21st December 1933.

Professor Watson,
The University,
Edgbaston,
Birmingham.

Dear Professor Watson,

I am sorry for the decision of the L.M.S. Council conveyed in your letter of December the 15th, which has only arrived this morning, especially as the reports of the Referees are very nearly unintelligible to me. The fact that a problem attempted by Euler and left unsolved by the mathematicians who have attempted it since his time, has now been resolved seems to have escaped notice. The method which gives the correct enumeration is described as a systematisation by a method of grouping, as though that were not what previous writers have attempted, though unsuccessfully. It would seem that a scientific basis can be recognised only in methods that are so intricate and confusing that they have misled their own authors.
In sending the paper to you I think I remarked that I thought it was unnecessarily long and suggested that you, or the Referee, might indicate places where a shorter explanation would be thought sufficient. Naturally the results will be given independently in a form appropriate to their experimental applications.

You do not say whether the constructive critic carried out his process sufficiently far to show that it introduced any simplification. I cannot say that this seems probable, but should naturally be interested if he thinks that a different method of approach would be in any way simpler.

I do not know if I am to read your letter as meaning that the Council is not interested in the solution of combinatorial problems in forms in which they can be applied, but only in formal Algebraic solutions, which are too cumbersome even to be completed. Perhaps it may help you to answer this question if I state briefly what parts of the work seem to deserve publication.
A method is given of enumerating correctly the 6×6 Latin Squares.

The enumeration is shown to lead to a number greater than that previously obtained.

The squares are of twelve distinct types, of which one only (the complete cycle squares of Cayley and Jacob) had previously been recognised.

Euler's inference that no 6×6 Greaco-Latin squares exist, is demonstrated for the first time.

The method leads to an easy correction of Jacob's formula for the number of complete cycle squares of any size.

For future studies perhaps the most important point is that the solutions of the problem of the Latin square are classified in accordance with their internal symmetry, rather than by permutative operators in which this symmetry fundamental to the problem of enumeration is obscured.

I should be glad to hear from you whether you wish the Society to refuse the publication of these results in agreement with the reports of the Referees, or whether you think
they should be published.

Yours sincerely,