Dear Foster,

Thanks for your letter. The after parameter finishes the thing off! So far I have been unsuccessful in persuading asthmatics that a tenth of the time they take in multiply by 0.6745 would be better occupied in finding X. I have got a way of doing the chiefly, choosing a distribution with the same mode $\sim 2^{\frac{7}{4}}$, deviating at the mode, thus neglecting the skewness. It's neat but perhaps not too bad a anguish much better than asthmatics are in the habit of doing.

Sorry you are having trouble over finance. I don't think our department needs the amount for its own use, but the only
libraries that have it seen the university agriculture. Current copies aren't borrowable from the university library, and I have sometimes got them from Pearson on loan, but that's not a good general procedure. The Philistines ought to take it but appears not to.

Sanskrit wasn't taken care of recently but it was new, I believe, recommended it for the D.L. with what results I don't know. I don't think it was Pearson's dept. at present.

I have usually compared series of estimates that should agree by equality with the normal standard errors. This is a bit unsatisfactory, if I think of it.

I have got something better, if you take

\[T = 2 \sqrt{\frac{1}{v-2} \frac{v-2}{v}} \]

\[E(T^2) = 2 \mu_0, \quad \text{Type V} \]

\[T \sim F_{v-1, \frac{v}{v-2}} \]

This makes the fact that the \(\mu_0 \) are different for the separate estimates as harmless as possible. I haven't put it into the 2 form yet.

I haven't anything to say about Sukhotin.
beyond what I said in my 1st layman paper... it might as well be called a significant test.

By the way you are inclined to blame me for using the old methods in the teaching of inverse probability, I should rather blame it on the fact that it took a long time for people to see that the right answer depends on stating the question properly. With inverse probability it can be stated right or wrong, but at least it has to be stated. Without it there is a certain risk of misleading people about seeing what the problem is. As a matter of fact in 1921 or so I did the "Student" problem using $P(\theta | H) \approx \theta$, but wasn't happy about it as didn't see how to put it right till "Scientific Papers". But the difference between $n+1$ in Student's formula is far less than the difference between you & Bartlett!

The awful problem in Physics... it is...
to get people interested at all. They seem to like multiplying by 0.6745 if they can be bothered to work out an uncertainty at all, and any attempt to study up the thing rather annoys them because it restricts their liberty of guessing. So for your tables I should say that it is not really wise to put in physical applications that involve any appreciable amount of uncertainty.

Yours sincerely
Harold Jeffreys

I have written to ask Lenox Compton if he has any ideas about persuading the Phil. Soc. to take the Annuals.