My dear David,

You have, I believe, agreed with me before on the desirability of handing recognition to persons of scientific merit overseas, and I have undertaken to support, among others, Emmens on account of his contributions to biometry. This I think makes it rather urgent to take steps in respect of Alf Cornish, who has been doing massive work with Australian meteorology and agricultural geography, and though not a man with the sparkle of young Watson of Belz’s Department, has indeed done a great deal towards educating Australians with the importance of statistics, which is now, owing to his efforts as Head of the Statistical Department of C.S.I.R.O., pretty widely appreciated. I will, therefore, be putting up a candidature for him if, as I hope, I can rely on support from yourself and a few other relevant Fellows. I had heard that Box had succumbed to John Tukey’s recent recruiting campaign, but it may be that he is not intending to acquire United States nationality, which of course would knock him out as a candidate. I am still in the difficulty about George Barnard
that I do not know what major work of his to point to. He seems to have earned his chiefly by helpful and intelligent discussion.

I notice in a review, in J.R.S.S., A, the last number, of a recent book by Federer, the reviewer reproves the author for quoting, apparently without disputing, the allowance I calculated for the loss of information about a mean owing to using an empirical estimate of error instead of the true, but unknown, variance. As I think you were in these discussions, perhaps you could enlighten me as to what the reviewer can refer to as "alternative methods". Of course, if additional data are supplied, e.g. the value of t expected, the problem is reduced to "Student"'s test itself. My calculation is integrated over the whole t distribution, and seems to me appropriate in the realistic case in which the value of t, or probably the whole crop of values of t, for which comparisons are as yet unknown, and the planner of the experiment is concerned to judge how much he should sacrifice in order to have say 20 degrees of freedom, in place of 10, for the estimation of error. I believe confusion may have been caused by trying to bring in the sampling distribution of s for given σ whereas in reality the experimental planner knows that only s will be available, and that σ, if thought of at all, will have a rigorous fiducial distribution appropriate to that s.

Sincerely yours,