The analysis of variance of \(s(s-1)/2 \) frequencies \(a_{ij} \), where \(i \) and \(j \) are unequal and unordered, and take integral values from 1 to \(s \).

In addition to the one degree of freedom for the total, which contributes
\[
\frac{2}{s(s-1)} S_{ij}^2 \frac{s(s-1)}{s(s-1)}
\]
to the sum of squares for \(s(s-1) \) degrees of freedom \(S_{ij}^2(a_{ij}) \),

we need only consider linear functions with coefficients adding to zero; \(\mu \) of these are
\[
A_i = (s-2)S_j(a_{ij}) - 2S_k(a_{ik})
\]
satisfying \(S(A_i) = 0 \),

where \(i, j \) and \(k \) are all unequal. These must jointly specify the distribution of frequency among the \(s \) suffixes, having \(s(s-1)/2 \) degrees of freedom.

The sum of the squares of the coefficients in \(A \) is
\[
(s-1)(s-2)^2 + 4(s-1)(s-2) - s(s-1)(s-2);
\]
\[
\sum_i A_i^2
\]
the sum of the squares of the \(s \) quantities \(A_i \), the sum of the coefficients of terms such as \(a_{ij} \) must be
\[
s^2(s-1)(s-2)
\]
\[
\frac{1}{s^2(s-2)} \sum_i A_i^2
\]
Hence in the expression
\[
\frac{1}{s^2(s-2)} \sum_i A_i^2
\]
the sum is \(s-1 \), equal to the number of degrees of freedom.
There will remain
\[\frac{1}{4}s(s-1) - 1 - (s-1) = \frac{1}{4}s(s-3), \]
degrees of freedom for deviations among the frequencies compatible with fixed \(A_i \).

For these we may define
\[B_{ij} = (s-2)(s-3) a_{ij} - (s-3)5(a_{ik}) - (s-3)5(a_{jk}) + 2s(a_{kk}) \]
in which \(i, j, k, \ell \) are all unequal.

The sum of the coefficients in \(B_{ij} \) is zero.
The sum of the products of corresponding coefficients in \(B_{ij} \) and \(A_i \) is
for \(a_{ij} \) \((s-2)^2(s-3) \)
for \(a_{ik} \) \(-2(s-2)(s-3) \) \((s-2) \) terms
for \(a_{jk} \) \(2(s-3) \) \((s-2) \) terms
for \(a_{k\ell} \) \(-4 \) \(2(s-2)(s-3) \) terms
coming in all to zero; similarly the sum of the products for \(B_{ij} \)
and \(A_i \) is
for \(a_{ij} \) \(-2(s-2)(s-3) \)
for \(a_{ik} \) \(-(s-2)(s-3) \) \(2 \) terms
for \(a_{ij} \) \(2(s-3) \) \(2(s-3) \) terms
for \(a_{k\ell} \) \(2(s-2) \) \((s-3) \) terms
for \(a_{k\ell} \) \(-4 \) \(2(s-3)(s-4) \) terms
again giving a zero total, and showing that each of the components \(B \) is orthogonal to each of the components \(A \).

But the sum of the squares of the coefficients of \(B \) is
\[(s-2)^2(s-3)^2 + 2(s-2)(s-3)^2 + 2(s-2)(s-3) \]
\[= (s-1)(s-2)^2(s-3) \]
The sum for all the \(\frac{1}{2}s(s-1) \) expressions \(B_j \) is

\[
\frac{1}{2}s(s-1)^2(s-2)^2(s-3),
\]

so that in

\[
\frac{1}{(s-1)^2(s-2)^2} S(B^2)
\]

the sum is \(\frac{1}{2}s(s-1) \), the same as the number of degrees of freedom.

The orthogonal analysis so arrived at may be written

\[
d.f. \quad \frac{S(B^2)}{S(A^2)}
\]

\[
\begin{array}{c}
1 & \frac{2}{s(s-1)} S(a_{ij}) \\
(s-1) & S(A^2) \\
(s-2) & \frac{1}{s^2} S(B^2) \\
(s-1)^2(s-2)^2 & \frac{1}{(s-1)^2(s-2)^2} S(B^2)
\end{array}
\]

\[
\frac{\frac{1}{2}s(s-1)}{S(a_{ij})^2}
\]

2. Effect of breeding for a single generation on the self-sterility alleles of a large population.

If \(p_{ij} \) stand for the relative frequency of the genotype \((i, j)\), and

\[
P_k = \frac{1}{s} \sum \mathbf{p}_{ij}
\]

for the relative gene frequency, we may define the components

\[
A_i = (s-2)\sum \mathbf{p}_{ij} - 2\sum \mathbf{p}_{ik}(\mathbf{p}_{jk})
\]

and

\[
P_{ij} = (s-2)(s-3)\mathbf{p}_{ij} - (s-3)\sum (\mathbf{p}_{ik} + \mathbf{p}_{jk}) + 2\sum \mathbf{p}_{ik}(\mathbf{p}_{jk})
\]
and express the gene and genotype frequencies in terms of these components, as

\[p_i = \frac{1}{s} + \frac{1}{2s} A_i \]

\[p_{ij} = \frac{2}{s(s-1)} + \frac{1}{s(s-2)} (A_i + A_j) + \frac{1}{(s-1)(s-2)} B_{ij} \]

The genetic \textit{recessiveness} formula for one generation is

\[p_{ij}' = \frac{p_{ij}^{km}}{p_{ij}^{km} - p_i - p_k} + \frac{p_{ij}^{km}}{4} \sum_{x=1}^{s} \frac{p_{ij}^{km}}{p_{ij}^{km} - p_x} \]

on substitution in terms of the components \(A \) and \(B \), the first term of these gives

\[\frac{1}{4s} \frac{2 + A_j}{s-1} \sum_{x}^{s-1} \frac{2}{s-2} + \frac{1}{s} (A_i + A_j) + \frac{1}{(s-1)(s-2)} B_{ij} \]=

\[\frac{1}{4s} \left\{ \frac{4}{s-1} + \frac{2A_i}{s-1} \right\} \frac{(s-3)A_i - A_j}{(s-1)(s-2)^2} - \frac{2s}{(s-1)(s-2)^2} B_{ij} \}

adding the same expansion with \(i \) and \(j \) interchanged we have finally

\[p_{ij}' = \frac{2 + A_i}{s(s-1)} + \frac{s^2 - 4s + 2}{s(s-1)(s-2)^2} (A_i + A_j) - \frac{1}{(s-1)(s-2)^2} B_{ij} \]

so that all \(A_i \) are decreased in the ratio

\[\lambda = \frac{s^2 - 4s + 2}{s(s-1)(s-2)^2} = 1 - \frac{s}{(s-1)(s-2)} \]

and all \(B_{ij} \) in the ratio

\[\lambda = \frac{1}{s-2} \]