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Abstract: 

This paper reports both the theoretical development and the numerical verification of a practical 

wavelet-based crack detection method, which identifies first the number of cracks and then the 

corresponding crack locations and extents. The value of the proposed method lies in its ability to 

detect obstructed cracks when measurement at or close to the cracked region is not possible. In such 

situations, most non-model based methods, which rely on the abnormal change of certain indicators 

(e.g., curvature and strain mode shapes) at or close to the cracks, cannot be used. Most model-based 

methods follow the model updating approach. That is, they treat the crack location and extent as 

model parameters and identify them by minimizing the discrepancy between the modelled and 

measured dynamic responses. Most model-based methods in the literature can only be used in 

single- or multi-crack cases with a given number of cracks. One of the objectives of this paper is to 

develop a model-based crack detection method that is applicable in a general situation when the 

number of cracks is not known in advance. 

To explicitly handle the uncertainties associated with measurement noise and modelling error, the 

proposed method uses the Bayesian probabilistic approach. In particular, the method aims to 

calculate the posterior (updated) probability density function (PDF) of the crack locations and the 

corresponding extents. 

The proposed wavelet-based crack detection method is verified and demonstrated through a 

comprehensive series of numerical case studies, in which noisy data were generated by a Bernoulli-

Euler beam with semi-rigid connections. The results show that the method can correctly identify the 

number of cracks even when the crack extent is small. The effects of the number of cracks and the 

crack extents on the results of crack detection are also studied and discussed in this paper. 
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1 Introduction 

In recent years, developments in sensor technologies, data storage devices and high-speed 

computing have been so fast that the use of measured vibration data in structural damage detection 

(or health monitoring) has become feasible from a hardware point of view. However, the 

development of software tools for the reliable detection and characterisation of structural damage is 

still lacking, which prevents the exploitation of the full potential of the technique. In-situ structural 

health monitoring is part of a current revolution in smart-structure technologies that promises 

quantum gains in performance, endurance and cost-efficient maintenance for high-value assets in 

civil, mechanical and aerospace engineering. Many methods have been developed for detecting 

various types of damage (e.g., cracks on beams, reduction in the stiffness of structural members and 

connections, and degradation of materials) to various types of structures (e.g., trusses, frames, 

buildings and bridges) under different assumptions (e.g., linear elastic, time-invariant) and making 

use of different measured quantities (e.g., time-domain responses, modal parameters and wavelet 

transform). A comprehensive review of SHM methods from 1996 to 2001 was conducted by Sohn 

et al. (2004). 

Wavelet analysis has been one of the fastest evolving signal processing tools in the area of damage 

detection (Sohn et al. 2004). In 2000, Hou et al. (2000) proposed a wavelet-based approach to 

structural damage detection, and verified the approach by simulated data of a simple structural 

model with multiple breakable springs under harmonic excitation. In the same year, Okafor and 

Dutta (2000) used both computer simulated and experimental measured data to prove the usefulness 

of wavelet transform in structural damage detection. Very encouraging results were obtained. Two 

years later, Yan and Yam (2002) presented a wavelet-based method for the detection of cracks 

within a small area on a composite plate using embedded piezoelectric patches as actuator and 

sensors. Sun and Chang (2003) proposed the use of wavelet packet transform to detect structural 

damage with the help of neural networks. All of the abovementioned methods carried out the 

wavelet transform in the time-domain. In contrast, Liew and Wang (1998) proposed for the first 

time to undertake the wavelet transform in the space-domain, which was found to be very sensitive 

to structural cracks. In 1999, Wang and Deng (1999) extended the approach to develop a wavelet-

based method for crack detection in beam and plate structures. Lu and Hsu (2002) presented a 

defect detection method for uniform string by comparing the spatial wavelet transform before and 

after damage. Chang and Chen (2003) proposed the use of spatial wavelet transform in the detection 

of a crack on a Timoshenko beam, which was modelled as a rotational spring, and numerically 

verified their method. Lam et al. (2005) carried out a feasibility study on the use of the Bayesian 

approach to calculate the posterior (updated) probability density function (PDF) of crack parameters, 
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such as crack location and extent. The method not only identifies the crack location and extent, but 

also the corresponding uncertainties. The results of the numerical case studies are very encouraging. 

Spanos et al. (2006) proposed a damage detection method in a Bernoulli-Euler beam subjected to 

static loads via spatial wavelet transform. 

The main purpose of this paper is to extend the idea of Lam et al. (2005) to form a practical crack 

detection method that is suitable for multiple cracks even when they are obstructed. Most existing 

non-model based methods rely on the changes in measured quantity (e.g., displacement mode shape 

and strain mode shape) at the crack or in the close neighbourhood of the cracked region. However, 

if measurements at or near the cracks are obtainable, the inspector should have no problem in 

directly observing the crack or damage. The value of a crack detection method will be much higher 

if it can detect cracks even when it is not possible to take measurement in the neighbourhood of the 

cracked region. The numerical case studies presented in this paper clearly show that the proposed 

crack detection method is applicable even when the measurement of the reference (healthy) 

structure and the system input (excitation) are not available. By following the probabilistic approach, 

the uncertainties associated with the uncertain system parameters, such as the damping ratio and the 

semi-rigid behaviour of the beam end connections, can be explicitly handled. 

The remainder of this paper is organised as follows. The proposed method is presented in section 2, 

and the related background theories, such as the modelling of beams with multiple cracks, the 

wavelet transform and the Bayesian approach, are reviewed. Section 3 reports the results of a series 

of comprehensive numerical case studies, which verify and demonstrate the proposed method. 

These case studies produced very encouraging results. The effects of crack number and crack extent 

in the results of crack detection are discussed based on the results of these case studies. Conclusions 

are drawn at the end of the paper. 

2 Proposed Methodology and Background Theories 

2.1 Modelling and parameterisation of beams with multiple cracks 

The free vibration of a Bernoulli-Euler beam of length L is governed by: 

 ( ) ( )4 2

4 2

, ,
0

y x t y x t
EI m

x t
∂ ∂

+ =
∂ ∂

  (1) 

where EI  is the flexure rigidity, m  is the mass density (mass per unit length) and y  is the 

transverse deflection of the beam. By the separation of variables, we have ( ) ( ) ( ),y x t x z tφ= , 

where ( )z t  is the modal amplitude and ( )xφ  is the mode shape function governed by: 
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 ( ) ( )
4
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d x
x
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β φ− =  (2) 

where 4 4 /m EIβ ω= , and ω  is the angular natural frequency of the system in radians per second. 

Figure 1 shows the model of a beam with CN  cracks. The beam is divided into 1CN +  segments, 

each with length il , for i  = 1, …, 1CN + , where LlCN

i i =∑ +

=

1

1
. The solution of the φ  function for 

each segment can be calculated by considering the boundary and continuity conditions. The four 

boundary conditions are: 

 

( ) ( )
( ) ( )

( ) ( )

1 1 1

2
1 1

2

2
1 1 1 1

2

0 0

0 0
C C

C C C C

N N

L

N N N N
R

l

d d
K EI

dx dx
d l d l

K EI
dx dx

φ φ

φ φ

φ φ

+ +

+ + + +

= =

=

= −

 (3) 

where LK  and RK  are the stiffness coefficients of the rotational springs at the left and right ends of 

the beam respectively. The rotational springs model the semi-rigid behaviour of the beam end 

connections (Chen and Kishi 1989). At the general ith segment of the beam, the following four 

continuity conditions must be satisfied: 
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where 1,..., Ci N= ; iΔ  is the non-dimensional flexibility parameter that characterises the extent of 

the ith crack. The relationship between the crack extent iΔ  and the crack depth ratio /i ia hδ =  can 

be found in Ostachowicz et al. (1991). The detailed formulation is not presented in this paper due to 

the limited space.  

A characteristic equation can be obtained by considering the boundary and continuity conditions. 

An infinite number of solutions can then be calculated and denoted by kβ  for ∞= .,1…k . For each 

kβ , the natural frequencies kω  and mode shape kφ  of the system can be computed, and the overall 

response of the beam can be calculated by modal superposition. 
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According to Katafygiotis et al. (2000), the uncertainties associated with the stiffness of the 

rotational spring ( LK  and RK in equation (3)) are much larger than those associated with other 

model parameters, such as the modulus of elasticity and the mass density of the structural member. 

Therefore, the rotational stiffnesses are included as uncertain parameters in the proposed crack 

detection method. For a given set of measurements, an increase in the uncertainties associated with 

the crack detection results is the trade-off for including additional uncertain parameters (Lam and 

Ng 2006). The numerical values of the rotational stiffnesses are of a different order of magnitude to 

other uncertain parameters. To prevent a numerical problem, the rotational stiffnesses are 

normalized by the bending rigidity of the beam: 

 andL R
L R
K KK K
EI EI

= =% %  (5) 

where LK
~  and RK

~  are the normalized rotational stiffnesses at the left and right ends of the beam 

respectively. 

The reference system (healthy status) is represented by the model class 0M  ( 0=j ), in which the 

vector of uncertain model parameters is 0 { , , }TL RK K ζ=a % % , where the subscript of a  represents the 

number of cracks. Because the bending rigidity ( EI ) and the mass density ( ρ ) can usually be 

measured or calculated with a high degree of accuracy, they are not included as uncertain 

parameters in the numerical case study. In general, the uncertain parameter vector for the class of 

models with j cracks, jM , is: 

 { }1 2 1 2, , , , , , , , ,
T

j L R j jK K l l lζ= Δ Δ Δa % % K K  (6) 

The total number of uncertain parameters is 32 +j . It is assumed that the damping ratios for all 

modes are the same and equal to ζ  to reduce the number of uncertain parameters. 

 

2.2 Spatial wavelet transform and its application to crack detection 

To ensure that this paper is self-contained, the spatial wavelet transform of the deflection curve of a 

beam is briefly reviewed in this section. Interested readers are directed to Liew and Wang (1998) 

for more detail. Both the real and imaginary parts of the spatial wavelet transform of the deflection 

curve are very sensitive to cracks. A deflection curve y(x,t), which can be obtained by experimental 

measurement or computer simulation, can be decomposed into harmonic functions defined in 

Lx ≤≤0  by using the following two sets of wavelet expressions: 
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 ( ) ⎟
⎠
⎞⎜

⎝
⎛=

L
xxW π2sin1    and   ( ) ⎟

⎠
⎞⎜

⎝
⎛=

L
xxW π2cos2  (7.) 

The beam displacement at a particular point, x, and time, t, can be represented in terms of a constant. 
a0, plus the contributions from all of the wavelets (Liew and Wang 1998; Lee and Liew 2001). 
Therefore, 

 ( ) ( )
2 1

0 2
0 0

, 2
k

k
k

b
k b

y x t a a W x b
∞ −

+
= =

= + −∑∑  (8.) 

where b is the translation parameter indicating the position, 2k  is the scale parameter, 

( ) ( ) ( )xiWxWxW 21 += , and ( ) ( )2 2 2k k kb b b
a a i a

+ + +
=ℜ + ℑ  is a complex number. The real ( )2k b

a
+

ℜ  

and imaginary ( )2k b
a

+
ℑ  parts of 

2k b
a

+
 can be expressed as: 

 ( ) ( ) ( )22
0

2 , 2k

L
k k

b
a y x t W x b dx

+
ℜ = −∫    and   ( ) ( ) ( )12

0

2 , 2k

L
k k

b
a y x t W x b dx

+
ℑ = −∫  (9.) 

To explain the basic idea of the proposed crack detection method, an example of a simply supported 

beam with unit length (L = 1 m) and two cracks at 0.55 m and 0.64 m from the left end of the beam 

is considered. Figure 2 shows the real and imaginary parts of the spatial wavelet transformation of 

the deflection curve. Considering the real part in Figure 2, the two cracks are indicated by two 

“impulse” type discontinuities in the graph. After the discontinuity, the curve goes back to a value 

that is very close to the original value before the discontinuity. Although the “impulses” are very 

sharp, the effect is very local and affects only the very close neighbours of the cracks. In the 

imaginary part, the cracks are indicated by two “jump” type discontinuities. Unlike the 

discontinuities in the real part, the curve will not restore the original value after the discontinuities. 

As a result, the effect of cracks in the imaginary part is not as local as that in the real part. When 

measurement is available throughout the entire beam, both the real and imaginary parts provide 

valuable information for detecting the cracks. However, the situation is very different if the cracks 

are obstructed and measurement at the region close to the cracks is not available. 

Figure 3 shows the same graph as Figure 2 except the region near the cracks is obstructed. Let us 

first consider the real part in Figure 3. When the two ends of the curve immediately outside the 

obstruction are extended, the two extended curves are very consistent and even concurrent. As a 

result, it is not possible to tell if there is any crack in the obstructed region by looking at the real 

part alone. When the imaginary part is considered, the two extended curves are very far away from 

each other, thus showing that there must be one or more “jumps” in the obstructed region. This 
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simple illustrative example shows that the imaginary part of the spatial wavelet transformation of 

the deflection curve contains information on the cracks even when the cracks are obstructed.  

 

2.3 Identification of the number of cracks by the Bayesian model class selection 

method 

In general, the model-based crack detection method adopts different classes of models for beams 

with different numbers of cracks. In Figure 4, the model class jM  is employed in modelling a beam 

with j cracks for MNj ,,0…= , where MN  is the maximum number of cracks to be considered and 

the parameters jl  and jΔ  are used to describe the location and extent of the jth crack. Using this 

formulation, the identification of the number of cracks is equivalent to selecting the “best” model 

class. It must be pointed out that the selection of the “best” model class based on a given set of data 

D is not trivial. It is clear that the model class of a beam with more cracks consists of more model 

parameters (e.g., 2M  has two more model parameters, 2l  and 2Δ , than 1M , as shown in Figure 4). 

A model class with more parameters can provide a better fit to the measurement when compared to 

a model class with fewer parameters. Therefore, the selection of model class based solely on the 

fitting between the modelled and the measured dynamic responses can be very misleading, as the 

most complex model class will always be selected.  

A computationally efficient algorithm is developed for the identification of the number of cracks 

utilizing the set of measured wavelet transformation. The proposed algorithm involves the 

calculation of the conditional probability ( | , )jP M D U , which is the probability of a model class 

jM  for a given set of data D and engineering judgement U. The procedures of the proposed 

algorithm are as follows. 

1. Initialize the index 0=j , and calculate the conditional probability 

( )0( | , ) | ,jP M D U P M D U=  for the beam without a crack. 

2. Increase the index j by 1 ( 1+= jj ), and calculate the conditional probability 

( )1( | , ) | ,jP M D U P M D U=  for the beam with a single crack. 

3. Compare the values of the conditional probabilities 1( | , )jP M D U−  and ( | , )jP M D U . If 

1( | , )jP M D U−  > ( | , )jP M D U , then 1−jM  is the “best” model class. Otherwise, increase the 

index j by 1 ( 1+= jj ) and repeat this step. 
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The question now is the way to calculate the conditional probability ( | , )jP M D U . The goal here is 

to use the set of measured dynamic data D  to select the “best” class of models from amongst 

1+MN  prescribed classes of models. ( ) jN
jj RS ⊂∈ aa  is the vector of uncertain parameters, 

which is defined in equation (6), to be identified following the Bayesian statistical framework, 

where jN  is the dimension of ja . By following the Bayes’ theorem, the conditional probability can 

be formulated as (Beck and Yuen 2004): 

 ( ) ( ) ( )
( )

| , |
| ,

|
j j

j

p D M U P M U
P M D U

p D U
=   for  0,..., Mj N=  (10) 

where ( ) ( ) ( )∑ =
= MN

j jj UMpUMDpUDp
0

|,||  by the theorem of total probability, and ( )UDp |1  

can be treated as a normalizing constant. ( )UMP j |  is the prior probability of model class jM  

based on engineering judgment, where ( ) 1|
0

=∑ =
MN

j j UMP . Unless there is prior information about 

the number of cracks on the beam, the prior probability ( | )jP M U  can be taken as 1 ( 1)MN + . The 

most important term in equation (10) is the evidence ( | , )jp D M U  for the model class jM  

provided by the data D. It must be pointed out that U  is irrelevant in ( | , )jp D M U  because it is 

assumed that jM  alone specifies the PDF for the data. Therefore, we have ( )| jp D M  = 

( )| ,jp D M U . 

For a globally identifiable case, the evidence can be calculated based on an asymptotic 

approximation (Papadimitriou et al. 1997): 

 ( ) ( )( ) ( ) ( ) 2
1

2 ˆ|ˆ2,ˆ||
−

≈ jjjj

N

jjj MpMDpMDp
j

aHaa π    for  MNj ,,0…=  (11) 

where ˆ ja  denotes the optimal model in the model class jM  (the set of optimal model parameters 

ja ). ˆ ja  can be obtained by maximizing the posterior PDF ( )jj MDp ,|a , jN  is the number of 

uncertain model parameters in jâ , and ˆ( )j jH a  is the Hessian of the function ( )jg a  evaluated at 

the optimal model jâ , where ( )jg a  is given by: 

 ( ) ( ) ( )[ ]jjjjj MDpMpg ,||ln aaa −=  (12) 

For unidentifiable cases, the evidence ( | )jp D M  can be calculated by using an extension of the 

asymptotic expansion used in equation (11) (Beck and Katafygiotis 1998; Katafygiotis et al. 1998). 

The discussion here will focus on globally identifiable cases. Interested readers are directed to 
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Katafygiotis et al. (1998, 2000) and Katafygiotis and Lam (2002) for details of the classification of 

identifiable and unidentifiable problems and the approximation of the likelihood ( )jj MDp ,| a  in 

the general unidentifiable problem. 

The evidence ( | )jp D M  in equation (11) consists of two factors. The first factor ˆ( | , )j jp D Ma  is 

the likelihood factor. This will be larger for those model classes that make the probability of the 

data D higher, that is, those that give a better “fit” to the data, which favours model classes with 

more parameters. The second factor 2 1 2ˆ ˆ(2 ) ( | ) | ( ) |jN
j j j jp Mπ −a H a  is called the Ockham factor 

(Gull 1988). Beck and Yuen (2004) showed that the value of the Ockham factor decreases as the 

number of uncertain parameters in the model class increases, and it therefore provides a 

mathematically rigorous and robust penalty against parameterization. 

The proposed computationally efficient algorithm can identify the number of cracks, say CN , by 

calculating the conditional probability ( | , )jP M D U  of the model classes 0M , 1M , …, 1CN
M + . The 

maximum number of cracks to be considered MN  is equal to 1+CN . 

 

2.4 Detection of crack locations and extents by the Bayesian statistical framework 

After identifying the number of cracks, for example CN , the goal is to calculate the posterior PDF 

( )
CC NN MDp ,|a  of the set of uncertain parameters 

CN
a  in the model class 

CN
M  by following the 

Bayesian statistical framework. Due to the limited space, only the most important equations are 

given in this paper. Interested readers are referred to Lam et al. (2005) for the detailed procedures. 

The posterior PDF of the model parameters 
CN

a  for the given set of dynamic measurement D and 

model class 
CN

M  can then be approximated as a weighted sum of Gaussian distributions centred at 

the qN  optimal models: 

 ( ) ( ) ( )( )( )∑
=

−≈
q

CCCC

N

q

q
NN

q
NqNN AwMDp

1

1 ˆ,ˆ,| aaNa  (13) 

where ( , )N µ Σ  denotes a multivariate Gaussian distribution with mean µ  and covariance matrix Σ . 

The covariance matrix ( )( )q
NN C

A â1−  is the Hessian of the function ( )
CC NNJ MDJN ,|ln a  evaluated at 

( )q
NC
â , where ( )

CC NN MDJ ,|a  is given by: 
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 ( ) ( ) ( ) 2

1

1| , ;
C C C

N

N N N
nN

J D M n n
NN =

⎡ ⎤= ℑ −ℑ⎡ ⎤⎣ ⎦ ⎣ ⎦∑a p q a  (14) 

where NN  is the number of observed locations, ( )np  is the measured deflection curve at the nth 

time step, [ ]ℑ x  is the imaginary part of the wavelet transformation of the x vector and ( );
CN

nq a  is 

the calculated deflection curve of the model 
CN

a  at the nth time step. The weighting coefficients in 

equation (13) are given by: 

 

∑
=

′

′
=

qN

q
q

q
q

w

w
w

1

 where ( )( ) ( )( ) 2
1

ˆˆ
−

=′ q
NN

q
Nq CC

Aw aaπ  (15) 

where ( )( )q
NC
âπ  is the prior PDF ( )

CC NN Mp |a  of the set of uncertain model parameters 
CN

a  

evaluated at ( )q
NC
â . Instead of pinpointing the crack locations and extents, the proposed crack 

detection method focuses on calculating the posterior PDF of the parameters 
CN

a . As a result, the 

level of confidence in the results of crack detection can be quantified. This information is extremely 

important for engineers who are making judgments about remedial work. 

3 Numerical Verification 

A Bernoulli-Euler beam is employed as a verification example, and the sectional and material 

properties of the beam are summarized in Table 1. The system is assumed to be classically damped 

with a damping ratio of 0.01 (1%) for all modes. The two supports of the beam are neither pin nor 

rigid but semi-rigid, and are modelled by rotational springs. In all cases, the beam is vibrated by an 

impact hammer at 0.4m from the left end of the beam. It is assumed that optical equipment is 

employed to measure the time-domain displacement responses of the beam at the unobstructed 

region. As this equipment is able to provide precise measurements, only 3% white noise is added to 

the calculated responses for simulating measurement noise. The measured time duration is 0.4sec 

with 0.01sec time step. It is assumed that the beam is obstructed from 0.5m to 0.75m, and the 

measured responses within this range are not available.  

In this paper, six cases (Cases A to F) are considered to verify and demonstrate the proposed 

crack detection method. The simulated crack locations and crack extents together with the rotational 

spring stiffness at the two end connections of all cases are summarized in Table 2. Case A considers 

an undamaged situation. In Case B, there is only one crack at 1l =  0.55m with crack extent 1Δ =  

0.03 (corresponding to a crack depth of 49% of the beam depth). There is also only one crack in 

Case C but the crack extent 1Δ =  0.01 (30% of the beam depth) is smaller than that in Case B. This 
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case is dedicated to test the performance of the proposed method when the crack is small. Cases D 

and E have two cracks, which are located at 0.55m and 0.64m from the left end of the beam, 

respectively. The crack extents are 1Δ =  0.03 and 2Δ =  0.05 in Case D and both crack extents are 

equal to 0.01 in Case E. Again, Case E can test the effect of small cracks in the proposed method. 

Finally, Case F is used to test the proposed method when there are three cracks. The cracks are 

located at 1l =  0.55m, 2l =  0.09m and 3l =  0.06m, and the corresponding extents are 1Δ =  0.03, 

2Δ =  0.05 and 3Δ = 0.04. 

4 Results and Discussion 

4.1 Identification of the number of cracks 

Table 3 shows the results of the proposed algorithm in identifying the number of cracks in all 

cases. As the numerical values of the evidence, the likelihood factor and the Ockham factor are very 

large, which can cause computational problems, only their logarithmic values are calculated and 

presented. The most important information in Table 3 is the relative probability of the model class 

jM  for given data D and engineering judgement U. For ease of comparison, the relative probability 

is normalized such that the largest one is equal to unity. The number of cracks can be identified by 

selecting the model class with the highest relative probability in Table 3. It is clear from the table 

that model class 0M  is selected in Case A. In Cases B and C, model class 1M  is selected. Model 

class 2M  is selected in Cases D and E, while model class  3M   is selected in Case F. It is very clear 

that the proposed crack detection method successfully identifies the number of cracks in all cases.  

As shown in the formulation, the higher the value of the likelihood factor, the better the fit 

between the measured and modelled responses will be. Table 3 clearly shows that the logarithm of 

the likelihood factor is always larger for model classes with higher complexity (more cracks). 

Therefore, it is impossible to use the likelihood factor alone in selecting the “best” model class to 

identify the number of cracks. The Ockham factor is an important factor for penalizing the 

parameterization of a model class. It is also clear from Table 3 that the value of the Ockham factor 

decreases (i.e., its logarithm becomes more negative) for more complex model classes. 

4.2 Identification of crack parameters 

After identifying the number of cracks, the proposed method can be used to calculate the 

posterior PDF of both the crack parameters (i.e., crack locations and extents) and the model 

parameters (e.g., the rotational stiffness). In this section, the identified crack parameters are 

discussed first. 
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Table 4 summarises the results of the identified crack locations and extents for all cases. The 

coefficients of variation (COV) of the identified crack parameters are calculated based on the 

updated PDFs. They are presented inside the brackets in Table 4. As there is no crack in Case A, the 

identified crack location and extent for this case are not available. 

In Case B the identified crack location and extent are 1l  = 0.5499 m and 1Δ  = 0.0307, 

respectively. These results are very close to the true values of 0.55 m and 0.03, respectively, as 

shown in Table 2. The normalized marginal PDF of the crack location and extent ( 1l  and 1Δ ) in 

Case B is plotted in Figure 5. It is clear from the figure that there is only one peak, and that the PDF 

value drops rapidly when one moves away from the peak in any direction. This is a typical 

characteristic of an identifiable case (Katafygiotis and Lam 2002). The marginal cumulative 

distributions of all crack parameters can then be obtained and plotted in Figures 6 and 7. These 

figures provide detailed information on the uncertainties associated with the identified crack 

parameters. It is very clear that the uncertainty associated with the identified crack location is 

smaller than that associated with the identified crack extent. This argument can be reinforced by 

referring to the corresponding COV values given in Table 4. The COV values of the identified 

crack location and extent are 0.12 and 1.74, respectively. 

The crack location in Case C is the same as that in Case B, but the crack extent is reduced to 

1Δ  = 0.01. As show in Table 4, the identified crack location and extent for Case C are 1l  = 0.5502 m 

and 1Δ  = 0.0064, respectively. These identified values are very close to the true values ( 1l  = 0.55 m 

and 1Δ  = 0.01) as shown in Table 2. The normalized marginal PDF of crack parameters is plotted in 

Figure 8. When this figure is compared to Figure 5, the drop in PDF value away from the peak for 

Case B (Figure 5) is much faster than that for Case C (Figure 8). This implies that the uncertainties 

of the identified crack parameters in Case C are higher than those in Case B.  

To clearly show this effect in an individual crack parameter, the marginal cumulative 

distribution of the crack location ( 1l ) and extent ( 1Δ ) of Case C are plotted in Figures 9 and 10, 

respectively. Comparing Figures 6 and 9, it can be concluded that the identified crack location in 

Case B is less uncertain than that in Case C. Furthermore, it is very clear that the uncertainty of the 

identified crack extent for Case C is much higher than that for Case B by comparing Figures 7 and 

10. This result is expected, as the crack extent in Case C is much smaller than that in Case B, which 

means that the crack is more outstanding in Case B. This argument is further reinforced by referring 

to the COV values of the identified crack location (0.34) and crack extent (3.93) in Case C of Table 

4. 

Cases D and E are used to verify the proposed crack detection method when there are two 

cracks in the obstructed region. In particular, Case E is considered to test the proposed method 
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when the cracks are small. By comparing the identified and simulated crack parameters, it can be 

concluded that the results of crack detection are good but not as accurate as cases with only one 

crack (i.e. Cases B and C). For example, the identified crack locations in Case D are 1l  = 0.5403m 

and 2l  = 0.0945m, while the simulated crack locations are 1l  = 0.55m and 2l  = 0.09m. It can be 

observed from Table 4 that the COV values in Case D (large crack extents) are smaller than those in 

Case E (small crack extents). This result is consistent with that from the comparison between Cases 

B and C – the smaller the crack extent, the higher will be the uncertainty associated with the 

identified results. 

In Case F, the identified crack locations are 1l  = 0.5513m, 2l  = 0.0873m and 3l  = 0.0586m, 

and the identified crack extents are 1Δ  = 0.0326, 2Δ  = 0.0465 and 3Δ  = 0.0436. The identified 

crack parameters are close to the simulated parameters as shown in Table 2. This series of case 

studies clearly demonstrates the ability and performance of the proposed wavelet-based crack 

detection method in detecting multiple cracks even when those cracks are hided. 

 

4.3 Identification of model parameters 

To consider the semi-rigid behaviour at the beam end connections, the two supports of the 

beam are modelled by two rotational springs with different rotational stiffnesses. There is no simple 

way to measure or calculate the exact value of this type of rotational stiffness. In the proposed 

method, these two rotational spring constants together with the damping ratio are treated as 

uncertain model parameters to be identified together with the crack parameters. Table 5 summarizes 

the optimal model parameters and the corresponding COV values. 

In all cases, the identified normalized rotational spring stiffness of the left and right end 

connections vary from 0.38 to 0.42 and from 0.14 to 0.22, respectively. They are all very close to 

the simulated values ( LK%= 0.4 and RK%= 0.2) that are shown in Table 2. When comparing the COV 

values of the identified rotational stiffnesses in Table 5 to the COV values of the crack parameters 

in Table 4, the uncertainties associated with the identified rotational stiffnesses are generally higher 

than those associated with the identified crack parameters. The identified damping ratios in all cases 

are very close to the simulated values that are shown in Table 2.  

5 Concluding Remarks 

This paper addresses the problem of crack detection in beams by using the spatial wavelet 

transformation of the deflection curve following the probabilistic approach. Unlike other crack 
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detection methods from the literature, the proposed method is applicable in multi-crack cases even 

when the cracks are obstructed and measurement at or near the cracks is not available. The 

proposed method relies on the imaginary part of the spatial wavelet transformation in providing 

useful information for crack detection. Furthermore, the proposed method adopts the Bayesian 

approach in extracting useful information from the measurement for identifying (1) the number of 

cracks, (2) the crack locations and extents and (3) the uncertain model parameters, such as the 

rotational stiffness at the two ends of the beam. By following the Bayesian approach, the proposed 

method calculates the updated PDF of the crack and model parameters. As a result, the uncertainties 

associated with the crack detection results can be explicitly handled. 

A Bernoulli-Euler beam with semi-rigid connections at both ends is employed to verify the 

proposed method in a series of numerical case studies. The results are very encouraging because the 

proposed method can detect the simulated cracks in all cases in the presence of measurement noise. 

According to the case study results, it can be concluded that the uncertainties associated with crack 

detection results depend on the number of cracks and the corresponding crack extents. Generally, 

those uncertainties are higher for cases with more cracks and for cases with cracks of smaller 

extents. 
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Figure 1: The model of a cracked beam with semi-rigid connections at both ends. 
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Figure 2: The spatial wavelet transform of the measured response at time t = 0.07 sec ( 1l  = 0.55, 2l  

= 0.09, 1Δ  = 0.1, 2Δ  = 0.15, b = 8). 
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Figure 3: Illustrative diagram showing the possibility of using the imaginary part of the spatial 

wavelet transform in detecting obstructed cracks. 

 



 22 

 

1l  

LK%  RK%  
1Δ  

1l  

LK%  RK%  
1Δ  2Δ  

2l  

1l  

LK%  RK%  

jl  

1Δ

 

…… 
jΔ  

MN
Δ  

…… 

. . . . 

1M  

2M  

jM
 

LK%  RK%  
0M  

. . . . 

. . . . . . . . 
1l  

LK%  RK%  
1Δ

 

…… …… 

…… …… MN
l  

MN
M

 

…… 

…… 

Model Class 

 

Figure 4: Schematic diagram illustrating the basic strategy for identifying the number of cracks. 
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Figure 5: Normalized marginal PDF of the crack location ( 1l ) and extent ( 1Δ ) in Case B. 
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Figure 6: Marginal cumulative distribution of the crack location ( 1l ) in Case B. 
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Figure 7: Marginal cumulative distribution of the crack extent ( 1Δ ) in Case B. 
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Figure 8: Normalized marginal PDF of the crack location ( 1l ) and extent ( 1Δ ) in Case C. 
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Figure 9: Marginal cumulative distribution of the crack location ( 1l ) in Case C. 
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Figure 10: Marginal cumulative distribution of the crack extent ( 1Δ ) in Case C. 
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Property Value 

Length (L) 1 m 

Sectional area (A) 0.0001 m2 

Young’s modulus (E) 190 GPa 

Mass per unit length (m) 0.7850 kg/m 

Table 1: Member properties of the beam used in the numerical case study. 

 

Case CN  ( LK
~ , RK

~ ) Crack Information 

A 0 (0.4, 0.2) N/A 

B 1 (0.4, 0.2) 1l = 0.55, 1Δ =0.03 

C 1 (0.4, 0.2) 1l = 0.55, 1Δ =0.01 

D 2 (0.4, 0.2) 
1l = 0.55, 1Δ =0.03 

2l =0.09, 2Δ =0.05 

E 2 (0.4, 0.2) 
1l = 0.55, 1Δ =0.01 

2l =0.09, 2Δ =0.01 

F 3 (0.4, 0.2) 

1l = 0.55, 1Δ =0.03 

2l =0.09, 2Δ =0.05 

3l =0.06, 3Δ =0.04 

Table 2: Summary of all cases in the numerical case study. 
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Case Class of models 
Relative 

( )| ,jP M D U  

Logarithm of the 

Evidence 
Likelihood 

factor 

Ockham 

factor 

A 
0M  1.0 45101 45120 -19 

1M  6.6 510−×  45091 45121 -30 

B 

0M  2.9 64010−×  43517 43535 -18 

1M  1.0 44990 45022 -32 

2M  1.2 410−×  44981 45023 -42 

C 

0M  3.0 10510−×  44915 44933 -18 

1M  1.0 45155 45187 -32 

2M  1.1 310−×  45149 45188 -39 

D 

0M  5.5 189110−×  40599 40615 -16 

1M  6.4 17010−×  44562 44594 -32 

2M  1.0 44951 44996 -45 

3M  1.6 310−×  44945 45001 -56 

E 

0M  4.0 27710−×  44530 44549 -19 

1M  4.4 5510−×  45042 45073 -31 

2M  1.0 45167 45211 -44 

3M  3.5 410−×  45159 45218 -59 

F 

0M  1.7 336410−×  37166 37180 -14 

1M  1.5 68810−×  43328 43358 -30 

2M  2.5 6110−×  44772 44818 -46 

3M  1.0 44911 44969 -58 

4M  5.8 310−×  44906 44972 -66 

Table 3: Model class selection results for all cases 
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Case 
Crack location jl  

(COV %) 
Crack extent jΔ  

(COV %) 

A N/A N/A 

B 1l : 0.5499 (0.12) 1Δ : 0.0307 (1.74) 

C 1l : 0.5502 (0.34) 1Δ : 0.0064 (3.93) 

D 
1l : 0.5403 (0.21) 

2l : 0.0945 (0.08) 

1Δ : 0.0260 (2.23) 

2Δ : 0.0537 (0.80) 

E 
1l : 0.5592 (0.45) 

2l : 0.0890 (0.27) 

1Δ : 0.0069 (4.58) 

2Δ : 0.0083 (4.17) 

F 

1l : 0.5513 (0.18) 

2l : 0.0873 (0.32) 

3l : 0.0586 (0.33) 

1Δ : 0.0326 (1.87) 

2Δ : 0.0465 (4.74) 

3Δ : 0.0436 (6.22) 

Table 4: Identified crack locations, extents and corresponding COV in all cases 

 

Normalized spring stiffness (COV %) 
Damping Ratio ζ  (COV %) 

LK% RK%  

0.4021 (3.72) 0.1981 (7.06) 0.0098 (0.47) 

0.4105 (3.79) 0.1971 (7.79) 0.0101 (0.47) 

0.4105 (3.79) 0.1498 (9.77) 0.0099 (0.47) 

0.3789 (3.95) 0.2178 (6.16) 0.0101 (0.47) 

0.4196 (3.70) 0.1363 (10.22) 0.0099 (0.46) 

0.4106 (3.83) 0.2103  (6.10) 0.0100 (0.47) 

Table 5: Identified model parameters and corresponding COV in all cases 

 


