8th. April, 1930.

Miss Ina Jephson,
Ladyoak,
Flimwell,
Hawkhurst,
Kent.

Dear Miss Jephson,

Thanks for your letter, let me deal with the urgent part of it at once and leave the rest.

Suppose your clairvoyance tests were reduced to the simple statement, Red or Black. Right scores 20, wrong scores Nil. In 6,000 envelopes put 3,000 Red and 3,000 Black cards, and submit them to subjects who whether clairvoyant or not, cannot help guessing Reds twice as often as Blacks; they will then guess Red 4,000 times and Black 2,000 times. Your final results will make a table like this:

<table>
<thead>
<tr>
<th>Card said</th>
<th>Card drawn</th>
<th>Red</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2,000+</td>
<td>1,000-</td>
</tr>
<tr>
<td>Black</td>
<td></td>
<td>2,000-</td>
<td>1,000+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,000</td>
<td>2,000</td>
</tr>
</tbody>
</table>

| | | 3,000 | 3,000 |

I do not profess to know whether \(\chi \) is positive or negative,
as that depends on the extent of clairvoyance but the total score of Red cards drawn is

\[20 (2,000 + x) \]

and their average score is

\[\frac{20(2,000 + x)}{3,000} \]

while the average score of Black cards drawn is

\[\frac{20(1,000 + x)}{3,000} \]

and these will always differ by \(6\frac{1}{3} \), whatever \(x \) may be; so that Red cards drawn will score on the average \(6\frac{1}{3} \) more than the Black cards drawn.

Yours sincerely,