Two methods of biomarker discovery: applications in neuropathic pain and pharmacotherapy

Peter M. Grace BHSc (Hons)

Discipline of Pharmacology, School of Medical Sciences
(Faculty of Health Sciences)
The University of Adelaide

November 2010

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy
Table of Contents

Abstract .. x

Declaration ... xii

Statement of Authorship .. xiii

Acknowledgements .. xix

Abbreviations ..xxi

Chapter 1. Introduction ... 1

1.1. Biomarkers .. 1

 1.1.1. Definitions and classification framework ... 1

 1.1.2. Biomarker utility ... 4

 1.1.3. Validation and qualification .. 6

 1.1.3.1. Criterion validity ... 7

 1.1.3.2. Construct validity ... 7

 1.1.3.3. Face validity ... 8

 1.1.4. Two methods of biomarker discovery .. 8

1.2. Pain .. 9

 1.2.1. Nociceptive pain ... 10

 1.2.2. Inflammatory pain .. 11

 1.2.3. Neuropathic pain ... 12

1.3. Pain transmission .. 13

 1.3.1. The peripheral nociceptive pathway ... 13

 1.3.1.1. Detection of noxious stimuli by ion channels ... 15

 1.3.1.2. Peripheral immune cells ... 16

 1.3.1.2.1. Peripheral immune cells: Mast cells .. 17

 1.3.1.2.2. Peripheral immune cells: Neutrophils ... 17
Chapter 4. Identification of pain biomarkers by RNA microarray

1.3.1.2.3. Peripheral immune cells: Macrophages ... 18
1.3.1.2.4. Peripheral immune cells: Lymphocytes ... 19
1.3.1.2.5. Peripheral immune cells: Endothelial cells .. 20
1.3.1.2.6. Peripheral immune cells: Schwann cells .. 21
1.3.1.3. Peripheral immune mediators .. 21
1.3.1.3.1. Peripheral immune mediators: Cytokines ... 21
1.3.1.3.1.1. Peripheral immune mediators: Tumour necrosis factor α 22
1.3.1.3.1.2. Peripheral immune mediators: IL-1β ... 23
1.3.1.3.1.3. Peripheral immune mediators: IL-6 ... 24
1.3.1.3.1.4. Peripheral immune mediators: IL-10 ... 24
1.3.1.3.1.5. Peripheral immune mediators: Chemokines ... 25
1.3.1.4. Dorsal root ganglion (DRG) ... 26
1.3.1.5. Central terminal .. 27
1.3.1.6. Peripheral characteristics of neuropathic pain .. 27

1.3.2. The central nociceptive pathway .. 29
1.3.2.1. The dorsal horn ... 29
1.3.2.2. Ascending pathways ... 30
1.3.2.3. The pain matrix ... 31
1.3.2.4. Descending modulatory controls of pain ... 33
1.3.2.4.1. Modulation in the dorsal horn and the gate control theory 34
1.3.2.5. Central sensitisation ... 35
1.3.2.6. Glia .. 36
1.3.2.6.1. Neuropathic pain and glia .. 37
1.3.2.6.2. Glial activation .. 38
1.3.2.6.3. Neuropathic mechanisms of glial activation ... 39
1.3.2.6.3.1. Toll-like receptors and neuropathic pain .. 39
1.3.2.6.3.2. Cytokines, chemokines and neuropathic pain ... 41
1.3.2.6.3.2.1. CCL2 and neuropathic pain ... 41
1.3.2.6.3.2.2. Fractalkine and neuropathic pain .. 41
1.3.2.6.3.3. ATP and neuropathic pain ... 42
1.3.2.6.3.4. Other neuropathic mechanisms of glial activation 44
1.3.2.6.4. Glial enhancement of nociception ... 44
1.3.2.7. CNS leukocyte infiltration in neuropathic pain ... 46
1.3.3. Pain processing summary ... 48

1.4. Treatment of pain and the problem of heterogeneity 50

1.4.1. Treatment of pain: Antidepressants ... 50
 1.4.1.1. Tricyclic antidepressants (TCAs) .. 50
 1.4.1.2. Selective- serotonin reuptake inhibitors (SSRIs) 50
1.4.2. Treatment of pain: Anticonvulsants .. 51
1.4.3. Treatment of pain: Opioids .. 51
 1.4.3.1. Adverse effects: Opioid tolerance .. 53
 1.4.3.2. Adverse effects: Opioid-induced hyperalgesia (OIH) 54
 1.4.3.3. Glia and opioid tolerance and OIH ... 54
 1.4.3.3.1. Opioid action at TLR4 .. 56
 1.4.3.4. Adverse effects: Opioid-induced sedation .. 57
1.4.4. The problem of heterogeneity ... 58

1.5. Biomarker discovery and development for pain and sedation 60

1.5.1. Biomarkers of pain .. 60
 1.5.1.1. Biomarkers of pain: The basal system .. 62
 1.5.1.2. Biomarkers of pain: Primary afferents .. 63
 1.5.1.2.1. Primary afferents: Nociceptor activation 63
 1.5.1.2.2. Primary afferents: Microdialysis .. 64
 1.5.1.2.3. Primary afferents: Nerve biopsy .. 64
 1.5.1.3. Biomarkers of pain: Ascending and descending pathways 65
 1.5.1.4. Biomarkers of pain: Imaging the pain matrix ... 66
 1.5.1.4.1. Imaging the pain matrix: Positron emission tomography (PET) 67
 1.5.1.4.2. Imaging the pain matrix: Functional magnetic resonance imaging (fMRI) 69
1.5.1.5. Biomarkers of pain: Other systems ... 70

1.5.2. Biomarkers of sedation ... 71

1.5.2.1. Ocular biomarkers of sedation ... 73

1.5.2.1.1. Ocular biomarkers of sedation: Saccadic eye movements ... 73
 1.5.2.1.1.1. Neural control of saccadic eye movements .. 74
 1.5.2.1.1.2. Measurement of saccadic eye movements .. 77
 1.5.2.1.1.3. Opioid modulation of the saccadic generator .. 78
 1.5.2.1.1.4. Saccadic parameters .. 79
 1.5.2.1.1.5. Potential caveats to the use of SEMs as a biomarker of sedation .. 79

1.5.2.1.2. Ocular biomarkers of sedation: Pupillometry .. 80
 1.5.2.1.2.1. Neural control of pupil activity ... 80
 1.5.2.1.2.2. Pupillometric biomarkers of sedation .. 82
 1.5.2.1.2.2.1. Pupil dark adaptation .. 82
 1.5.2.1.2.2.2. Pupil light reflex .. 83
 1.5.2.1.2.3. Opioid modulation of pupillary activity... 84

1.5.3. Biomarker discovery .. 85

1.6. Summary and Aims .. 87

Chapter 2. A novel animal model of graded neuropathy .. 89

Chapter 3. Role of the peripheral immune system in neuropathic-like pain... 98

Chapter 4. Identification of pain biomarkers by RNA microarray .. 137

Chapter 5. Oculomotor measures as objective biomarkers of sedation .. 166

Chapter 6. Conclusion .. 178

Chapter 7. References .. 185

Appendix A. Pain transmission .. 220

A.1. Peripheral Chemical mediators .. 220
A.1.1. Kinins ... 220
A.1.2. 5-hydroxytryptamine (5-HT) .. 221

A.2. Peripheral immune mediators .. 222
A.2.1. Immune mediators: ATP and adenosine 222
A.2.2. Immune mediators: Eicosanoids ... 223
A.2.3. Immune mediators: Neurotrophins 224
A.2.3.1. NGF .. 225
A.2.3.2. BDNF ... 226
A.2.4. Immune mediators: Nitric oxide and reactive oxygen species .. 227
A.2.5. Immune mediators: Histamine ... 228
A.2.6. Immune mediators: Opioid peptides 229

A.3. The central nociceptive pathway .. 229
A.4. The dorsal horn .. 229

A.5. Ascending pathways .. 231
A.5.1. Spinothalamic tract .. 232
A.5.2. Spinobulbar tract ... 233
A.5.3. Spinohypothalamic tract .. 234

A.6. The pain matrix ... 234
A.6.1. The sensory-discriminative (nociceptive) component of pain ... 235
A.6.2. The affective-motivational component of pain 235
A.6.3. The cognitive component of pain .. 238

A.7. Descending modulatory controls of pain 238
A.7.1. The periaqueductal grey (PAG) .. 239
A.7.2. The locus coeruleus (LC) .. 240
A.7.3. The rostral ventromedial medulla (RVM) 241
A.7.4. Modulation in the dorsal horn and the gate control theory ... 243
A.8. Central neurotransmitters and modulators ... 245
 A.8.1. Glutamate .. 245
 A.8.2. GABA .. 246
 A.8.3. 5-HT ... 247
 A.8.4. Acetylcholine .. 248
 A.8.5. Tachykinins .. 248
 A.8.6. CGRP .. 249
 A.8.7. Opioid peptides .. 249
 A.8.8. Cannabinoids ... 250
 A.8.9. Cholecystokinin ... 252
 A.8.10. Other modulators .. 253

A.9. Central sensitisation .. 253
 A.9.1. Windup ... 254
 A.9.2. Classic central sensitisation .. 255
 A.9.3. Long term potentiation .. 257

Appendix B. Mononuclear cell proliferation as a potential biomarker of pain 259
 B.1. Introduction .. 259
 B.1.1. Aims ... 260
 B.2. Materials and methods ... 261
 B.2.1. Optimisation in human PBMCs .. 261
 B.2.1.1. Replication ... 261
 B.2.1.2. Concanavalin A concentration .. 263
 B.2.1.3. AlamarBlue concentration .. 265
 B.2.1.4. Cell and foetal calf serum concentration ... 266
 B.2.1.5. LPS concentration ... 269
 B.2.1.6. Additional TLR4 agonists ... 272
Table of Figures and Tables

- **Figure 1-1.** Schematic representation of the mechanistic classification of biomarkers. .. 2
- **Figure 1-2.** The relationship between biomarkers, surrogate endpoints and models. .. 4
- **Figure 1-3.** The components of the multidimensional pain experience. .. 9
- **Figure 1-4.** The nociceptor. .. 14
- **Figure 1-5.** Peripheral nerve damage induces activation of resident immune cells as well as recruitment of inflammatory cells to the nerve. .. 16
- **Figure 1-6.** The termination of primary afferent fibres in the six laminae of the dorsal horn of the spinal cord. ... 29
- **Figure 1-7.** The main ascending pain pathways.. 30
- **Figure 1-8.** Schematic representation of ascending pathway terminations and the subcortical and cerebral cortical structures involved in pain processing. .. 32
- **Figure 1-9.** The main descending pain pathways.. 33
- **Figure 1-10.** Pro-inflammatory roles for glia. ... 43
- **Figure 1-11.** The correlation between proliferative response of peripheral blood mononuclear cells following *ex vivo* exposure to 100 µM morphine and cold pressor pain tolerances. .. 71
- **Figure 1-12.** Schematic block diagram of areas of the brain believed to be involved in the generation of saccades. .. 75
- **Figure 1-13.** Extraocular muscles of the eyes and their innervation... 77
- **Figure 1-14.** Autonomic neural control of pupil diameter. .. 81
- **Figure 6-1.** The relationship between bottom-up and top-down biomarker development is defined by specificity. .. 181
- **Figure A-1.** Schematic diagram of the gate control system. ... 244
Figure B-1. 1 x 10⁵ PBMC stimulation with 2.5 µg·ml⁻¹ concanavalin A. ..262

Figure B-2. PBMC stimulation with 0.25 µg.ml⁻¹ concanavalin A and enhancement with morphine. ...263

Figure B-3. Concanavalin A dose-response for PBMCs isolated from 3 healthy volunteers......................264

Figure B-4. Effect of concanavalin A concentration across varied cell numbers and concentration of media supplementation. ..265

Figure B-5. Quantification of AlamarBlue fluorescence in 1 x 10⁻⁵ M ascorbic acid.266

Figure B-6. Optimisation of cell number in (A) 5 % and (B) 10 % FCS. ..267

Figure B-7. Optimisation of cell numbers and FCS concentration at (A) 2.5 %, (B) 5 %, (C) 10 %, (D) 20 % in 2.5 µg·ml⁻¹ concanavalin A. ..268

Figure B-8. Subject 1 optimisation of µg·ml⁻¹ range of LPS and cell concentration in supplemented RPMI 1640 (2.5% FCS). ..269

Figure B-9. Subject 2 optimisation of µg·ml⁻¹ range of LPS and cell concentration in supplemented RPMI 1640 (2.5% FCS). ..270

Figure B-10. Optimisation of ng·ml⁻¹ range of LPS and cell concentration in supplemented RPMI 1640 (2.5% FCS) ..271

Figure B-11. Stimulation of 1 x 10⁵ PBMCs with LPS..272

Figure B-12. Stimulation of 1 x 10⁵ PBMCs with M3G, LPS and reserpine...273

Figure B-13. Stimulation of 1 x 10⁵ PBMCs with M3G and LPS..274

Figure B-14. Stimulation of 1 x 10⁵ PBMCs with M3G and LPS..275

Figure B-15. Proliferation response of 1 x 10⁵ rat splenocytes...277

Figure C-1. Quantification of peak Fluo-4 fluorescence following addition of a capsaicin concentration range ..283

Table 1-1. Nociceptor ion channels. ..15
Abstract

Biomarkers have potential utility in the treatment of pain as diagnostics and for quantification of drug efficacy and safety. A qualified biomarker will capture overlapping disease mechanisms and will be responsive to treatment. The necessity for these strict requirements renders it difficult to discover new biomarkers, particularly one that is reliable, practical and non-invasive, and simple for routine utilisation. This thesis demonstrates that two approaches may be useful to overcome these challenges: bottom-up and top-down biomarker discovery and development. Current animal models of neuropathic pain are inadequate to develop biomarkers as they only cover ‘no pain’ and ‘high pain’: not the heterogeneity that exists between these extremes. Therefore, a novel rat model of graded neuropathic pain was developed by advancing the existing chronic constriction injury model. Sciatic nerve and subcutaneous chromic gut sutures were varied, resulting in ‘dose-dependent’ behavioural allodynia. Allodynia was correlated with microglial activation marker expression in the ipsilateral lumbar dorsal horn of the spinal cord, suggesting that changes in behaviour are associated with disease mechanisms. A literature review of the pathophysiological mechanisms of pain, filtered by the criterion for accessible biomarkers, revealed that the peripheral immune system was the ideal target for the bottom-up approach. As such, the graded model was then used to explore peripheral immune mechanisms in order to begin the process of construct validation of potential neuropathic pain biomarkers. It was demonstrated that peripheral immune cells significantly contribute to chronic constriction injury-induced allodynia, as adoptive transfer of splenocytes or peripheral blood mononuclear cells from high pain donors to low pain recipients potentiates allodynia. Intrathecal transfer of high pain immune cells to low pain recipients potentiated allodynia, confirming that infiltrating immune cells are not passive bystanders, but actively contribute to nociceptive hypersensitivity in the lumbar spinal cord. The graded transcriptome of dorsal horn of the ipsilateral lumbar spinal cord was compared with that in the blood, identifying chemokines and transcription factors as potential blood-borne biomarkers of neuropathic pain. The top-down approach
explored the utility of saccadic eye movements as an objective, functional biomarker of sedation, an adverse effect associated with opioid treatment of pain. This study compared the interaction between sleep deprivation and opioids on opioid-naïve with opioid-tolerant participants. The naive-participant study evaluated the effects of sleep deprivation alone, morphine alone and the combination; the tolerant-participant study compared day-to-day effects of alternate-daily-dosed buprenorphine and the combination of buprenorphine on the dosing day with sleep deprivation. Psychomotor impairment was measured using saccadic eye movements, other oculomotor measures and an alertness visual analogue scale (VAS). Saccadic eye movements demonstrated an additive interaction between acute opioids and sleep deprivation, however the nature of the interaction between chronic buprenorphine and sleep deprivation remained unclear. This study revealed greater saccadic eye movement, but not VAS impairment in tolerant versus naive participants, suggesting that chronically dosed patients may not become tolerant to the sedative effects of opioids. These findings open up a number of new opportunities for pain biomarker development within the peripheral immune system, identify potential pain biomarker candidates, as well as further validating saccadic eye movement analysis as a biomarker of sedation. This thesis highlights that bottom-up and top-down approaches are appropriate methods for biomarker discovery and development.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University of Adelaide Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I acknowledge that copyright of published works contained within this thesis (as listed below) resides with the copyright holders of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Peter Michael Grace 1 November 2010
Statement of Authorship

Impact Factor: 2.295

Mr. Grace had a major input in the experimental design, performed most surgeries, most behavioural testing, tissue collection immunohistochemistry imaging and densitometry, statistical analysis and graphical presentation of the data collected, and prepared the manuscript for submission.

Signed 1 November 2010

Dr. Hutchinson was involved in the experimental design, performed some surgeries and conducted some behavioural testing, assisted with tissue collection, contributed to the data interpretation and preparation of the manuscript.

Signed 1 November 2010

Mr. Manavis conducted the immunohistochemistry and contributed to the preparation of the manuscript, including writing much of the immunohistochemistry section of the Methods.

Signed 1 November 2010

Prof. Somogyi was involved in the experimental design, contributed to the data interpretation and preparation of the manuscript.

Signed 1 November 2010
Prof. Rolan was involved in the experimental design, contributed to the data interpretation and preparation of the manuscript.

Signed 1 November 2010

Impact Factor: 5.061

Mr. Grace had a major input in the experimental design, conducted all experimental procedures except intrathecal injections, statistical analysis and graphical presentation of the data collected, and prepared the manuscript for submission.

Signed 1 November 2010

Dr. Hutchinson was involved in the experimental design, performed intrathecal injections, assisted with tissue collection, contributed to the data interpretation and preparation of the manuscript.

Signed 1 November 2010

Mr. Bishop assisted with the flow cytometry and contributed to the preparation of the manuscript.

Signed 1 November 2010

Prof. Somogyi was involved in the experimental design, contributed to the data interpretation and preparation of the manuscript.

Signed 1 November 2010

Assoc. Prof. Mayrhofer was involved in the experimental design, contributed to the data interpretation and preparation of the manuscript.

Signed 1 November 2010
Prof. Rolan was involved in the experimental design, contributed to the data interpretation and preparation of the manuscript.

Signed 1 November 2010
Grace PM, Somogyi AA, Rolan PE and Hutchinson MR. Potential biomarkers of pain identified by RNA microarray correlation of ipsilateral dorsal horn of the lumbar spinal cord with whole blood in a graded chronic constriction injury model of neuropathic pain. Text in manuscript.

Mr. Grace had major input in the experimental design, performed surgeries, behavioural testing and RNA purification, statistical analysis and graphical presentation of the data collected, and prepared the manuscript for submission.

Signed 1 November 2010

Prof. Somogyi was involved in the experimental design, contributed to the data interpretation and preparation of the manuscript.

Signed 1 November 2010

Prof. Rolan was involved in the experimental design, contributed to the data interpretation and preparation of the manuscript.

Signed 1 November 2010

Dr. Hutchinson was involved in the experimental design, contributed to the data interpretation, assisted with statistical analyses and preparation of the manuscript.

Signed 1 November 2010
Impact Factor: 3.647

Mr. Grace had a major input in the experimental design, recruited all participants, conducted all experimental procedures, some statistical analysis and all graphical presentation of the data collected, and prepared the manuscript for submission.

Signed 1 November 2010

Mr. Stanford performed the majority of statistical analyses and contributed to the preparation of the manuscript, including writing much of the statistics section of the Methods.

Signed 1 November 2010

Mrs. Gentgall was responsible for the clinical trial logistics and provided editorial assistance.

Signed 1 November 2010

Prof. Rolan was involved in the experimental design, contributed to the data interpretation and preparation of the manuscript.

Signed 1 November 2010
Acknowledgements

I would like to thank my supervisors Prof. Paul Rolan, Dr. Mark Hutchinson and Prof. Andrew Somogyi for giving me the opportunity to do an exciting PhD project that has given me experience in laboratory, preclinical and clinical methods of pain research. Your encouragement, wisdom and ‘open door’ has been greatly appreciated and has fuelled my passion for neuroimmunopharmacology.

The research presented in this thesis was made possible by a Faculty of Health Sciences Divisional PhD Scholarship as well as support from the Pain and Anaesthesia Research Clinic. The opportunities to present my work at numerous national and international meetings were generously supported by Australasian Society for Clinical and Experimental Pharmacologists and Toxicologists Travel Grants, Faculty of Health Sciences Postgraduate Travel Fellowship, The School of Medical Sciences and Prof. Paul Rolan. Special thanks also to the Australian Pain Society and the RAH Medical Staff Society for their generous awards.

I would also like to acknowledge and express my thanks to the following people: my co-authors for their assistance and expertise; Melanie Gentgall and the staff at the Pain and Anaesthesia Research Clinic for their assistance during my clinical trials; Amanda Mitchell from DASSA for her assistance in recruiting subjects for my clinical trial; Yuen Hei Kwok and Dr. Emily Jaehne for their surgical assistance; Dr. Mark Hutchinson for his patience in training me in the animal handling, behavioural and surgical techniques; Dr. Dan Barratt for his cell culture and microarray advice; and the Adelaide Microarray Centre for analysing the transcriptomes. Thanks to all past and present members of the ‘Bach Pad’ and the ‘Green Room’ for your friendship and professional support, all of which made the PhD journey easier and much more enjoyable. Thanks to Gordon Crabb and Karen Nunes-Vaz for their administrative support, as well as all past and present members of the Discipline of Pharmacology.
To my friends: thanks for taking an interest in what I was doing, even though you didn’t really understand it. Thanks for the distractions and good times over food, beers and whatever TV comedy was the flavour of the month. You have all helped keep me sane.

To Mum, Dad and the rest of my family: thanks for providing me with all the opportunities and financial support that have enabled my achievements to date and those to come.

Erin, thank you for your love, support and sacrifices. Without you I would not have been able to achieve any of this. I’m looking forward to the exciting future we have ahead.
Abbreviations

5-HT
AMP A
ASIC
ATP
AVAS
BDNF
BK
BOLD
CB
CCI
CGRP
CIP
CNS
COX
CSF
CSGAAS
DA
DLF
DRG
DSST
EBN
ECF
EOG

5-hydroxytryptamine/ serotonin
α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid
Acid-sensing Ion Channel
Adenosine triphosphate
Alertness visual analogue scale
Brain derived neurotrophic factor
Bradykinin
Blood oxygenation level dependent
Cannabinoid
Chronic constriction injury
Calcitonin gene related peptide
Compact integrated pupillograph
Central nervous system
Cyclooxygenase
Cerebrospinal fluid
Cardiff saccades generating and analysis system
Dark Agouti
Dorsolateral funiculus
Dorsal root ganglion
Digit symbol substitution test
Excitatory burst neuron
Extracellular fluid
Electro-oculography
EW Edinger Westphal
FEF Frontal eye field
fMRI Functional magnetic resonance imaging
GABA γ-aminobutyric acid
GFAP Glial fibrillary acidic protein
GKO Gene knockout
IASP International Association for the Study of Pain
IBN Inhibitory burst neuron
IFN Interferon
IL Interleukin
IN Internuclear neuron
i.p. Intraperitoneal
i.t. Intrathecal
LC Locus coeruleus
LDI Laser Doppler imaging
LIP Lateral intraparietal area
LPS Lipopolysaccharide
MAPK Mitogen activated protein kinase
medRF Medullary reticular formation
MHC Major histocompatibility complex
MVN Medial vestibular nuclei
N Neuronal
NA Noradrenaline
NFκB Nuclear factor κB
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGF</td>
<td>Nerve growth factor</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-methyl-D-aspartate</td>
</tr>
<tr>
<td>NNT</td>
<td>Number needed to treat</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NOS</td>
<td>Nitric oxide synthase</td>
</tr>
<tr>
<td>NPH</td>
<td>Nuclei prepositus hypoglossi</td>
</tr>
<tr>
<td>NRS</td>
<td>Normal rat serum</td>
</tr>
<tr>
<td>OIH</td>
<td>Opioid induced hyperalgesia</td>
</tr>
<tr>
<td>OPN</td>
<td>Omnidirectional pause neurons</td>
</tr>
<tr>
<td>PAG</td>
<td>Periaqueductal grey</td>
</tr>
<tr>
<td>PAMP</td>
<td>Pathogen-associated molecular patterns</td>
</tr>
<tr>
<td>PAT</td>
<td>Pupil adaptation test</td>
</tr>
<tr>
<td>PBMC</td>
<td>Peripheral blood mononuclear cell</td>
</tr>
<tr>
<td>PET</td>
<td>Positron emission tomography</td>
</tr>
<tr>
<td>PG</td>
<td>Prostaglandin</td>
</tr>
<tr>
<td>PLR</td>
<td>Pupil light reflex</td>
</tr>
<tr>
<td>PNL</td>
<td>Partial nerve ligation</td>
</tr>
<tr>
<td>PNS</td>
<td>Peripheral nervous system</td>
</tr>
<tr>
<td>PO</td>
<td>Postoperative</td>
</tr>
<tr>
<td>PPRF</td>
<td>Paramedian pontine reticular formation</td>
</tr>
<tr>
<td>PSV</td>
<td>Peak saccadic velocity</td>
</tr>
<tr>
<td>QST</td>
<td>Quantitative sensory testing</td>
</tr>
<tr>
<td>ra</td>
<td>Receptor antagonist</td>
</tr>
<tr>
<td>rCBF</td>
<td>Regional cerebral blood flow</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>RPD</td>
<td>Resting pupil diameter</td>
</tr>
<tr>
<td>RVM</td>
<td>Rostral ventromedial medulla</td>
</tr>
<tr>
<td>S</td>
<td>Subcutaneous</td>
</tr>
<tr>
<td>S1, 2</td>
<td>Somatosensory cortex, primary, secondary</td>
</tr>
<tr>
<td>SC</td>
<td>Superior colliculus</td>
</tr>
<tr>
<td>SD</td>
<td>Sprague Dawley</td>
</tr>
<tr>
<td>SEF</td>
<td>Supplementary eye fields</td>
</tr>
<tr>
<td>SEMs</td>
<td>Saccadic eye movements</td>
</tr>
<tr>
<td>SG</td>
<td>Substantia gelatinosa</td>
</tr>
<tr>
<td>SNL</td>
<td>Spinal nerve ligation</td>
</tr>
<tr>
<td>SSRI</td>
<td>Selective serotonin reuptake inhibitors</td>
</tr>
<tr>
<td>TASK</td>
<td>Tandem of P domains in a Weak Inward rectifying K⁺ channel-related acid-sensitive K⁺</td>
</tr>
<tr>
<td>TCA</td>
<td>Tricyclic antidepressant</td>
</tr>
<tr>
<td>Tₜ</td>
<td>Helper T cell</td>
</tr>
<tr>
<td>TLR</td>
<td>Toll like receptor</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>TREK</td>
<td>Tandem of P domains in a Weak Inward rectifying K⁺ channel-related K⁺ channel</td>
</tr>
<tr>
<td>trkA</td>
<td>Tyrosine kinase receptor A</td>
</tr>
<tr>
<td>TRPA</td>
<td>Transient receptor potential subfamily A</td>
</tr>
<tr>
<td>TRPV</td>
<td>Transient receptor potential vanilloid</td>
</tr>
<tr>
<td>VAS</td>
<td>Visual analogue scale</td>
</tr>
</tbody>
</table>

Peter M. Grace, PhD Thesis 2010 xxiv