Dear Fisher,

Thanks for return of paper yesterday. It arrived with the end split open; the paper was intact but if there was a covering letter it had disappeared. However I have been trying my methods on a lot of the examples in the new edition of your Statistical Methods and you have quite a number that are near enough to illustrate my points. p.27/140 are just what I wanted to bring out the point about answering one question at a time. I have not found a case where my results would differ from yours except the doubtful one on p.86. The
Ratio $P(\varepsilon/\theta_k)/P(\mu/\theta_k)$ for the viability difference censored flat curve at $\frac{1}{2}$; as it stands this would mean a
significant difference, but with allowance for selection it would be
doubtful, the extreme departure at $\frac{1}{2}$
having been selected. If however
differences of viability have occurred
often then $\frac{1}{2}$ the cases examined, or
if they are concentrated towards
small values, the difference could be
accepted with confidence, with this
under doubtful exception I should agree
with your decision every time.

I have done a rather amusing thing
about fitting a series of observed values
with known standard errors. If you
fit a linear function over a range there
are two values of x such that the
uncertainties of the corresponding y's
are independent, of the calculated
y's would be unaffected by including a square term. Analysis
hold for higher polynomials. It
happens that the conditions assumed
are not all independent and just
enough to identify the summary values
of \(x \). The method has been useful
in fitting the seismic times, as there
is nothing to indicate the expected
form of the function, but an
expensive smoothing can be got by
subdividing the range, finding two
summary values for each interval, and
interpolating by divided differences.
There is hardly any loss of information.

Yours sincerely

Harold Jeffreys