Dear Prof Fisher,

I should be very grateful for your comments on the enclosed. I would have discussed this with you sometime but I thought perhaps it would be easier if I wrote out my argument more or less formally first.

Yours sincerely,

[Signature]

J.H. Gardiner
THE FITTING OF CURVES TO TOXICITY DATA

By J.H. Gaddum

(University College, London, W.C.I.)
THE FITTING OF CURVES TO TOXICITY DATA

By J.H. Gaddum

(University College, London, W.C.1.)

An important group of pharmacological tests depends on fitting curves to data connecting the dose of a drug with the percentage mortality, (Trevan, 1927). When the doses are measured on a logarithmic scale these data can usually be fitted by the curve representing the integral of the normal frequency distribution (Gaddum, 1933). The most convenient way to do this is to convert the observed mortalities into suitable units ("normal equivalent deviations" or "probits") and to fit a straight regression line. This may be done either graphically or algebraically.

In 1935 Bliss published two papers covering some of the ground already covered by Gaddum and proposing to introducing improved methods. The object of the present note is to show that one of the modifications proposed by Bliss not only complicates the computation, but also diminishes the accuracy of the result.

In data of this type the weight of an observation is maximal when the mortality is 50 per cent and becomes zero
when the mortality is either 0 or 100 percent. It might appear superficially that the most accurate results would be obtained by first fitting a regression line roughly to the observed results and then weighting each observation according to the estimate of the true result obtained from this roughly fitted line. This method was considered by Gaddum, but rejected on the grounds that a more accurate estimate could be obtained by calculating the weight of each observation from the result actually observed. Bliss rejects this method without discussion and reverts to the method rejected by Gaddum. Gaddum’s original argument was considerably compressed owing to editorial obstruction. This argument, which is amplified below, is based on the method of maximum likelihood.
In the figure,

Y_1 is the true value of a variable.

y_1 is the observed value.

The continuous line is the probability distribution of y_1 about Y_1.

The broken line is the "curve of likelihood" showing the likelihood of different values of Y_1 when y_1 is given.

f_i represents the likelihood.

Neither of these curves is necessarily normal.

The method of maximum likelihood involves finding the maximum value of $\sum (\log f_i)$ and this is equivalent to finding
the minimum value of \(\sum (-\log f_i) \). Fisher (1921) has
given reasons for believing that this gives the best possible
estimate. If this is so the value of other methods of
calculation can be judged by testing whether or not they are
equivalent to this method.

The method of least squares consists in finding the
minimum value of \(\sum \frac{(y_i - Y_i)^2}{\sigma_i^2} \) where \(\frac{1}{\sigma_i^2} \) is the weight of
the observation.

This will be equivalent to the method of maximum
likelihood if \(\sum (-\log f_i) \) is proportional to \(\sum \frac{(y_i - Y_i)^2}{\sigma_i^2} \)
i.e. if \(\log f_i = k \frac{-(y_i - Y_i)^2}{\sigma_i^2} \)
or \(f_i = k e^{-\frac{(y_i - Y_i)^2}{\sigma_i^2}} \)
i.e. if the probability distribution is a normal curve
with standard deviation \(\sigma_i \).

If the probability distribution is not normal the two
methods will not, in general, give the same result.

The method of least squares is applied by Bliss in this
form to data where \(y \) represents the probit. This would give
the same solution as the method of maximum likelihood, if the
probability distribution of probits were normal. When the
number of animals in each group is infinite this is true, but
when the groups are of the size used in actual experiments it is not. For example, if there are 20 animals in each group and the true mortality is 30 per cent, the probability distribution of probits (Gaddum, 1933, page 41, curve 2) differs from a normal curve in two important respects.

(1) It is discontinuous.

(2) It is grossly asymmetrical and doesn't reach the base line even at $y = -\infty$

The new method recommended by Gaddum is based on the surprising discovery that the curve of likelihood (Curve B in the same figure) is an extraordinarily close approximation to a normal curve. The formula for the standard deviation of this curve is the same as the formula which gives an approximation to the standard deviation of the probability distribution of probits. The important point is that the probit value used to estimate this standard deviation is \hat{Y}_1 and not Y_1.

If the curve of likelihood is taken as a normal curve with standard deviation $\sigma_{\hat{Y}_1}$, we have

$$f_i = \frac{1}{\sqrt{2\pi}\sigma_{\hat{Y}_1}} e^{-\frac{(Y_i - \hat{Y}_1)^2}{2\sigma_{\hat{Y}_1}^2}}$$

or

$$-\log f_i = \frac{(Y_i - \hat{Y}_1)^2}{2\sigma_{\hat{Y}_1}^2} + \text{a constant}$$
The solution given by the method of maximum likelihood is that corresponding to the minimum value of $\Sigma (-\log f_i)$.

This is equal to that corresponding to the minimum value of $\frac{(y_i - \bar{y})^2}{\sigma_i^2}$.

The new method depends on finding this solution.

The thing which makes this more accurate than the method used by Bliss is that the weight of an observation is $\frac{1}{\sigma_i^2}$ and not $\frac{1}{\sigma_i}$ Bliss attempts to estimate σ_i. His result would be less accurate than Gaddum's even if he knew σ_i exactly.
REFERENCES