My dear Fisher,

I think I am becoming stupid about mathematical things as I grow older; or it may be logier as I get older. The following was the way I regarded the twin problem.

First assume there are identical and non-identical twins, and that identicals must be of same sex. Then as pointed out in the Swedish book, double the number of opposite sexual twins, and we get the number of identical twins; and consequently can get the ratio of identical to non-identical twins. If the ratio same sexed—different sexed of identical to identical, when one twin or both are feeble-minded is found to be the same as that obtaining in the general population, it would follow, I think, that identical twins were all both feeble-minded. This assumes that two from sibs are seldom found in one family; and for this some correlation might be necessary.

If mental defect comes from prenatal condition, to a material extent, as MacBride seems to think, this would not hold good, for opposite sexual twins would seem as likely then to be affected as
Some sound twins. It might conceivably be urged that the prenatal conditions of identical twins are identical, whilst the prenatal conditions of opposite sexual twins are not. This would seem to run a highly improbable supposition. Lastly, would not all that hold good whatever supposition is made as to the difference between twins much like each other and those which differ much, provided that difference is dependent on germinal differences of some sort? Possibly this is what you have been saying, somewhat differently stated, in your book.

My niece at the Board of Control said she thought it would not be difficult to obtain through the Board of Control a return of what is known about twins.

We must face the possibility that our inquiry would tell us the wrong direction!}

Yours sincerely,
J. Dawson
\[\frac{\frac{1}{2} - \frac{1}{8}}{\frac{1}{2} \sqrt{\frac{1}{8}}} = \frac{\frac{1}{2} - \frac{1}{8}}{\frac{1}{2} \sqrt{\frac{1}{8}}} = 2 \sqrt{2} \]

\[h = \left(\frac{\sqrt{15}}{10} + \frac{3}{10} \right) \div \frac{1}{2} = \frac{\sqrt{15}}{10} + \frac{3}{10} = \frac{\sqrt{15} + 3}{10} = \frac{2 \sqrt{15} - 15}{2} = \frac{\sqrt{15} - 3}{2} = \frac{5.372983}{2} = 4.3644715 \]

\[\frac{1}{6} \sim 0.166666 \]

\[\frac{1}{6} \sim 0.166666 \]