Problems in Backward Stochastic Differential Equations;
with applications to nonlinear evaluations and risk measures

Samuel N. Cohen

Thesis submitted for the degree of
Doctor of Philosophy

September 2010
Contents

Abstract v
Signed Statement vii
Acknowledgements xi
Dedication xiii

1 Contextual Statement 1
 1.1 Overview . 1
 1.2 Historical approaches to decision making under uncertainty 2
 1.2.1 Utility theory and certainty equivalents 2
 1.3 Static risk measures . 4
 1.3.1 Knightian uncertainty . 5
 1.3.2 Dynamic risk measures . 6
 1.4 Nonlinear expectations and evaluations 7
 1.5 Backward Stochastic Differential Equations 9
 1.5.1 Classical BSDEs . 9
 1.5.2 BSDEs and Hamilton-Jacobi-Bellman Equations 9
 1.5.3 Comparison Theorem for BSDE 10
 1.5.4 BSDE and Nonlinear Expectations 11
 1.6 Structure of this thesis . 11

I Processes in Discrete Time 15

2 Discrete Time, Finite State BSDEs 17

3 Discrete Time, Infinite State BSDEs 45
Abstract

This thesis studies problems in risk-averse decision making with uncertain outcomes. In particular, the theory of Backward Stochastic Differential Equations (BSDEs) in discrete and continuous time is considered, under various assumptions on the types of randomness present. Using results on BSDEs, the associated theory of nonlinear expectations and risk measures is developed. Chapter 1 is an introduction to some of the literature and ideas in this area, and outlines the process which has lead to the study of these equations.

Part I then considers BSDEs in discrete time, where both finite (Chapter 2) and infinite (Chapter 3) numbers of outcomes are possible. No further assumptions are made on the underlying probability space. In this situation, we show necessary and sufficient conditions for the existence and uniqueness of solutions to BSDEs, and show that all nonlinear expectations can be obtained as solutions to BSDEs. We also show when the driver of a BSDE can be deduced from the solutions of the equation.

Part II considers BSDEs in continuous time, where randomness arises from a finite state Markov chain. We show the existence of unique solutions to these equations (Chapter 4) and then derive a comparison theorem (Chapter 5). Using this, we construct nonlinear expectations in this setting.

Part III considers BSDEs in continuous time, where no significant assumptions are made on the filtration. This allows a unification of the discrete and continuous time theory of BSDEs. We obtain results generalising Grönwall’s inequality, which allows us to demonstrate the existence of unique solutions to BSDEs under very general conditions. We also give conditions such that a comparison theorem holds. These conditions generalise and unify those presented in previous chapters.

Appendix A gives useful algebraic results used in Chapter 5.
Signed Statement

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Samuel Cohen and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed overleaf) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed Date: 7 September 2010
Published (or submitted) works within this thesis

Related works not included in this thesis

These related works were completed as part of the student’s research candidature, however do not constitute part of this thesis.

Cohen, S.N. and Elliott, R.J. Comparison Theorems for Finite State Backward Stochastic Differential Equations, to appear in *Special Springer Volume in honour of Eckhard*
Platen’s 60th Birthday, Springer.

Cohen, S.N. What risk measures are time consistent for all filtrations?, submitted

Cohen, S.N. and Elliott, R.J. Time consistency and moving horizons for risk measures, submitted.
Acknowledgements

• Various people in the Mathematics Department at Adelaide Uni, for their friendship, support and generally giving me excuses to procrastinate. In particular the red room – Kate, Alice, Stephen, Susana, Farah, Leo, Aiden, Geraldine, Jess, Yanji and Jo.

• Jono and Eric, for all the coffee.

• My maths teachers over the years, in particular Ray Peck and Julian Grigg.

• Charles, for his friendship, patience, and for deciding that supervisor meetings were best conducted in a café, and should be spent discussing history.

• Robert, for telling me after three weeks that it was time to start writing something. For his help in getting me to conferences, to publish and to meet people. For being perennially supportive and a good friend.

• My parents, for their support, encouragement and patience.

• My children, John and Sophia, for being happy to see me when I came home. For reminding me that the world does not depend on the details of a proof.

• Juli, who is worth far more than rubies.

• The one Lord, Jesus Christ, the Α and the Ω. Who was, and is, and is to come.
 Soli Deo gloria.
Dedication

To my mother,
as every three year old should learn some set theory.