p.5, para. 1 An argument is either conclusive or worthless. A conclusive argument may conclude that a certain proposition is probably true, i.e. that it is an unparticularised member of a class of which a known proportion are true.

p.10, para. 2 such a belief may none the less be true and certain

p.22, para. 2 The degree of belief is measurable and numerical but not the degree of rational belief?

p.28, para. 1 That a quantity is unknown is no argument that it is not numerical.

p.29, para. 1 The probability may be estimated from appropriate statistics or deduced from a known mechanism of causation, otherwise it is unknown.

p.31, para. 4 line 5 this assumes that we always can know the probability from the old evidence

p.32, para. 3 line 3 Unless it justifies certainty it justifies no knowledge at all.

p.33, para. 2 line 6 from bottom where?

p.42, para. 3 if they must be known

p.44, para. 2 it is necessarily unknown
A parallel distinction is regarded as relevant evidence on p. 57.

Has any objective quantity numerical quantitiveness in any other sense?

(a) this to one circle only
(b) this population of lines is equally related to all circles
(c) this is equally related to all concentric circles.

The invalidity of the principle is equally great with finite numbers.

Both hypothesis as to the population of bags are self-consistent; the population is, however, unknown.

In this case the population is known and the problem solvable, it has nothing to do with the "text book theory".

But the form of a proposition may be changed without changing its meaning; disjunction of equivalent propositions is always possible.

No unique units as in all other cases, see 25 below.

By projecting or inverting the points the case is evidently equivalent to that of the specific volume.

The shape is immaterial and does not even depend on the solution adopted. The different populations of lines give different results in whatever limiting forms they are approached.
p.69, para. 4 pp.56-57 it is "proved" that on the constitution hypothesis is also legitimate and on this hypothesis h_2 does not strengthen a.

p.82, para. 1 In such a case the probability is unknown.

p.86, para. 3 line 4 this confuses knowledge of populations with knowledge of individuals.

p.99, para. 3 In this case the statistical mechanism is known and we do not require the principle of indifference.

p.102 We have no choice; what we seek in practice is the probability of success in a *given class* of actions. For any particular action the unknown probability is either 0 or 1.

p.105, para. 1 This seems sheer nonsense; the class of reference should be the same for all chances considered.

p.106, para. 1 This solution is certainly invalid; the problem is indeterminate.

p.106, bottom line are there any legitimate instances?

p.339, para. 1 whose criticism??

p.339, footnote 1 h, however, is not usually an integer

p.381, para. 1 The opposite might equally be claimed; the distribution of statistical ratios is generally a meaningless conception.

p.382, para. 2 this criticism is childish.