Dear Dr. Cappell,

Thanks for your long and interesting letter. I had not intended to reproach you at all, but rather to explain why I had no idea in the first half of this year that you had got any intellectual satisfaction out of what I had put forward. I was probably the more prone to jump to this conclusion as Taylor has always had a good many doubts about it. Of course, I could have published the thing myself, but I have been always, through the last thirty years, entirely averse from butting in on subjects on which I am not working practically, and have never regretted my constant policy of waiting until those who are practically concerned with the science in question are sufficiently interested to see eye to eye with me and make use of any ideas I can put forward.

I very much agree with you that the apparent allomorphs so far found are better thought of at present as due to combination of
three closely linked genes. The distinction between perfectly linked gene-combination and allomorphs is, technically academic, but in this case rare crossovers are suggested to my mind by the peculiar frequency system found in our own and American data, and may be confirmed when information comes from farther afield. Your Hoodie case is extraordinarily interesting from this standpoint. What truly bad luck that it should be complicated by a possible interchange of alleles.

By frequency argument runs like this. There are three tolerably frequent allomorphs, and four infrequent ones, much more, but (and this seems to me to need an explanation) with frequencies of the same order of magnitude. The three heterozygotes between common allomorphs are all doubly heterozygotes on the gene theory and would yield, by crossover, all of them Sh_0, and one each Sh', Sh'' and Sh_2, respectively. If all these four are kept rare by counter-selection balanced against crossing-over, then the eighth allomorph,
Rhv, must be expected to be rarer still, if equally disadvantageous,
for it would only arise by crossing-over from heterozygotes involving
four
one of the/rarer known genes. Rhx, in the only one of the eight which
has not been found with certainty, and from the number of A-negative
cases examined it pretty well must be very rare, perhaps only a fiftieth
of the frequency of Rhv or Rhv. That I should see by anthropological
confirmation of this view would be if, for example, Rh\textsubscript{1} and Rh\textsubscript{2} are
common in China but x very rare or unknown, it would follow that
Rh\textsubscript{0} and Rh\textsubscript{2x} would occur as crossovers but Rhv and Rhv would be no rare
as Rh\textsubscript{x} is in this part of the world.

I hope all this does not seem to you hopelessly premature
speculation.

Yours sincerely,