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Summary

Aeroelasticity is a broad term describing the often complex interactions
between structural mechanics and aerodynamics. Aeroelastic phenomena
such as divergence and �utter are potentially destructive, and thus must
be avoided. Passive methods to avoid undesirable aeroelastic phenomena
often involve the addition of mass and/or limiting the achievable per-
formance of the aircraft. However, active control methods allow both for
the suppression of undesirable aeroelastic phenomena, and for utilisa-
tion of desirable aeroelastic phenomena using actuators, thus increasing
performance without the associated weight penalty of passive systems.

The work presented in this thesis involves the design, implementation
and experimental validation of novel active controllers to suppress unde-
sirable aeroelastic phenomena over a range of airspeeds. The controllers
are constructed using a Linear Parameter Varying (LPV) framework,
where the plant and controllers can be represented as linear systems
which are functions of a parameter, in this case airspeed. The LPV con-
trollers are constructed using Linear Matrix Inequalities (LMIs), which
are convex optimisation problems that can be used to represent many
linear control objectives. Using LMIs, these LPV controllers can be con-
structed such that they self-schedule with airspeed and provide upper
performance bounds during the design process.

The aeroelastic phenomena being suppressed by these controllers
are Limit-Cycle Oscillations (LCOs), which are a form of �utter with
the aeroelastic instability bounded by a structural nonlinearity in the
aeroelastic system. In this work, the aeroelastic system used is the Non-
linear Aeroelastic Test Apparatus (NATA), an experimental aeroelastic
test platform located at Texas A&M University.

Three and four degree-of-freedom dynamic models were derived for
the NATA, which include second-order servo motor dynamics. These
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servo motor dynamics are often neglected in literature but are suf�ciently
slow that their dynamics are signi�cant to the controlled response of the
NATA. The dynamic model also incorporates quasi-steady aerodynam-
ics, which are accurate for low Strouhal numbers calculated from the
oscillation frequency of the wing. Is it shown how the dynamics of the
NATA can be represented in LPV form, with a quadratic dependence on
airspeed and linear dependence on torsional stiffness.

Using a variety of techniques the parameters of the NATA are iden-
ti�ed, and shown through nonlinear simulation to provide excellent
agreement with experimental results. It is also argued that structural
nonlinearity, in the way of a nonlinear torsional spring connecting the
wing section to the base, generally improves stability due to its largely
quadratic stiffness function, and hence in many instances it is safe to
linearise this nonlinearity when designing a controller.

Using a H2 generalised control problem representation of a Linear
Quadratic Regulator (LQR) state-feedback controller, LPV synthesis LMIs
are constructed using a standard transformation which render the LMIs
af�ne in the transformed controller and Lyapunov matrices. These ma-
trices have the same quadratic dependence on airspeed as the NATA
model. To reduce conservatism the parameter space of airspeed versus
airspeed squared is gridded into triangular convex hulls over the true
parameter curve, and the LMIs are numerically optimised to give an
upper bound on the H2 norm across the design airspeed. The resulting
state-feedback controller is constructed from the transformed controller
and Lyapunov matrices, and can be solved symbolically as a function
of airspeed, however it forms a high-order rational function of airspeed,
hence it is quicker to solve for the controller gains numerically on-line.

The controller is analysed for the classical measures of robustness,
namely gain and phase margins, and maximum sensitivity. While not
providing the guarantees of these measures that a conventional LQR
controller provides, the controller is shown to be suf�ciently robust
across the airspeed design range.

Experimental results for this controller were performed, and the
results show excellent LCO suppression and disturbance rejection, the
results from which are published in Prime et al. (2010).

Following the above work based on a scalar performance index, the
upper bound on the H2 norm is allowed to vary with airspeed using
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the same quadratic dependence on airspeed as the NATA model, and
the transformed controller and Lyapunov matrices. A simple method
of solving the LMIs is shown such that the LPV H2 upper bound is as
close to optimal as possible, and using this method a new controller is
synthesised.

This new controller is compared against the LPV LQR controller with
the scalar performance index, and is shown to be closer to optimal across
the airspeed design range. Nonlinear simulations of the controlled NATA
using this new controller are then presented.

Based on Prime et al. (2008), a Linear Fractional Transformation
(LFT) is applied to the NATA model to render the dynamics dependent
upon the feedback of the linear value of airspeed. This allows the LMIs
to be constructed at only two points, the extreme values of the linear
design airspeed, rather than gridding over the parameter space as was
performed above.

An output-feedback controller that itself depends upon the feedback
of a function that is linearly dependent upon airspeed is constructed
using an induced L2 loop-shaping framework. The induced L2 perfor-
mance objective is based upon a Glover-McFarlane H∞ loop-shaping
process where the NATA singular values are shaped using pre- and
post-�lters, and minimising the induced L2 norm from both the input
and output to both the input and output.

An LFT controller is synthesised, and simulations are performed
showing the suppression of LCOs.
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