THE EFFECTS OF SLEEP RESTRICTION AND ALCOHOL ON SIMULATED DRIVING AND CORTICAL FUNCTION IN OBSTRUCTIVE SLEEP APNOEA

by

Andrew Vakulin

BSc (University of Adelaide, 2004) &

BSc (Hons) (Physiology, University of Adelaide, 2005)

A thesis submitted for the degree of

DOCTOR OF PHILOSOPHY

December, 2010

Discipline of Physiology Adelaide Institute for Sleep Health
School Medical Sciences Repatriation General Hospital
University of Adelaide South Australia, 5041.
South Australia, 5005.
TABLE OF CONTENTS

LIST OF TABLES ___ VIII

LIST OF FIGURES __ IX

ABSTRACT___ X

PUBLICATIONS ___ XV

DECLARATION __ XIX

ACKNOWLEDGEMENTS ___ XXI

GLOSSARY OF ABBREVIATIONS ___ XXIII

CHAPTER 1. GENERAL INTRODUCTION ______________________________________ 1

1.1 Epidemiology, pathogenesis and consequences of obstructive sleep apnoea (OSA) ___ 3

1.1.1 Prevalence of OSA ___ 3

1.1.2 Risk factors for OSA __ 4

1.2 Daytime consequences of OSA __ 5

1.2.1 Excessive daytime sleepiness associated with OSA ______________________ 6

1.2.2 Neurocognitive deficits associated with OSA __________________________ 7

1.2.2.1 Behavioural evidence ___ 7

1.2.2.2 Electrophysiological evidence: Event related potentials _________________ 9

1.2.3 The association of OSA with increased motor vehicle accident risk and poor driving simulator performance ___ 13
1.2.4 Cardiovascular disease, stroke and mortality associated with OSA _____________ 15

1.2.5 Treatment of OSA__ 16

1.2.5.1 Behavioural treatment options__________________________________ 16

1.2.5.2 Other treatment options__ 16

1.2.6 Effects of CPAP treatment on daytime sleepiness, cognitive function, driving performance and MVA risk__ 18

1.2.6.1 CPAP and excessive daytime sleepiness (EDS)____________________ 19

1.2.6.2 Evidence for residual sleepiness following CPAP__________________ 20

1.2.6.3 CPAP and neurocognitive function________________________________ 21

1.2.6.4 Evidence for residual cognitive and cortical function abnormalities following CPAP treatment__ 23

1.2.6.5 Do persistent neurobehavioural deficits in treated OSA patients imply residual driving impairment?__ 25

1.2.6.6 Effects of CPAP on driving simulator performance and MVA risk________ 26

1.3 The effects of sleep restriction and alcohol on neurobehavioural performance, driving ability and motor vehicle accident risk________________________________ 31

1.3.1 Sleep deprivation and neurobehavioural performance__________________ 31

1.3.1.1 Chronic partial sleep restriction___________________________________ 33

1.3.1.2 Acute sleep deprivation evokes a compensatory cortical response_______ 35

1.3.1.3 The importance of task duration___________________________________ 38

1.3.1.4 Individual variability in performance and susceptibility to sleep loss______ 39

1.3.2 The effects of alcohol on neurocognitive function and its interaction with sleepiness 41

1.3.2.1 Alcohol and neurocognitive function________________________________ 42
1.3.2.2 The interactive effects of alcohol and prior sleep opportunity on objective levels of sleepiness and cognitive performance 45

1.3.2.2.1 The interactive effects of alcohol and sleep restriction 45

1.3.2.2.2 The interactive effects of alcohol and sleep extension 46

1.3.2.2.3 The interactive effects of alcohol and inter-individual differences in basal levels of sleepiness 47

1.3.2.3 Residual effects of alcohol 47

1.3.3 The impact of alcohol and sleepiness on motor vehicle accidents and driving simulator performance 49

1.3.3.1 Alcohol, sleepiness and MVAs 49

1.3.3.2 Alcohol, sleepiness and driving simulator performance 51

1.3.3.3 Actions of alcohol on sleep/wake neural pathways and neurotransmitter systems 57

1.3.3.4 Comparison of behavioural impairments due to sleep loss, alcohol and OSA 59

1.4 Potential mechanisms of neurobehavioural abnormalities in OSA 61

1.4.1 Daytime sleepiness and intermittent hypoxia 61

1.4.1.1 Animal models of OSA 65

1.4.1.2 Magnetic resonance imaging (MRI) in OSA 66

1.4.1.3 Functional magnetic resonance imaging (fMRI) in OSA 67

1.4.2 Current theories regarding attention and vigilance abnormalities associated with sleep loss, alcohol and OSA 69

1.4.2.1 Behavioural and neural correlates of lapses in attention 72

1.4.3 Special role of the pre-frontal cortex (PFC) in the effects of sleep restriction, alcohol and OSA on performance 75

1.5 Summary and aims of thesis 76
CHAPTER 2. EFFECTS OF ALCOHOL AND SLEEP RESTRICTION ON
PERFORMANCE DURING SIMULATED DRIVING IN UNTREATED PATIENTS
WITH OBSTRUCTIVE SLEEP APNOEA

1.5.1 Specific aims and hypotheses

CHAPTER 3. DRIVING SIMULATOR PERFORMANCE REMAINS IMPAIRED
AFTER CPAP TREATMENT IN PATIENTS WITH SEVERE OSA
CHAPTER 4. EARLY AND LATE AUDITORY EVENT RELATED POTENTIALS REMAIN ABNORMAL DESPITE OPTIMAL CPAP TREATMENT IN PATIENTS WITH SEVERE OBSTRUCTIVE SLEEP APNOEA

4.1 Introduction

4.2 Methods

4.2.1 Subject selection and screening

4.2.2 Experimental protocol

4.2.3 Treatment protocol
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.4 Auditory event related potential recording</td>
<td>137</td>
</tr>
<tr>
<td>4.2.5 Data processing and analysis</td>
<td>138</td>
</tr>
<tr>
<td>4.2.6 Statistical analysis</td>
<td>138</td>
</tr>
<tr>
<td>4.3 Results</td>
<td>139</td>
</tr>
<tr>
<td>4.3.1 Auditory event related potentials</td>
<td>140</td>
</tr>
<tr>
<td>4.4 Discussion</td>
<td>144</td>
</tr>
</tbody>
</table>

CHAPTER 5. SUMMARY AND CONCLUSIONS

REFERENCES 160
LIST OF TABLES

Table 2.1 Participant anthropometric characteristics, polysomnography and questionnaire results, and medication use. ... 88

Table 2.2 Actigraphy estimated sleep time, average alcohol consumed and blood alcohol concentration before and after the driving task. .. 88

Table 2.3 Proportion and percentage of participants exhibiting crashes ... 95

Table 3.1 Participant anthropometric characteristics, polysomnography results, and medication use. .. 114

Table 3.2 Actigraphy estimated sleep time, average alcohol consumed and blood alcohol concentration before and after the driving task. .. 114

Table 3.3 Proportion and percentage of participants exhibiting at least one crash during 90 minute simulator driving at baseline and 3 month follow-up evaluations ... 122

Table 4.1 Participant anthropometric characteristics, polysomnography results at baseline and after 3 months follow-up, questionnaire results and medication use. 141

Table 4.2 Auditory event relate potentials mean latency and amplitude data... 141
LIST OF FIGURES

Figure 1.1	Grand average auditory target event related potential (ERP)	11
Figure 1.2	Time of day influence on the deleterious effect of sleepiness, alcohol and their combination	53
Figure 1.3	The effects of sleep loss, alcohol and their combination on the occurrence of driving incidents	55
Figure 2.1	Effects of sleep restriction and alcohol on steering deviation	92
Figure 3.1	Steering deviation at baseline and follow-up evaluations	119
Figure 3.2	Steering deviation under the three experimental conditions at baseline and follow-up evaluation	120
Figure 4.1	Grand average auditory event related potentials at baseline and follow-up evaluation	142
ABSTRACT

Obstructive sleep apnoea (OSA) is a common sleep disorder associated with neurobehavioural daytime abnormalities including poor driving simulator performance and an increased risk of motor-vehicle accidents. Treating OSA with continuous positive airway pressure (CPAP) significantly improves many of the daytime consequences of OSA. Until recently it was believed that CPAP treatment can completely resolve excessive daytime sleepiness and neurobehavioural abnormalities associated with OSA. However, recent evidence suggests that compared to results in well-matched healthy subjects, levels of daytime vigilance and cortical activation and some domains of cognitive function in OSA patients may not return to normal, even after effective OSA treatment with good treatment compliance.

Sleep restriction and low-dose alcohol consumption are common “life style” factors that have a negative impact on the central nervous system and driving performance in healthy subjects. However, their impact on driving simulator performance and cortical information processing in patients with OSA has not been examined.

The hypotheses tested in the work presented in this thesis were that:

a) Sleep restriction and alcohol have a greater deleterious effect on driving simulator performance and cortical information processing in untreated OSA patients than in healthy subjects.

b) Treatment of severe OSA with CPAP improves, but does not normalise driving simulator performance and cortical information processing.
Consequently, the broad aims were:

a) To compare the effects of sleep restriction and alcohol on driving simulator performance and auditory cortical event-related potentials in OSA patients and healthy age and gender-matched controls.

b) To compare driving simulator performance and auditory cortical event-related potentials in severe OSA patients before and after 3-months of CPAP therapy and to compare these results with those of healthy, untreated subjects also studied 3-months apart.

Study 1 (CHAPTER 2) compared performance during a 90-minute simulated drive in 38 patients with OSA and 20 healthy age and gender-matched control subjects under 3 conditions studied in random order: 1) normal sleep, 2) sleep restriction (4 hours in bed on the night prior to study) and 3) low-dose alcohol (blood alcohol concentration 0.05 g/dL). Compared to control subjects, OSA patients exhibited a higher crash rate, increased overall steering deviation and more steering deterioration with time-on-task. Following sleep restriction and alcohol there was a ~40% greater increase in steering deviation in OSA patients than in control subjects. Crashes were more likely to occur in patients with OSA compared with control subjects. OSA patients were more likely to crash under sleep restriction and alcohol conditions compared to the normal sleep condition. Simulator crashes were associated with behavioural and physiological evidence of increased sleepiness. The results of this study showed that compared with healthy subjects, OSA patients have worse driving simulator performance and are more vulnerable to the effects of prior alcohol and sleep restriction on various driving performance parameters. To the extent that these simulator findings may be indicative of real on-road driving
performance, it may be advisable for untreated OSA patients to avoid sleep restriction and even legal doses of alcohol prior to extended driving.

Study 2 (CHAPTER 3) assessed the effectiveness of ~3 months CPAP treatment in improving driving simulator performance. Eleven severe OSA patients and nine age- and gender-matched controls were studied on two occasions 3 months apart using the same protocol as in Study 1. In the intervening period OSA patients were treated with CPAP during which they showed a high level of compliance with therapy (mean ± SD, 6.0 ± 1.4 hours/night). At baseline, OSA patients demonstrated worse driving simulator performance compared to controls under all conditions, and showed greater steering decrements following sleep restriction and alcohol than control subjects. After CPAP treatment, OSA patients showed significant improvements in steering deviation under all conditions, but steering deviation did not reach the level of control subjects and crash frequency remained significantly elevated. Braking reaction time was not significantly different between groups, conditions, or treatments and there were no significant interaction effects. Taken together, these findings suggest that CPAP treatment is only partially effective in improving driving performance during simulated long and monotonous driving. To the extent that driving simulator findings may be indicative of real on-road driving performance it may be appropriate to advise patients, even after apparent optimal CPAP treatment, to be cautious when undertaking long distance driving, as they could remain at higher than normal accident risk.

Given the behavioural finding of residual driving simulator impairment in CPAP-treated, severe OSA patients in studies 1 and 2, the final study (CHAPTER 4)
explored whether cortical information processing during a simple attention task
demonstrated similar treatment resistant abnormalities. The effects of CPAP
treatment on cortical information processing in OSA patients were examined by
comparing early and late components of auditory target (odd-ball) event-related
potential responses in 9 patients with severe OSA and 9 healthy age- and gender-
matched controls. The results showed that compared to controls, early and late
auditory event related potentials were abnormal in severe OSA patients at baseline.
Specifically, N2 and P3 peaks were smaller and delayed in latency, and P2
amplitude was larger. At follow-up, P3 latency was the only measure to show
improvement following CPAP treatment, but remained prolonged in patients
compared to control subjects despite high CPAP treatment compliance in OSA
patients (mean ± SD, 6.0 ± 1.6 hours/night). None of the abnormalities in earlier
components (N2 and P2) observed at baseline changed in CPAP-treated OSA
patients.

In summary, driving simulator performance is impaired in patients with OSA
compared to healthy controls, and patients demonstrate a greater susceptibility to
the detrimental effects of sleep restriction and alcohol. Driving simulator
performance is only partially improved in CPAP-treated OSA patients. Thus, it may
be prudent to advise patients with OSA to be cautious and avoid sleep loss or
alcohol prior to long distance driving, even when optimally treated. Residual
abnormalities were also evident in auditory cortical evoked responses in optimally
treated OSA patients, suggesting the possibility of a permanent reduction in
information processing capacity. The mechanisms underlying the observed
vulnerability to additional stressors (sleep loss and alcohol) and the residual driving
performance and electrophysiological abnormalities observed in CPAP-treated patients warrants further investigation. In addition, examining how these driving simulator and electrophysiological findings relate to on-road motor vehicle accident risk in patients with OSA is another important question worthy of further investigation.
PUBLICATIONS

The following are publications that have arisen from work conducted towards this thesis:

Journal articles:

Book Chapters:

Published abstracts:

Unpublished Conference Proceedings:

Obstructive Sleep Apnoea. (*Proceedings of the 10th International Sleep & Breathing Meeting 2007*)

DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Andrew Vakulin

Date: Friday, 6 May 2011
ACKNOWLEDGEMENTS

Firstly, I would like to express my gratitude to Professor Doug McEvoy for providing me with the opportunity to undertake my PhD at the renowned laboratory of the Adelaide Institute for Sleep Health. I am really grateful for his wisdom, patience, invaluable assistance, encouragement and mentorship throughout my PhD.

I would like to sincerely thank Associate Professor Peter Catcheside. Peter has been an inspiration to me with his motivation, encouragement and continuous support of not only my work but all research students and staff at the Adelaide Institute for Sleep Health. Peter’s invaluable assistance with all technical aspects, manuscript preparation, data analysis and interpretation and proof reading of this thesis is very much appreciated. His relentless commitment to research and extensive technical expertise have taught me a great deal about being a researcher.

I am also extremely grateful to Doctor Stuart Baulk for all his help and support throughout my postgraduate studies. Stuart has always been there for me through the good and the difficult aspects of my PhD and I deeply appreciate his invaluable insight, enthusiasm, help, motivation and continuous encouragement. Stuart has not only been a great supervisor but continues to be a great friend and I am really thankful for that.
I would also like to thank all research, nursing, technical staff and postgraduate students at the Adelaide Institute for Sleep Health for their assistance and friendship throughout my PhD. Special thanks to Doctor Jeremy Mercer and Doctor Mark Jurisevic for their valuable technical assistance. Thank you to Amanda McKenna, Samantha Windler, Marni Ahmer and Emily Peake for their technical sleep scoring expertise and for being great friends. Thank you to Sharn Rowland, Cathy Hennessy, Graham Keighley-James and Samatha Chambaruain for their professional nursing assistance. Special thanks to research assistants Denzil Paul, Jana Bradley, Luke Nuske and Amanda Adams and postgraduate students Tristan Duggen and Katherine Harris for their help with data collection and their friendship. Thank you also to all the patients and volunteers for their interest and involvement in the experiments conducted as part of this thesis.

Finally, I would like to thank my parents Andrey Vakulin and Larissa Vakulina and my brother Adam Vakulin for their continuous encouragement and support throughout my PhD. I would also like to extend a very special thank you to my wonderful wife Cassie and our baby boy Sasha for always being there for me through the good and tough times, their patience and support, which helped me enormously to successfully complete my studies.
GLOSSARY OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERP(s)</td>
<td>Auditory event related potential(s)</td>
</tr>
<tr>
<td>AHI</td>
<td>Apnoea hypopnoea index</td>
</tr>
<tr>
<td>BAC</td>
<td>Blood alcohol concentration</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>COPD</td>
<td>Chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>CPAP</td>
<td>Continuous positive airway pressure</td>
</tr>
<tr>
<td>EDS</td>
<td>Excessive day-time sleepiness</td>
</tr>
<tr>
<td>EEG</td>
<td>Electroencephalogram</td>
</tr>
<tr>
<td>ERP(s)</td>
<td>Event related potential(s)</td>
</tr>
<tr>
<td>ESS</td>
<td>Epworth sleepiness scale</td>
</tr>
<tr>
<td>FA</td>
<td>Fractional anisotropy</td>
</tr>
<tr>
<td>fMRI</td>
<td>Functional magnetic resonance imaging</td>
</tr>
<tr>
<td>GABA</td>
<td>γ-Aminobutyric acid</td>
</tr>
<tr>
<td>IH</td>
<td>Intermittent hypoxia</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>MSLT</td>
<td>Multiple sleep latency test</td>
</tr>
<tr>
<td>MVA(s)</td>
<td>Motor vehicle accident(s)</td>
</tr>
<tr>
<td>MWT</td>
<td>Maintenance of wakefulness test</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl D-aspartate</td>
</tr>
<tr>
<td>NREM</td>
<td>Non-rapid eye movement</td>
</tr>
<tr>
<td>N1 & N2</td>
<td>First and second negative peak of the ERP respectively</td>
</tr>
<tr>
<td>OSA</td>
<td>Obstructive sleep apnoea</td>
</tr>
<tr>
<td>P2 & P3</td>
<td>First and second positive peak of the ERP respectively</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>PFC</td>
<td>Pre-frontal cortex</td>
</tr>
<tr>
<td>PVT</td>
<td>Psychomotor vigilance test</td>
</tr>
<tr>
<td>REM</td>
<td>Rapid eye movement</td>
</tr>
</tbody>
</table>