Dear Dr. Wooley,

I have had time to think about that interesting puzzle which you sent me, and here are my conclusions (that it does not enter into rest). You distinguish 4 classes of work: if C is below, S is suit, \(N = \text{Normal} \) (i.e. R.K.), \(R = \text{Rant} \) (black or suits) then the line drawn might go in

![Diagram]

What I call a vertical relation gives a good indication from a forcing story any of the lines \(0-C, R-C, N-C \) and so on with the others. Also it is evident that the utmost men, 0-C should equal the C-S N-C N and so on with the others. Now it is under this the utmost men, 0-C should equal the C-S N-C and so on with the others. Having this principle I get the following results:

<table>
<thead>
<tr>
<th></th>
<th>Nothing</th>
<th>Ranks</th>
<th>Colour</th>
<th>C+R</th>
<th>Suit</th>
<th>S+R</th>
<th>Number</th>
<th>C+N</th>
<th>S+N</th>
</tr>
</thead>
</table>

This matrix has been used

(i) when everything is wrong the sum shall be 0
(ii) the average number for choice recommendations shall be 10

These formulae are of the form

\[T = \frac{I}{N} - 10 \]

where \(T \) is the total score for \(N \) values. Then a series of scores

\[(I - 10) \frac{1}{\sqrt{N}} \]

may be compared to expectation by taking the total score \(T \) after \(N \) limits; average mean \(\frac{I}{N} \), greater or less than 10

Your sincerely,

R. A. Fisher