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Abstract 

This paper introduces a probabilistic optimisation approach to the characterisation of 
damage in beams using guided waves. The proposed methodology not only 
determines multivariate damage characteristics, but also quantifies the associated 
uncertainties of the predicted values, thus providing essential information for making 
decisions on necessary remedial work. The damage location, length and depth and 
Young’s modulus of the material are treated as unknown model parameters. 
Characterisation is achieved by applying a two-stage optimisation process that uses 
simulated annealing to guarantee that the solution is close to the global optimum, 
followed by a standard simplex search method that maximises the probability density 
function of a damage scenario conditional on the measurement data. The proposed 
methodology is applied to characterise laminar damage and is verified through a 
comprehensive series of numerical case studies that use spectral finite element wave 
propagation modelling with the consideration of both measurement noise and material 
uncertainty. The methodology is accurate and robust, and successfully detects damage 
even when the fault is close to the end of the beam and its length and depth are small. 
The particularly valuable feature of the proposed methodology is its ability to quantify 
the uncertainties associated with the damage characterisation results. The effects of 
measurement noise level, damage location, length and depth on the uncertainties in 
damage detection results are studied and discussed in detail. 
 
 
Keywords: Guided Wave, Beam Damage Characterisation, Bayesian Statistical 
Framework, Probabilistic Optimisation. 
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1 Introduction 

The detection of damage in one-dimensional structures such as beams and pipes using 
ultrasonics has been studied for a very long time. Conventional A- or C-scan 
ultrasonic techniques require measurements in the close vicinity of the damage, which 
is usually not feasible for large structures due to high costs and poor accessibility. 
Low-frequency damage detection methods that utilise natural frequencies [1], 
modeshapes [2-4] or time domain dynamic responses [5-6] are able to monitor the 
health of entire structures, but rely on low-frequency characteristics that are 
insensitive to small damage and usually return large errors for higher frequencies. A 
comprehensive review of these methods is given in [7]. 

Guided wave-based damage characterisation methodologies have been widely 
reported to be capable of monitoring large areas of structures and also being efficient 
and sensitive in detecting fatigue cracks in metallic structures, disbonds and 
delaminations in composite structures, and for the assessment of structural repairs 
[8-9]. For beam structures, Jiang et al. [10] used the time-of-flight difference between 
the healthy and damaged condition of a beam to identify the damage location, and 
then identified the damage severity from a power consumption metric defined in the 
frequency domain. Krawczuk [11] used a genetic algorithm gradient technique to 
identify a crack in a beam, in which the crack was modelled as a dimensionless spring. 
Li et al. [12] employed continuous wavelet transform to extract the reflected and 
transmitted flexural waves from a crack for damage identification, and Liew and 
Veidt [13] applied wavelet decomposition and artificial neural network based pattern 
recognition techniques to characterise laminar damage in beam structures.  
 For non-model based approaches such as that of Jiang et al. [10], reliable 
baseline subtraction is an essential requirement, which entails the accurate extraction 
of changes due to damage by analysing the pre- and post-damage time signals. It has 
been shown that reliable baseline subtraction is a difficult process for guided waves, 
and that even small changes in environmental conditions (e.g., temperature) may 
result in large errors [14]. Model-based techniques, in contrast, involve the use of an 
analytical or numerical model that describes the propagation of the interrogating wave 
and its reflection and transmission at interfaces and boundaries. 
 Optimisation is a powerful technique in engineering application such as 
structural design, system identification and damage characterisation. In the literature 
different types of optimisation algorithm have been developed to determine the global 
optimum such as genetic algorithms, evolution strategies and simulated annealing 
[15]. Some methods hybridise two different optimisation algorithms to increase the 
efficiency. A genetic simulated annealing method [16], which combines genetic 
algorithm and simulated annealing to locate the global optimum, has been applied to 
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flowshop scheduling problems. A hybrid genetic algorithm [17] has been developed 
and applied to mixed-discrete nonlinear design optimisation problems, where the 
genetic algorithm is used to determine the feasible region containing the global 
optimum point. The hybrid negative sub-gradient method is then used to find the 
global optimal. A hybrid optimisation approach combining evolution strategies and a 
gradient based method [18] has been employed in structural model updating 
problems. 
 This paper systematically investigates the application of a model-based 
probabilistic damage characterisation methodology to identify laminar damage in 
beam structures. An important advantage of the proposed methodology over existing 
methods is the Bayesian statistical framework [19] that is adopted to calculate the 
probability density functions (PDF) of the predicted damage characteristics. Such 
calculations allow the quantification of the uncertainties associated with damage 
detection results, information that is essential for making decisions about necessary 
remedial work. Another essential feature of the Bayesian statistical framework is that, 
if required, engineering judgment can be incorporated into the damage 
characterisation process to reduce the uncertainty of the results. The proposed 
methodology converts the damage detection problem into an optimisation problem in 
which the probability density function of the damage scenario is maximised 
conditional on the set of measured data. The objective function that is formulated in 
the proposed methodology is highly nonlinear, which implies that the optimisation 
problem may have many local optimal solutions. Traditional deterministic numerical 
optimisation algorithms will easily become trapped by those local minima, and thus to 
solve this problem a two-stage optimisation process is proposed. In the first stage, a 
probabilistic optimisation algorithm is employed to identify a solution that is close to 
the global optimal solution. In the second stage, a deterministic optimisation 
algorithm is used to accurately determine the global optimum.  
 The organisation of the paper is as follows. The proposed probabilistic 
methodology is presented in Section 2, along with an explanation of the fundamentals 
of the spectral finite element modelling of guided waves in damaged beams and the 
Bayesian statistical framework for quantifying the uncertainty of damage 
characterisation results. In Section 3, the performance of the methodology in detecting 
and characterising laminar damage in beams is illustrated by a series of 
comprehensive numerical cases studies. The section also includes investigations on 
the effects of different levels of measurement noise and interference of boundary 
reflections and scattered waves on the damage characterisation results. Conclusions 
are presented in Section 4.  
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2 Methodology 

The basic concepts of wave propagation modelling in damaged beams through 
spectral finite element analysis are presented first. A one-dimensional spectral finite 
element is introduced to describe the propagation of a longitudinal wave and used to 
model step damage in a beam. In the second sub-section, a probabilistic approach is 
presented that enables the calculation of multivariate damage characteristics and the 
corresponding confidence levels.  
 
2.1 Spectral finite element modelling of guided wave propagation in 

damaged beams 

2.1.1  Spectral finite element model 

A frequency domain spectral finite element [20-21] with length jL  is shown in 

Figure 1. The element contains two nodes each with one longitudinal degree of 

freedom ûα  and ûβ , respectively. The longitudinal wave motion is governed by 

elementary wave propagation theory for longitudinal waves in a linear elastic material.

 
2 2

2 2 2

1u u
x c t
∂ ∂=
∂ ∂

, (1) 

where ( ),u u x t=  is the longitudinal displacement and /c E ρ=  is the speed of 

the fundamental longitudinal wave mode in a material with Young’s modulus E  and 
density ρ . The solution is assumed to have the spectral representation  

 ( ) ( )
1

ˆ, , n

N
i t

n
n

u x t u x e ωω −

=

=∑ , (2) 

where i  is the imaginary unit, nω  is the circular frequency and the summation is 
carried out up to the Nyquist frequency Nω . By substituting Equation (2) into (1), the 
governing equation is transformed from time domain to frequency domain for the 
discrete frequency component nω .  

 
2

2 2
2

ˆ ˆ 0n
u

c u
x

ω∂ + =
∂

. (3) 

The transformation changes the governing equation from a partial differential 
equation to a set of ordinary differential equations. The general longitudinal 
displacement in frequency domain is written as 

 ( ) ( )ˆ , n jn
ik L xik x

nu x C e C eα βω − −−= + , (4) 



 6 

where /n nk Eω ρ=  is the wavenumber and Cα  and Cβ  are unknown 

coefficients that can be expressed in terms of the nodal displacements as 

 1

ˆ 1
ˆ 1

n j

n j

ik L

ik L

u C Ce
u C Ce
α α α

β β β

−

−

⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫
= =⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎢ ⎥⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎣ ⎦

T , (5) 

where ûα  and ûβ  are the longitudinal displacements in frequency domain at the 

left- and right-hand side node of the element, respectively. The forces in the 
frequency domain at the nodes are 

 
ˆˆˆ ˆ,j j

uuF EA F EA
x x

βα
α β

∂∂= − =
∂ ∂

, (6) 

where jA  is the cross-sectional area. The forces can be related to the unknown 

coefficients Cα  and Cβ  as 
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ˆ 1
ˆ 1
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n j
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F C Ce
ikEA

C CF e
α α α

β ββ

−

−
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T . (7) 

Thus, the relation between the nodal forces and the nodal displacements is given as 

 1
2 1

ˆ ˆ ˆ
ˆ ˆ ˆn

F u u
u uF

α α α
ω

β ββ

−
⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ = =⎨ ⎬ ⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭⎪ ⎪⎩ ⎭
T T K , (8) 

where 
nω

K  is the dynamic stiffness matrix of the spectral element at the frequency 

nω . The displacement at any location within the element is calculated using the shape 
function and the nodal values [20] as 

 ( ) ( )sin sinˆ ˆ ˆ,
sin sin
n j n

n
n j n j

k L x k x
u x u u

k L k Lα βω
⎛ ⎞− ⎛ ⎞
⎜ ⎟= + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 for 0 jx L< < . (9) 

 A special feature of the spectral finite element method is that for short 
observation times the beam can be considered to be semi-infinite, and a so-called 
throw-off element can be introduced that has only a single node and is a conduit that 
describes waves propagating away from the system boundary. The dynamic stiffness 
of the throw-off element for a longitudinal wave at frequency nω  [20] is 

 
n n jK ik EAω =% . (10) 
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2.1.2  Modelling of step damage 

Three spectral finite elements and one throw-off element are used to model a 
semi-infinite beam with laminar damage (see Figure 2). The step damage is simulated 
by reducing the cross-sectional area of element EL2, 2 ( )A b h d= − . The 

cross-sectional areas of the other elements are jA bh=  ( j  = 0, 1 and 3), where b  

and h  are the width and height of the beam, respectively, and d  is the depth of the 
step damage. The damage location and length are parameterised by the length of EL1 
( 1L ) and EL2 ( 2L ), respectively. In addition, it is assumed that there exists some 
uncertainty related to the Young’s modulus of the material. Thus the system 
parameters considered in the probabilistic damage characterisation are 

 1 2{ , , , }TL L d E=è . (11) 

 
2.2 Probabilistic damage characterisation approach 

2.2.1  Calculation of posterior probability density functions 

The proposed probabilistic methodology employs the Bayesian statistical framework 
[19] to determine the uncertain model parameters of the damaged beam. This method 
not only identifies the optimal values of the damage characteristics and the Young’s 
modulus of the material, but also calculates the posterior (updated) probability density 
function (PDF) of the uncertain model parameters based on a given set of measured 
guided wave responses D , and can thus quantify the uncertainties associated with the 

identified model parameters. The uncertain parameter vector ( ){ , }T T Sσ= ∈á è á  is 

updated, where è  contains the damage location ( 1L ), length ( 2L ), depth ( d ) and 
Young’s modulus E , as shown in Equation (11). σ  is the prediction error of the 

guided wave response and ( )S á  is a set of possible parameter values for á . 

Using Bayes’ theorem, the posterior PDF of the uncertain parameter vector á , 
conditional on a given set of measured guided wave responses D  and the class of 
the damaged beam model M , can be expressed as 

 ( ) ( ) ( )
( )

| , |
| ,

|
p D M p M

p D M
p D M

=
á á

á , (12) 

where ( ) ( )|p M π=á á  is the prior (initial) PDF of á  which allows the inclusion 
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of engineering judgment about the plausibility of the values of á . It can be chosen as 
a smooth, slowly varying PDF, which is mathematically convenient and roughly 
reflects the engineer’s judgment regarding the relative plausibility of different values 
of the parameter vector á . The PDF of the set of measured guided wave responses 
D  conditional on the model class M  is calculated as [19] 

 ( ) ( ) ( )
( )

1| | , |
S

p D M p D M p M d τ −= =∫ á
á á á , (13) 

where τ  is a normalising constant such that the expression on the left-hand side of 
Equation (12) is equal to unity. Equation (12) can then be expressed as 

 ( ) ( ) ( )| , | ,p D M p D Mτ π=á á á , (14) 

where ( )| ,p D Má  is the contribution of the measured guided wave signal and is 

given by [19] 

 ( )
( )

( ) ( ) 22
1

1 1| , exp ;
22

t

t o

N

mN N
t

p D M u t u t
σπσ =

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
∑α θ , (15) 

where tN  and oN  are the number of measured time steps and the number of 

measurement points, respectively. ( )mu t  is the measured guided wave response at 

the t -th time step, and ( );u t θ  is the calculated guided wave response based on the 

model class M  for a given set of uncertain parameters è . ⋅  denotes the standard 

Euclidean norm of the second kind. 
 The posterior PDF of the uncertain parameters è  can be obtained from 

 ( ) ( ) ( ) ( )
0 0

| , | , | ,p D M p D M d p D M dσ τ π σ
∞ ∞

= =∫ ∫è á á á . (16) 

As the measured guided wave response usually contains a large number of data points, 
Equation (16) can be evaluated using an asymptotic approximation according to [22] 

 ( ) ( ) ( )( )1 ˆ| , ,JNp D M Jτ π σ−=è è è è , (17) 

where 1τ  is another normalising constant and ( 1) / 2J t oN N N= − . ( )J è  quantifies 

the correlation between the measured and simulated guided wave response data, and 
is defined as  

 ( ) ( ) ( ) ( )2 2

1

1 ˆ;
tN

m
tt o

J u t u t
N N

σ
=

= − =∑θ θ θ , (18) 
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where ( )2σ̂ è  is the optimal variance in the prediction error model. It should be 

noted that for a large number of measured data points tN , the relative posterior 
probability for a component of the system parameter vector è  is very sensitive to the 

values of the corresponding component in ( )J è , and there is a finite number of 

optimal points ( )ˆ qè , 1,...,q Q=  that satisfies 

 ( )( ) ( )
( ) 2ˆ ˆminq

S
J J σ

∈
= =
è è

è è . (19) 

 The posterior PDF of the system parameter vector è  for the given D  and M  
can be approximated by a weighted sum of Gaussian distributions centred at the Q  
optimal points [6,19,23,24]. 

 ( ) ( ) ( )( )( )1

1

ˆ ˆ| , ,
Q

q q
q N

q
p D M w −

=

≈ Γ∑è è H è , (20) 

where ( ),εΓ Σ  denotes a multivariate Gaussian distribution with mean ε  and 

covariance matrix Σ . ( )( )1 ˆ q
N
−H è  is the inverse of the Hessian matrix of the function 

( ) ( )lnJg N J=è è  evaluated at the optimal values ( )ˆ qè , 1,...,q Q= . The weighting 

coefficients qw  are defined as 

 
1

q
q Q

q

w
w

w
=

′
=

′∑
, where ( )( ) ( )( )

1
2ˆ ˆq q

q Nw π
−

′ = è H è . (21) 

 
2.2.2  Global optimisation strategy 

In the proposed probabilistic methodology, the probability density function in 
Equation (14) is maximised to identify the most ‘plausible’ damage scenario based on 
a given set of measured guided wave responses. For a non-informative prior PDF, no 
prior information is assumed and the results depend only on the measured data, 

maximising the PDF in Equation (14) is equivalent to minimising the ( )J è  function 

in Equation (18), which represents the discrepancy between the measured and 

simulated guided wave responses. It is clear from the formulation that ( )J è  is 

highly nonlinear, which implies that there are many local optimal solutions in the 
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parameter space of interest. Figure 3 shows an example of the search space of ( )J è  

as a function of the damage location 1L  and the damage length 2L . The true values 
of the damage depth d  and the Young’s modulus E are used to plot this figure. The 

( )J è  function in the figure is normalised such that the maximum is equal to unity. 

The global optimal point is at 1L  = 1400 mm and 2L = 10 mm. Figure 3 clearly 
shows that there are several local optimal points in the close neighbourhood of the 
global optimum. In this situation, the development of a robust and effective 
optimisation scheme is a very challenging task, because traditional deterministic 
numerical optimisation algorithms, such as the gradient-based optimisation methods, 
are easily trapped by the local optimal solutions. Stochastic optimisation methods [15] 
are promising techniques in exploring ‘important’ regions in the parameter space 
where the objective function is of high value. However, such methods usually require 
many iterative steps to identify the global optimal solution. In the proposed 
methodology, a stochastic optimisation algorithm, namely simulated annealing (SA) 
[25], is employed to identify a solution that is close to the global optimum. This 
solution is then employed as the initial trial for a simplex search method [26] that 
accurately determines the global optimal solution. 

As the name implies, SA adopts the principle of annealing from materials science. 
It is based on the fact that certain material alloys have multiple stable states with 
different molecular distributions and energy levels. In the annealing process, an alloy 
is initially heated up to a temperature at which all particles are randomly distributed in 
the liquid phase. The temperature is then slowly decreased until the material solidifies. 
If the temperature is reduced at a sufficiently slow rate, the annealing process always 
guarantees that the alloy reaches its global minimum energy state.  

The proposed SA procedure begins by generating a set of TN  trial states of the 
cost function lJ , 1,..., Tl N=  from a random selection of initial uncertain parameters 
è . A small change in the cost function value lJ ′  is then generated by a small random 
change in the uncertain parameters è . The new set of uncertain parameters è  is 
accepted based on the acceptance probability p, which is defined as 

 
1 if 0

if 0
E
T

E
p

e E
Δ−

Δ <⎧⎪= ⎨
⎪ Δ >⎩

, (22) 

where l lE J J′Δ = − . Thus, lJ ′  causing 0EΔ <  is always accepted, whereas lJ ′  
causing 0EΔ >  is only accepted according to the probability given by /E Tp e−Δ= , 
where T  is the ‘annealing temperature’. There is a high probability that the change 
in the uncertain parameters will be accepted when T  is large, and vice versa. Thus, 
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SA may accept changes in the uncertain parameters that increase the value of the cost 
function, which helps to avoid the solution becoming trapped by the local minima. 
When lJ ′  is accepted, l lJ J ′=  and T  is reduced, which decreases the probability 
p . Here, TN  = 20 and the ‘temperature’ reduction rate is 0.5, which means that T  

in the subsequent optimisation step is half the value that it is in the previous step. The 
SA is terminated once a certain level of convergence of the uncertain parameters is 
achieved or after a certain run-time limit is reached. Further details on the SA 
algorithm can be found in [27].  
 A simplex search method [26] is then applied to accurately locate the global 
optimal point by treating the solution from the SA as the initial trial.  

 
3 Numerical Case Studies 

The aim of the numerical case studies is to systematically investigate the robustness 
of the proposed probabilistic methodology to characterise laminar damage in beams. 
The test system consists of a 2m long aluminium beam with a width b , height h , 
Young’s modulus E  and density ρ  of 12 mm, 6 mm, 72 GPa and 2750 kg/m3, 
respectively. The beam is modelled using three spectral finite elements and one 
throw-off element, as explained in section 2.1 and shown in Figure 2. The first 
longitudinal guided wave is excited by applying an axial force to the left end of the 
beam. The excitation consists of a 100 kHz narrow-band six-cycle sinusoidal tone 
burst modulated by a Hanning window, as shown in Figure 4. The measurement point 
is located at the centre of the beam and the guided wave response is measured until 
the incident pulse reflected from the free end of the beam arrives at the measurement 
location. Geometric and material properties of the beam are usually modelling errors 
in real situations. The geometric modelling error can be minimised by accurately 
measuring the dimensions of the beam. In this study the material modelling error is 
considered a possible uncertainty parameter by assuming that the Young’s modulus 
E  can vary within ± 5% of the actual value. Measurement error is considered and 
simulated by applying white noise to the time-domain response of the guided wave. 
Without loss of generality, it is assumed that the possible damage location varies 
between the centre and the right end of the beam. The maximum possible damage 
length and depth to be considered are 50 mm and 5.9 mm, respectively.  

Fourteen cases (see Table 1) of step damage are used to comprehensively study 
the performance of the proposed probabilistic methodology. Case A is used as a 
standard case to demonstrate the ability of the method to characterise damage and 
quantify uncertainty, and also serves as the nominal case for comparison with the 
results of the other cases. The effects of the measurement noise level and damage 
length on the damage characterisation results are investigated in Cases B1 to B3 and 
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C1 to C3, respectively. Cases D1 to D3 study the effect of damage depth on the 
uncertainties associated with the identified model parameters, and Cases E1 to E3 
examine the effects of damage location, especially when the damage is close to the 
end of the beam. Finally, Case F is used to demonstrate the ability of the proposed 
probabilistic methodology in the most difficult situation in which both the damage 
length and the depth are small and the damage location is near the beam end.  

Figure 5 shows the simulated guided wave response signals for Cases A, E2 and 
E3. The damage of the three cases has the same length and depth but is located at a 
different location along the beam. It is clear from the figure that the scatter pulse from 
the damage overlaps with the incident pulse reflected from the beam end when the 
damage is close to the end of the beam. As mentioned in section 1, most of the 
non-model based methods have difficulty in identifying damage in such situations 
because they rely on accurate baseline subtraction, which is challenging for 
interfering pulses. 

 Case A considers a damage location at 1400 mm from left end of the beam with 
a damage length of 30 mm and a damage depth of 1 mm. The proposed probabilistic 
methodology is employed to identify the damage location 1L , length 2L , depth d  
and Young’s modulus E . Table 2 shows the predicted damage characteristics to be 
1L  = 1399.99 mm, 2L  = 29.80 mm and d  = 1.04 mm, which indicates that the 

method is able to identify all of the uncertain parameters very well. In addition to the 
predicted values, the proposed probabilistic methodology also quantifies the 
uncertainties associated with these values by calculating the posterior PDF of the set 
of uncertain model parameters. The normalised marginal PDF of the damage length 
and depth are plotted in Figure 6, which illustrates the uncertainty associated with 
these identified characteristics. As it is not possible to plot a figure with more than 
three dimensions, the marginal PDF in Figure 6 is calculated by integrating the PDF 
with respect to the other two identified uncertain parameters, that is, the damage 
location and the Young’s modulus. In addition, a non-informative prior distribution is 
used in the Bayesian statistical framework to calculate the posterior PDF in all of the 
case studies, which means that no prior information is assumed and the results depend 
only on the set of measured data. Figure 6 shows that the PDF value drops very 
sharply, even for small deviations from the optimal damage length and depth, which 
indicates the high confidence level that can be ascribed to the predicted damage 
characteristics. For easier comparison of the uncertainties of different identified 
model parameters from different cases, the marginal cumulative distributions of the 
identified parameters are calculated. The solid curves in Figures 7 and 8 show the 
marginal cumulative distribution of the identified damage length and depth for Case A. 
All of the marginal cumulative distribution graphs for damage length and depth are 
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normalised by the corresponding true values to enable different cases to be compared. 
In the case studies, the normalised identified damage length or depth is the value on 
the horizontal axis at which the marginal cumulative probability is equal to 0.5, and 
the normalised error of the identified value is the horizontal distance between that 

point and the normalised true values 2 1L =  or 1d = . The slope of the curve is a 

measure of the uncertainty associated with the identified value, where a steeper curve 
means less uncertainty.  

Another convenient way to quantify uncertainty is to calculate the coefficient of 
variation (COV), which is a normalised measure of the dispersion of a probability 
distribution about its mean value. The row below the identified value in Table 2 
shows the COV values of the identified results. The COV is calculated by the square 
root of the second central moment of the estimated probability density function about 
its mean. The COV of the damage location (0.0086%) is very small compared with 
the COVs of the other model parameters. This is because the guided wave signal 
usually provides accurate information on the damage location based on the time it 
takes for the scatter pulse to arrive from the damage [28]. The COVs of the damage 
length and depth are 0.54% and 2.73%, respectively. The Young’s modulus is 
identified as E = 72.00 GPa, which is identical to the true value. The corresponding 
COV value is 0.0015%. The exact identification and extremely low COV value of the 
identified Young’s modulus result from the high sensitivity of the propagation 
velocity of the guided wave to the material properties, including the Young’s modulus 
[29]. Hence, the Young’s modulus can be accurately identified with only a small 
uncertainty. 

The effect of different levels of measurement noise on the characterisation results 
is investigated in Cases A and B1 to B3. Cases B1 to B3 are identical to Case A 
except for the level of random noise superimposed on the measured time signals, 
which are assumed to be 2.5% for Case B1, 7.5% for Case B2 and 15% for Case B3 
compared with 5% for Case A. The identified values for the uncertain parameters in 
these cases are summarised in Table 2. The results show that all of the identified 
values are close to the true values, even for Case B3 with 15% measurement noise. 
The identified damage location, length and depth demonstrate that, as expected, the 
accuracy of the damage characteristics decreases with increased measurement noise. 

The normalised marginal PDF of the identified damage length and depth of Case 
B3 is shown in Figure 9. The axes in Figures 6 and 9 are plotted at the same scale to 
enable direct comparison. Figure 9 shows that the PDF value for small deviations 
drops more slowly from the optimal damage length and depth in any direction 
compared with Figure 6 (Case A). This shows that the uncertainties associated with 
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the identified damage length and depth are higher in Case B3 than in Case A. The 
marginal cumulative distribution of the damage length and depth of Cases A and B1 
to B3 are plotted in Figures 7 and 8, respectively. The slopes of these curves decrease 
with larger percentages of measurement noise, indicating that the uncertainty of the 
identified damage length and depth increases. This result is confirmed by the COV 
values for the identified values in Table 2. The COV value of the identified damage 
length increases from 0.28% (in Case B1) to 1.42% (in Case B3) when the percentage 
measurement noise is increased from 2.5% to 15%. Similarly, the COV value of the 
identified damage depth increases from 1.40% (in Case B1) to 7.42% (in Case B3).  

The influence of the damage length on the uncertain parameters is investigated in 
Cases C1 to C3. These cases have the same damage characteristics as Case A apart 
from the damage length 2L , which is 40 mm for Case C1, 20 mm for Case C2 and 8 
mm for Case C3. The results of the damage characterisation process are summarised 
in Table 3, and show that all of the identified damage parameters are close to the true 
values, even in Case C3 which has a very small damage length (8 mm). The identified 
damage length of Case C3 is 7.55 mm and the damage depth is 1.03 mm. The 
corresponding COV values are 5.72% and 3.53%. Figures 10 and 11 provide the 
detailed information on and comparison of the uncertainty associated with the 
identified damage length and depth for Cases A and C1 to C3. Figure 10 shows that 
the slopes of the curves decrease with smaller damage lengths. The decrease in slope 
and hence increase in prediction uncertainty is most dramatic for the small damage 
length considered in Case C3. As is shown in Figure 10, Case C3 has also the smallest 
slope and hence the largest uncertainty regarding the identified damage depth, 
although the difference is much less pronounced than that for the damage length.  

The third set of case studies investigates the effect of different damage depths. 
Again, Cases D1 to D3 are the same as Case A except for the damage depth, which is 
2 mm for Case D1, 1.5 mm for Case D2 and 0.5 mm for Case D3 compared with 1 
mm for Case A. The characterisation results and corresponding COV values are again 
summarised in Table 3 and illustrate how the accuracy of the identified damage depth 
declines as the damage depth decreases. The identified damage depth for Case D3 is 
0.56 mm, which is still very close to the true value of 0.5 mm and demonstrates the 
robustness of the probabilistic optimisation methodology. Figures 12 and 13 show the 
marginal cumulative distribution of the identified damage length and depth for Cases 
A and D1 to D3. These figures show that the uncertainty associated with the identified 
damage length and depth is larger for smaller damage depths. Shallow damage results 
in reduced amplitudes of the scatter waves and a decrease in signal to noise ratio 
because the measurement noise level is the same for all cases. Thus, the indication of 
damage in the measured time signal is less pronounced, which leads to larger 
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associated uncertainties in the damage characterisation. It is worth pointing out that 
the trends in Figures 12 and 13 are very similar to those in Figures 7 and 8, 
respectively, in which different measurement noise levels are considered. An increase 
in measurement noise level has the same effect as a decrease in damage depth, since 
both decrease the signal to noise ratio and reduce the quality of the damage features in 
the measured time signals. 

The effect of the damage location 1L  is examined in Cases E1 to E3, which are 
the same as Case A but with different damage locations of 1600 mm for Case E1, 
1900 mm for Case E2 and 1960 mm for Case E3. The damage characterisation results 
with the corresponding COV values are listed in Table 3. The COV values of the 
identified damage length and depth for Cases A and E1-E3 are relative close, which 
indicates that the uncertainties of the predictions are very similar in all cases. The 
identified damage locations are close to the true values, and the associated 
uncertainties are similar in all four cases. This illustrates that the accuracy of the 
damage location identification is not affected by the damage location as long as there 
is only limited interference from the scatter wave and the reflection from the beam 
end. One of the reasons for this behaviour is that the first longitudinal wave mode 
propagates without dispersion. Hence, the scattering wave response amplitude is very 
similar for different damage locations and the quality of the information received at 
the measurement location is practically identical, which enables the determination of 
the arrival time of the reflected pulse from the damage with the same accuracy. 
However, the uncertainties of the identified damage length and depth are slightly 
increased for Case E3 when the damage is located relatively close to the end of the 
beam. This is because the scatter response is hidden in the excitation pulse reflected 
from the end of the beam, as shown in Figure 5.  
 Case F is the last and most difficult case, and considers damage that is located 
close to the end of the beam ( 1L = 1960 mm) and is relatively short ( 2L = 10 mm) and 
shallow ( d = 0.5 mm). The measurement noise is assumed to be 5%. The 
characterisation results and the calculated COV values are summarised in Table 3. 
The characterisation results are close to the true values and the prediction errors are 
very similar to those of Case A. However, the COVs of the identified damage length 
and depth are significantly larger in Case F than in Case A, which reflects the larger 
uncertainty associated with the predicted values of Case F. Nevertheless the 
characterisation results are evidence of the robustness and potential of the proposed 
probabilistic methodology to identify laminar damage in beams. 
 The current numerical case studies assumed the laminar type of damage in the 
beam. If different types of damage are existed, the proposed methodology may need 
to employ other damage models. However, the type of damage can usually be 
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pre-determined based on the engineer’s judgement, characteristic and material of the 
structures. 
 
4 Conclusions 

This paper introduces a probabilistic optimisation approach to detect and characterise 
laminar damage in beams utilising longitudinal guided wave signals measured at a 
single point on a beam. The proposed methodology not only determines the 
multivariate damage characteristics, but also quantifies the uncertainties of the 
predicted values, thus providing essential information for making decisions on 
necessary remedial work. A comprehensive series of numerical case studies is carried 
out using spectral finite element wave propagation modelling that considers 
measurement noise and material uncertainty. A two-stage optimisation process 
consisting of simulated annealing is implemented to guarantee that the solution finds 
the global optimum, followed by a standard simplex search method that maximises 
the probability density function of the damage scenario conditional on a set of 
measurements. The case study results demonstrate the potential and robustness of the 
method. All three damage parameters (location, length and depth) are successfully 
identified, even for damage located close to the end of the beam and small and 
shallow damage. The uncertainties associated with the predicted damage 
characteristics increase with higher levels of measurement noise, smaller damage 
lengths, smaller damage depths and increased proximity of the damage to the end of 
the beam. However, even in cases in which the scatter wave is completely hidden in 
the reflection of the interrogation pulse from the end of the beam, the predicted values 
only differ from the true values by less than 12%, with COVs of less than 8.5%. The 
proposed methodology is currently verified in experimental studies and extended to 
characterise multiple delaminations in composite beams. 
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Figure 1: Spectral finite element for the fundamental longitudinal guided wave mode 
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Figure 2: Semi-infinite spectral finite element model of a beam with step damage 
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Figure 3: Typical search space of the cost function 
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Figure 4: Six-cycle 100kHz sinusoidal excitation signal modulated by a Hanning 

window in time and frequency domain 



 21 

 

0 10 20 30 40 50 60
-1

0

1

0 10 20 30 40 50 60
-1

0

1

0 10 20 30 40 50 60
-1

0

1

Time (µs)
 

N
or

m
al

is
ed

 a
m

pl
itu

de
 

Incident pulse 

Scattering pulse 
from damage 

Incident pulse  
reflected from free end 

Incident pulse 

Scattering pulse 
from damage 

Incident pulse  
reflected from free end 

Incident pulse 

Scattering pulse hidden in 
reflected incident pulse 

Case A 

Case E2 

Case E3 

 
Figure 5: Simulated guided wave response at the measurement point in Cases A, E2 
and E3 
 



 22 

 
2 ( )L mm  

( )d mm   
Figure 6: Normalised marginal PDF of the identified damage length ( 2L ) and depth 
( d ) in Case A. 
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Figure 7: Marginal cumulative distribution of the normalised identified damage length 

( 2L ) in Cases A and B1-B3 
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Figure 8: Marginal cumulative distribution of the normalised identified damage depth 
( d ) in Cases A and B1-B3 
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Figure 9: Normalised marginal PDF of the identified damage length ( 2L ) and depth 
( d ) in Case B3 
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Figure 10: Marginal cumulative distribution of the normalised identified damage 

length ( 2L ) in Cases A and C1-C3 
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Figure 11: Marginal cumulative distribution of the normalised identified damage 
depth (d ) in Cases A and C1-C3 
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Figure 12: Marginal cumulative distribution of the normalised identified damage 

length ( 2L ) in Cases A and D1-D3 
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Figure 13: Marginal cumulative distribution of the normalised identified damage 
depth (d ) in Cases A and D1-D3 
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Tables 
 

Table 1: Summary of all of the cases in the numerical case study 
Situation Case 1L  (mm) 2L  (mm) d  (mm) Noise (%) 

Standard case A 1400 30 1 5 
Different 

measurement 
noise 

B1 1400 30 1 2.5 
B2 1400 30 1 7.5 
B3 1400 30 1 15 

Different 2L  
C1 1400 40 1 5 
C2 1400 20 1 5 
C3 1400 8 1 5 

Different d  
D1 1400 30 2 5 
D2 1400 30 1.5 5 
D3 1400 30 0.5 5 

Different 1L  
E1 1600 30 1 5 
E2 1900 30 1 5 
E3 1960 30 1 5 

Combined case F 1960 10 0.5 5 
 
 
 

Table 2: Identified results and corresponding COVs for Cases A and B1-B3 

Case 
 1L  (mm) 2L  (mm) d  (mm) E  (GPa) 

True value 1400 30 1 72 

A 
Identified value 1399.99 29.80 1.04 72.00 

COV (%) 0.0086 0.5374 2.7254 0.0015 

B1 
Identified value 1400.00 29.90 1.02 72.00 

COV (%) 0.0044 0.2781 1.3964 0.0008 

B2 
Identified value 1399.98 29.71 1.06 72.00 

COV (%) 0.0127 0.7785 3.9846 0.0023 

B3 
Identified value 1399.96 29.49 1.12 72.00 

COV (%) 0.0243 1.4240 7.4233 0.0045 
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Table 3: Identified results and corresponding COVs for Cases C1-C3, D1-D3, E1-E3 
and F 
Case  1L  (mm) 2L  (mm) d  (mm) E  (GPa) 

C1 
True value 1400 40 1 72 

Identified value 1400.02 39.84 0.97 72.00 
COV (%) 0.0083 0.5196 1.1768 0.0015 

C2 
True value 1400 20 1 72 

Identified value 1399.99 20.18 0.98 72.00 
COV (%) 0.0096 1.0936 2.8457 0.0016 

C3 
True value 1400 8 1 72 

Identified value 1400.15 7.55 1.03 72.00 
COV (%) 0.0158 5.7202 3.5252 0.0020 

D1 
True value 1400 30 2 72 

Identified value 1399.97 29.94 2.02 72.00 
COV (%) 0.0036 0.2126 0.8717 0.0017 

D2 
True value 1400 30 1.5 72 

Identified value 1399.98 29.90 1.53 72.00 
COV (%) 0.0053 0.3241 1.4939 0.0016 

D3 
True value 1400 30 0.5 72 

Identified value 1400.01 29.54 0.56 72.00 
COV (%) 0.0177 1.0750 6.2842 0.0015 

E1 
True value 1600 30 1 72 

Identified value 1599.96 30.03 1.00 72.00 
COV (%) 0.0078 0.5810 2.8706 0.0015 

E2 
True value 1900 30 1 72 

Identified value 1899.70 30.27 0.95 72.00 
COV (%) 0.0066 0.5060 2.8650 0.0015 

E3 
True value 1960 30 1 72 

Identified value 1960.00 29.74 1.01 72.00 
COV (%) 0.0051 0.6352 3.1517 0.0026 

F 
True value 1960 10 0.5 72 

Identified value 1960.38 9.30 0.52 72.00 
COV (%) 0.0196 8.1676 3.8594 0.0025 

 
 


