Dear Milne,

I got your paper from Finney, and of course I am very glad for you to make use of the quotation from my letter.

About the blanket test, there is quite a simple formulation which you might find applicable to your experience. Suppose that, in dragging the blanket, there is an accretion of ticks per yard on the average, and a loss dependent upon the number of ticks carried at the moment.

On this basis one has the differential equation

\[\frac{dy}{dx} = a - ky \]

where \(x \) is the distance traversed, \(y \) the number of ticks at any stage, \(a \) the rate of accretion measuring the tick population of the pasture, and \(k \) a factor representing the rate of loss, and probably dependent on the roughness of the pasture and other conditions. Putting in the condition that \(y \) is 0 when \(x \) is 0, the solution of this differential equation is

\[1 - \frac{k}{a} y = e^{-kx} \]

so that if one has values \(\frac{73}{36} \) & \(\frac{103}{36} \) for two values of \(x \), of which the second is double the first, one has the equation

\[(1 - \frac{k}{a} \cdot \frac{73}{36})^2 = 1 - \frac{k}{a} \cdot \frac{103}{36} \]
or simply
\[
\frac{k}{a} = \frac{43 \times 36}{73^a}.
\]

Using now the fact that the average number \(\frac{73}{36} \) was attained after 25 yards drag, one has
\[
e^{-25k} = 1 - \frac{43}{73}
\]
or
\[
k = \frac{1}{25} \log_e \frac{73}{30},
\]
whence \(a \), which measures the number of ticks per yard of pasture, is
\[
\frac{73^a}{43 \times 36 \times 25} \log_e \frac{73}{30}.
\]

This comes to .12245 ticks per yard, or 3.061 per 25 yards, or 6.1225 per 50 yards, and so on.

This seems at least a logical way of dealing with loss of ticks in the course of the drag, and, as the arithmetic to which it leads is easy, I do not see why it should not be used.

Yours sincerely,