of Raw Bentonite 72
  3.2.1 Thermal Activation 72
  3.2.2 Acid Activation 74
  3.2.3 Combined Acid and Thermal Activation 76

3.3 Characterization of Modified Bentonite 77
  3.3.1 Surface Area and Pore Size Evaluation 77
  3.3.2 Fourier Transform Infrared Spectroscopy 77
  3.3.3 Scanning Electron Microscopy 78

3.4 Experimental Set up and Procedure 78
  3.4.1 Effect of Contact Time 81
  3.4.2 Effect of Initial Dye Concentration 81
  3.4.3 Effect of Adsorbent Dosage 81
  3.4.4 Effect of pH 82
  3.4.5 Effect of Temperature 82

3.5 Isothermal and Kinetic Study 82
  3.5.1 Adsorption Isotherms 83
    3.5.1.1 Langmuir Isotherm 83
    3.5.1.2 Freundlich Isotherm 84
  3.5.2 Adsorption Kinetics 84
    3.5.2.1 Pseudo-first order model 84
    3.5.2.2 Pseudo-second order model 85

3.6 Analysis Procedures 85
  3.6.1 Sampling Procedure 85
  3.6.2 Amount of Dye Adsorbed 86

3.7 Regeneration of Modified Bentonite 87
Chapter 4  Physicochemical Modification and Characterisation
of Australian Bentonite

4.1 Introduction 88

4.2 Thermal Activated Bentonite 91

4.2.1 Characterisation of Thermal Activated Bentonite 91

4.2.1.1 Surface Area 91

4.2.1.2 Pore Size 93

4.2.1.3 Thermal Analysis 96

4.2.1.4 Surface Morphology 99

4.2.2 Adsorption of Congo Red on Thermal Activated Bentonite 100

4.2.3 Effect of Heating Time on Adsorption Capacity of Thermal Activated Bentonite 103

4.3 Acid Activated Bentonite 104

4.3.1 Characterisation of Acid Activated Bentonite 104

4.3.1.1 Surface Area 104

4.3.1.2 Pore Size 106

4.3.1.3 Effect of Acid Attack on Bentonite 107

4.3.1.4 Effect of Activation Temperature 109

4.3.1.5 Surface Morphology 111

4.3.2 Adsorption of Congo Red on Acid Activated Bentonite 112

4.3.3 Effect of Activation Temperature on Adsorption of Congo Red 114

4.4 Acid and Thermal Activated Bentonite 115

4.4.1 Characterisation of Acid and Thermal Activated Bentonite 115

4.4.1.1 Surface Area 115
4.4.1.2 Pore Size       117
4.4.1.3 Effect of Acid Attack on Bentonite 118
4.4.1.4 Surface Morphology       120
4.4.2 Adsorption of Congo Red on Bentonite Modified by Acid and Thermal Activation 121
4.5 Comparison of Adsorption Efficiency of Modified Bentonites 124
4.6 Conclusions       126

Chapter 5  Adsorption Performance and Kinetics of Modified Bentonite 128
5.1 Introduction       128
      Results and Discussion

5.2 Effect of Contact Time       130
5.3 Effect of Initial Dye Concentration       131
5.4 Effect of Adsorbent Dosage       133
5.5 Effect of pH       134
5.6 Effect of Temperature       136
5.7 Adsorption Isotherms       139
      5.7.1 Langmuir Isotherm       139
      5.7.2 Freundlich Isotherm       142
      5.7.3 Non-Linear Langmuir Adsorption Isotherm Model 144
      5.7.4 Non-Linear Freundlich Adsorption Isotherm Model 145

5.8 Adsorption Kinetics       147
      5.8.1 Pseudo-First Order Model 148
      5.8.2 Pseudo-Second Order Model 149
      5.8.3 Intraparticle Diffusion Model 153
5.9 Regeneration and Reusability of Modified Bentonite 154
5.10 Conclusions 156

Chapter 6 Conclusions 158

6.1 Introduction 158
6.2 Major Achievements 159
  6.2.1 Development of Thermal Activated Bentonite 159
  6.2.2 Synthesis of Acid Activated Bentonite 160
  6.2.3 Impact of Heat Treatment on Acid Activated Bentonite 161
  6.2.4 Analyzing the Effect of Operating Parameters on Congo Red Adsorption 161
  6.2.5 Evaluation of Adsorption Isotherms, Kinetics and Mechanism 163
  6.2.6 Reusability of the Modified Bentonite 164
6.3 Summary 164
6.4 Future Direction 165
  6.4.1 Assessing the Applicability of Bentonite Modified by Acid and Thermal Activation (ATA) 165
  6.4.2 Scale-up of Batch Process to Continuous Process 166
  6.4.3 Further Optimization of the Activation Process 166
  6.4.4 Cost Analysis 166

References 168
LIST OF FIGURES

2.1 Current dye removal techniques 15

2.2 Structure of (a) bentonite (b) kaolin (c) zeolite 52

3.1 Chemical structure of Congo red 71

3.2 Muffle furnace used for thermal activation of bentonite 73

3.3 Bentonite modified by TA at 100°C and 500°C for 20 min. 74

3.4 Bentonite modified by AA at 30°C for 3h with acid concentration of 0.075M, 0.1M and 0.5M 75

3.5 Image of rotary shaker used for dye adsorption experiments and clay modification 79

3.6 Eppendorf Centrifuge 5415R 80

3.7 UV-vis spectrophotometer (model γ, Helios, UK) 80

4.1 BET specific surface area of bentonite modified by TA 92

4.2 Differential thermal analysis profile of sodium bentonite 97

4.3 Thermogravimetric profile of sodium bentonite 98

4.4 SEM images of raw and thermal activated bentonite 99

4.5 Effect of thermal activation on adsorption of Congo red 101

4.6 Effect of Thermal Activation on the adsorption of Congo red per unit area 102

4.7 Effect of heating time on the CR adsorption on TA bentonite 104

4.8 BET specific surface area of bentonite modified by AA treated at 30°C at different acid concentrations 105
4.9 FTIR spectra of RB and bentonite modified by AA at different acid concentrations 108

4.10 FTIR spectra RB and 0.1M HCl AA bentonite treated at different temperatures 110

4.11 SEM images of Acid Activated Bentonite 111

4.12 Effect of acid activation on the adsorption of CR on bentonite modified by AA at different acid concentration 112

4.13 Effect of acid activation on the adsorption of Congo red on acid activated bentonite per unit area 113

4.14 Effect of activation temperature on the adsorption capacity of bentonite modified by AA 115

4.15 BET specific surface area of bentonite modified by ATA at different acid concentrations 116

4.16 FTIR spectra RB and bentonite modified by ATA treated at different acid concentrations 119

4.17 SEM images of bentonite modified by ATA at different acid concentrations 121

4.18 Effect of modification of bentonite by ATA on adsorption of Congo red 122

4.19 Effect of modification of bentonite acid and thermal methods on the adsorption of congo red on modified bentonite per unit area 123

4.20 Effect of modification technique on the adsorption capacity of bentonite 125

5.1 Effect of contact time on adsorption of Congo red 130
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2</td>
<td>Effect of initial dye concentration on CR adsorption</td>
<td>132</td>
</tr>
<tr>
<td>5.3</td>
<td>Effect of adsorbent dosage on the removal of Congo red</td>
<td>133</td>
</tr>
<tr>
<td>5.4</td>
<td>Effect of pH on the adsorption of Congo red</td>
<td>135</td>
</tr>
<tr>
<td>5.5</td>
<td>Effect of temperature on CR adsorption</td>
<td>137</td>
</tr>
<tr>
<td>5.6</td>
<td>Langmuir adsorption isotherms for CR adsorption</td>
<td>140</td>
</tr>
<tr>
<td>5.7</td>
<td>Plot of separation factor versus initial dye concentration</td>
<td>141</td>
</tr>
<tr>
<td>5.8</td>
<td>Freundlich adsorption isotherms for CR adsorption</td>
<td>143</td>
</tr>
<tr>
<td>5.9</td>
<td>Langmuir adsorption isotherms</td>
<td>145</td>
</tr>
<tr>
<td>5.10</td>
<td>Freundlich adsorption isotherms</td>
<td>146</td>
</tr>
<tr>
<td>5.11</td>
<td>Pseudo-first order kinetics for the adsorption of Congo red</td>
<td>148</td>
</tr>
<tr>
<td>5.12</td>
<td>Pseudo-second order kinetics for the CR adsorption</td>
<td>150</td>
</tr>
<tr>
<td>5.13</td>
<td>Pseudo-second order kinetics for adsorption of Congo red</td>
<td>152</td>
</tr>
<tr>
<td>5.14</td>
<td>Intraparticle diffusion model for the adsorption of Congo red</td>
<td>153</td>
</tr>
<tr>
<td>5.15</td>
<td>Life cycle of raw and modified bentonite</td>
<td>155</td>
</tr>
</tbody>
</table>
LIST OF TABLES

2.1 Classification of dyes based on chemical composition 12
2.2 Classification of dyes based on application 13
2.3 Adsorption capacities of various fungi for dyes 18
2.4 Bacteria strains commonly used for degradation of dyes 20
2.5 Percentage removal of dyes on different anodes 26
2.6 Current dye removal methods: advantages and disadvantages 41
2.7 Removal of dyes on commercial activated carbons 43
2.8 Advantages and disadvantages of adsorbents 55
3.1 Chemical composition of sodium bentonite 70
4.1 Pore size classification of clay minerals 93
4.2 BET specific surface area and average pore size of TA bentonite 95
4.3 BET specific surface area and average pore size of AA bentonite 106
4.4 Surface area of various acid activated bentonites 117
4.5 BET specific surface area and the average pore size of ATA bentonite 118
4.6 Comparison of modified bentonites 124
5.1 Thermodynamic parameters for CR adsorption on modified bentonite at different temperatures 138
5.2 Langmuir adsorption isotherm constants 141
5.3 Freundlich adsorption isotherm constants 143
5.4 Comparison of correlation coefficients of Langmuir and Freundlich Models 144
5.5 Pseudo first order constants 149
5.6 Pseudo second order constants for linear expression 151
5.7 Pseudo second order constants for non-linear expression 152
5.8 Intraparticle diffusion constants 154

List of Tables  xii
## ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>Acid Activation</td>
</tr>
<tr>
<td>ATA</td>
<td>Acid and Thermal Activation</td>
</tr>
<tr>
<td>BET</td>
<td>Braunneur – Emmet – Teller</td>
</tr>
<tr>
<td>CR</td>
<td>Congo Red</td>
</tr>
<tr>
<td>FTIR</td>
<td>Fourier Transform Infra Red Spectroscopy</td>
</tr>
<tr>
<td>RB</td>
<td>Raw Bentonite</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>TA</td>
<td>Thermal Activation</td>
</tr>
</tbody>
</table>
Bentonite, enormously abundant natural clay, has been considered as a potential absorbent for removing pollutants from water and wastewater. Nonetheless, the effective application of bentonite for water treatment is limited due to small surface area and presence of net negative surface charge, leading to its low adsorption capacity. The net negative charge on the surface of bentonite is the prime factor that restricts the use of bentonite for the adsorption of cationic dyes. As a result, the focus of this research was directed towards the modification of the physical structure and the chemical properties of bentonite to maximize its adsorption capacity. To achieve this aim, the research study was carried out by two stages; (1) modification of Australian raw bentonite and (2) characterization and optimization of adsorption performance and kinetics of the modified Australian bentonite for removing recalcitrant organic dye Congo red (CR).

The modification of raw bentonite was carried out by three physiochemical methods; (1) thermal activation (TA), (2) acid activation (AA) and (3) combined acid and thermal activation (ATA). The characterization of the physiochemically modified bentonite clays was carried out by Braunneur – Emmet – Teller (BET) method for surface area, scanning electron microscopy (SEM) for morphology and Fourier transformation infrared (FTIR) spectroscopy for the determination of the effect of acid attack. The increase in surface area of the modified bentonite was recorded as 20%, 65% and 69.45% by TA, AA and ATA, respectively. The microscopic images obtained through SEM showed that the
structure of the modified clay has become more porous, offering additional adsorption sites enhancing the surface properties of bentonite.

The modified bentonites by TA, AA and ATA were examined for their performance as an adsorbent for the CR removal. The effect of key operational parameters, such as contact time, initial dye concentration, adsorbent dosage, pH and temperature was experimentally studied. The CR adsorption increased with an increase in contact time. A CR removal of 96.65%, 92.75% and 91.62% was obtained within first 2h using the bentonite modified by ATA, AA and TA, respectively. Near 100% of dye removal was achieved in 22h. The adsorption capability of bentonite increased steadily with an increase in initial dye concentration. The pH changes appeared to have insignificant impact on the CR adsorption. The adsorption capacity decreased slightly with an increase in temperature, suggesting favorable adsorption at low temperatures for all modified bentonites. The evaluation of thermodynamic parameters revealed that adsorption process is spontaneous and exothermic.

The equilibrium data was analyzed using Langmuir and Freundlich adsorption isotherms. Freundlich isotherm provided a better fit to the data. Results from kinetic study revealed that the CR adsorption on all modified bentonites occurs in multilayers, and does not form a monolayer. It was approved by a steady increase in CR adsorption with the increase in initial dye concentration. Further to understand the adsorption kinetics the adsorption data were analyzed by pseudo first-order and pseudo second-order kinetics. The results revealed that adsorption follows pseudo second-order kinetics.
mechanism of adsorption was interpreted from the intraparticle diffusion model and it was found that apart from intraparticle diffusion there are other factors that control the adsorption.

The results from this study suggest that a combination of thermal and acidification, as referred ATA in this study be an effective method to improve adsorption capacity of the bentonite. The bentonite modified by ATA provides the maximum surface area and adsorption capacity and can be successfully employed for the removal of dyes from wastewater. Bentonite is abundant natural adsorbent. Therefore, application of the simple and low cost modification techniques employed in this study can make the bentonite as cost-effective adsorbent for removal of many organic and inorganic pollutants.
DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due references has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of act of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed

Date
ACKNOWLEDGEMENT

The research journey of last eighteen months has been full of challenges for me and I would like to express my sincere gratitude to numerous individuals for their contribution and assistance from inception to culmination of my journey.

First and foremost, I am most indebted to my principal supervisor, Associate Professor Bo Jin, who initially helped me change my program of study from Master of Chemical Engineering (Advanced) to Master of Engineering Science (Research). I am grateful to him for his timely academic guidance and positive criticism which helped me improve my analytical, research, scientific-writing and presentation skills. I am also thankful to him for his painstaking effort in reviewing my thesis. The compilation of this thesis would have not been possible without his valuable suggestions and comments. I would like to thank you for your encouragement and inspiration throughout this project that helped me finish my study without any hurdles.

I also owe a debt of gratitude to my co-supervisors Associate Professor Gregory Metha and Professor Mark Biggs who always stood by when I needed them. I am also thankful to them for their contribution in the revising my thesis. I would like to show my gratitude to number of professional and scientific individuals who have facilitated completion of this project: Angus Netting (Adelaide Microscopy), Aoife McFadden (Adelaide Microscopy), Julianne Francis (School of Earth and Environmental Sciences).
I would also like to thank Dr. David Lewis for providing access to his laboratory for the use of centrifuge. I would like to acknowledge all the academic and non-academic staff of the School of Chemical Engineering, The University of Adelaide for their assistance and support. In particular, I wish to thank Andrew Wright and Mary Barrow for their help. I greatly appreciate and wish to express my gratitude to Seaneen Hopps, International Student Advisor for the motivation and assistance she has provided during the course of my program.

My eternal gratitude goes to all the members of Water Environment Biotechnology Laboratory with whom I worked during my research study for their advice, moral support and affection: Dr. Giuseppe Laere, Dr. Honjie An, Adrian Hunter, Florian Zepf, Guiqin Cai, Tzehaw Sia, Mohammed Nadim, Lijuan Wei, Jason Yu and all visiting German students. I would particularly like to thank Vipasiri Vimonses for her support throughout the project and for reading my manuscript. I would especially like to thank Dr. Meng Nan Chong for his time to read the draft of my thesis and for his valuable comments.

Finally, I would like to thank my husband, Rajdeep Singh Toor, for his love, patience and understanding. Without whose support I would have struggled to find the inspiration and motivation needed to complete my research. I am also thankful to my parents, elder sister and her family and all other family members for serving a strong pillar of encouragement and for the financial support that they provided during my study.