Examination of the Potential for Reuse of Chromated Copper Arsenate Wood Waste by Nitric Acid Pulping

by

Connell Wood

Thesis submitted for the degree of Doctor of Philosophy in

The University of Adelaide
School of Chemical Engineering
Faculty of Engineering, Computer & Mathematical Sciences

June 2011
Table of Contents

List of Figures ... iv
List of Tables .. ix
Acknowledgements ... xiii
Abstract .. xiv
Declaration .. xvi
Chapter 1: Introduction ... 1
Chapter 2: Literature Review .. 3
 2.1 CCA Timber Treatment ... 3
 2.2 The CCA Disposal Problem .. 8
 2.3 CCA Disposal Options ... 13
 2.4 Wood Pulping .. 18
 2.5 Conclusions ... 21
Chapter 3: Materials and Methods ... 23
 3.0 General Materials and Methods information .. 23
 3.1 Initial Nitric Acid Extraction Experiment ... 24
 3.2 Determining the Effect of Acid Concentration, Temperature, and Particle Size on CCA Extraction ... 26
 3.3 Soaking of Sawdust and Wood Cubes at Room Temperature in Water and Nitric Acid ... 32
 3.4 Nitric Acid Extraction of CCA Wood Chips ... 33
 3.5 Long-term Soaking of CCA Logs in Water at Room Temperature 38
 3.6 CCA Variation With Depth in a New Post ... 40
 3.7 CCA Variation With Depth in Aged Posts ... 42
 3.8 CCA Distribution with Depth at Low-Resolution 44
Chapter 4: Results and Discussion ... 47
 4.1 Initial Nitric Acid Extraction Experiment ... 49
 4.2 Determining the Effect of Acid Concentration, Temperature and Particle Size on CCA Extraction ... 51
 4.3 Soaking of Sawdust and Wood Cubes at Room Temperature in Water and Nitric Acid ... 62
Table of Contents

4.4 Nitric Acid Extraction of CCA Wood Chips .. 69
4.5 Long-term Soaking of CCA Logs in Water at Room Temperature 75
4.6 CCA Variation With Depth in a New Post.. 79
4.7 CCA Variation with Depth in Aged Posts... 81
4.8 CCA Variation with Depth at Low-Resolution ... 92

Chapter 5: Conclusions and Recommendations .. 108

Appendix A: Method for complete extraction of Copper, Chromium and Arsenic from pressure treated wood .. 115

Appendix B: Preparation of samples for ICPMS analysis .. 116

Appendix C: Copper Chrome Arsenate (CCA) Formulations currently registered in Australia .. 118

Appendix D: Error Analysis ... 120

Appendix E: Estimation of Evaporation Rates for Experiment 3.2 122

Appendix F: Results from Experiment 3.2 .. 125

F.1: Experiment 1: Sawdust in 5% nitric acid at 50°C ... 126
F.2: Experiment 2: 10mm wood cubes in 5% nitric acid at 50°C 128
F.3: Experiment 3: 5mm wood cubes in 10% nitric acid at 50°C 130
F.4: Sawdust in 15% nitric acid at 50°C (experiment 4) 132
F.5: 10mm wood cubes in 15% nitric acid at 50°C (experiment 5) 134
F.6: 5mm wood cube in 5% nitric acid at 70°C (experiment 6) 136
F.7: Sawdust in 10% nitric acid at 70°C (experiment 7) 138
F.8: 5mm cubes in 10% nitric acid at 70°C (experiment 8) 140
F.9: 5mm cubes in 10% nitric acid at 70°C (repeat) (experiment 9) 142
F.10: 5mm cubes in 10% nitric acid at 70°C (experiment 9 and 10 data combined) .. 144
F.11: 10mm cubes in 10% nitric acid at 70°C (experiment 10) 146
F.12: 5mm cubes in 15% nitric acid at 70°C (experiment 11) 148
F.13: Sawdust in 5% nitric acid at 90°C (experiment 12) 150
F.14: 10mm wood cubes in 5% nitric acid at 90°C (experiment 13) 152
F.15: 5mm wood cubes in 10% nitric acid at 90°C (experiment 14) 154
Table of Contents

F.16: Sawdust in 15% nitric acid at 90°C (experiment 15) .. 156
F.17: 10mm wood cubes in 15% nitric acid at 90°C (experiment 16) 158

Appendix G: Results from experiment 3.4 ... 160
G.1: Extraction from New Post (NEW 4) ... 160
G.2: Extraction from New Post (NEW 4) – repeat ... 162
G.3: Extraction from 11 year old post (above ground) .. 164
G.4: Extraction from 11 year old post (below ground) .. 166
G.5: Extraction from 17 year old post (above ground) 168
G.6: Extraction from 17 year old post (below ground) 170
G.7: Extraction from 33 year old post (above ground) 172
G.8: Extraction from 33 year old post (above ground - repeat) 174
G.9: Extraction from 33 year old post (ground level) 176
G.10: Extraction from 41 year old post (above ground) 178
G.11: Extraction from 41 year old post (above ground - repeat) 180

Appendix H: Order of Magnitude Cost Estimation .. 182

Appendix I: CCA Impregnation Process ... 188

References .. 191
List of Figures

Figure 2.1.1: The general vacuum/pressure impregnation process ... 6
Figure 2.2.1: Predicted volume of CCA wood to be disposed of .. 8
Figure 2.4.1: A basic schematic depicting nitric acid paper pulp production 19
Figure 3.1.1: Chipped H4 posts .. 24
Figure 3.2.1: FCD showing the variables used for this experiment and their ranges 26
Figure 3.2.2: A sample of the 5 and 10mm cubes used in experiment B 27
Figure 3.2.3: The 500ml CSTR created for experiment 3.2 .. 29
Figure 3.2.4: General setup showing two CSTR placed in a waterbath 30
Figure 3.4.1: Photo of chips cut for experiment F for the 11 year old post underground section .. 34
Figure 3.4.2: Experimental rig for experiment 3.4 .. 35
Figure 3.4.3: Experimental setup for experiment 3.4 showing two simultaneous runs 36
Figure 3.5.1: experimental setup for experiment 3.5 ... 38
Figure 3.6.1: Dimensions of cuts used for experiment 3.6 .. 40
Figure 3.7.1: dimensions of cuts used for experiment 3.7 ... 43
Figure 3.8.1: relative lengths of radii where each post is cut... 45
Figure 3.8.2: The non-circular lines used for one segment of the underground 24 year old post ... 45
Figure 4.1.1: Percent copper extracted from new CCA wood chips (assuming chips are at minimum Cu content for H4 classification) ... 49
Figure 4.2.1: Chromium extraction for experiment 3.2 at 50, 70 and 90°C............................ 55
Figure 4.2.2: Copper extraction for experiment 3.2 at 50, 70 and 90°C .. 56
Figure 4.2.3: arsenic extraction for experiment 3.2 at 50, 70 and 90°C .. 57
Figure 4.3.1: Loss of copper, chromium and arsenic from (a) CCA sawdust and (b) 10mm CCA cubes in deionised water ... 63
Figure 4.3.2: Chromium, copper and arsenic extracted from sawdust at room temperature by 5% nitric acid ... 65
Figure 4.3.3: Chromium, copper and arsenic extracted from 10mm cubes at room temperature by 5% nitric acid ... 65
Figure 4.3.4: Chromium, copper and arsenic extracted from sawdust at room temperature by 10% nitric acid ... 65
Figure 4.3.5: Chromium, copper and arsenic extracted from 10mm cubes at room temperature by 10% nitric acid ... 66
Figure 4.3.6: Chromium, copper and arsenic extracted from sawdust at room temperature by 15% nitric acid. .. 66
Figure 4.3.7: Chromium, copper and arsenic extracted from 10mm cubes at room temperature by 15% nitric acid. .. 67
Figure 4.4.1: Percent chromium removed from wood chips of various ages over 8 hours ... 72
Figure 4.4.2: Percent copper removed from wood chips of various ages over 8 hours 73
Figure 4.4.3: Percent arsenic removed from wood chips of various ages over 8 hours 73
Figure 4.4.4: Percent of total CCA removed from wood chips of various ages over 8 hours 74
Figure 4.5.1: Chromium loss from new, 33 and 41 year old posts submerged in deionised water over 100 days .. 75
Figure 4.5.2: Copper loss from new, 33 and 41 year old posts submerged in deionised water over 100 days .. 76
Figure 4.5.3: Arsenic loss from new, 33 and 41 year old posts submerged in deionised water over 100 days .. 76
Figure 4.5.4: CCA loss from 11 year old post submerged in water, accelerated by unintentional fungal bioremediation ... 78
Figure 4.6.1: variation of copper, chromium and arsenic with depth in a new post 79
Figure 4.6.2: variation of total CCA with depth in a new post.. 80
Figure 4.7.1: reaction of Chromazurol-S with a freshly treated CCA post 81
Figure 4.7.2: Variation of CCA components with depth in a new post: (a) concentrations of each component (b) % of the minimum CCA content required for H4 classification. 82
Figure 4.7.3: Total CCA concentration in new post compared to the H3 standard 83
Figure 4.7.4: Reaction of 11 year old post with Chromazurol-S (a) above ground segment (b) below ground segment .. 84
Figure 4.7.5: CCA distribution in above ground section of 11 year old post 85
Figure 4.7.6: CCA distribution in below ground section of 11 year old post 86
Figure 4.7.7: Reaction of 33 year old post with Chromazurol-S (a) above ground segment (b) below ground segment .. 88
Figure 4.7.8: CCA distribution in above ground section of 33 year old post 89
Figure 4.7.9: CCA distribution in below ground section of 33 year old post 90
Figure 4.8.1: The radii R1, R2, and R3 which provide three equal volumes 92
Figure 4.8.2: CCA content with depth in a new CCA post .. 94
Figure 4.8.3: CCA content with depth in the above ground segment of an 11 year old CCA post ... 96
Figure 4.8.4: CCA content with depth in the above ground segment of a 14 year old CCA post ... 98
Figure 4.8.5: CCA content with depth in the below ground segment of a 14 year old CCA post ... 100
Figure 4.8.6: CCA content with depth in the above ground segment of a 24 year old CCA post ... 101
Figure 4.8.7: CCA content with depth in the below ground segment of a 24 year old CCA post ... 102
Figure 4.8.8: CCA content with depth in the above ground segment of a 41 year old CCA post ... 105
Figure E.1: Diffusion of water into air from a tank .. 122
Figure E.2: Relevant dimensions of the setup of experiment 3.2 123
Figure F.1: Percent of copper, chromium and arsenic extracted from sawdust in 5% nitric acid at 50°C ... 126
Figure F.2: Percent of total CCA extracted from sawdust in 5% nitric acid at 50°C 127
Figure F.3: Percent of copper, chromium and arsenic extracted from 10mm cubes in 5% nitric acid at 50°C ... 128
Figure F.4: Percent of total CCA extracted from 10mm cubes in 5% nitric acid at 50°C 129
Figure F.5: Percent of copper, chromium and arsenic extracted from 5mm cubes in 10% nitric acid at 50°C ... 130
Figure F.6: Percent of total CCA extracted from 5mm cubes in 10% nitric acid at 50°C ... 131
Figure F.7: Percent of copper, chromium and arsenic extracted from sawdust in 15% nitric acid at 50°C ... 132
Figure F.8: Percent of total CCA extracted from sawdust in 15% nitric acid at 50°C........ 133
Figure F.9: Percent of copper, chromium and arsenic extracted from 10mm cubes in 15% nitric acid at 50°C ... 134
Figure F.10: Percent of total CCA extracted from 10mm cubes in 15% nitric acid at 50°C. 135
Figure F.11: Percent of copper, chromium and arsenic extracted from 5mm wood cubes in 5% nitric acid at 70°C ... 136
Figure F.12: Percent of total CCA extracted from 5mm wood cubes in 5% nitric acid at 70°C. ... 137
Figure F.13: Percent of copper, chromium and arsenic extracted from sawdust in 10% nitric acid at 70°C. ... 138
Figure F.14: Percent of total CCA extracted from sawdust in 10% nitric acid at 70°C 139
Figure F.15: Percent of copper, chromium and arsenic extracted from 5mm cubes in 10% nitric acid at 70°C ... 140
Figure F.16: Percent of total CCA extracted from 5mm cubes in 10% nitric acid at 70°C. 141
Figure F.17: Percent of copper, chromium and arsenic extracted from 5mm cubes in 10% nitric acid at 70°C (repeat). ... 142
Figure F.18: Percent of total CCA extracted from 5mm cubes in 10% nitric acid at 70°C (repeat). ... 143
Figure F.19: Percent of copper, chromium and arsenic extracted from 5mm cubes in 10% nitric acid at 70°C ... 144
Figure F.20: Percent of total CCA extracted from 5mm cubes in 10% nitric acid at 70°C ... 145
Figure F.21: Percent of copper, chromium and arsenic extracted from 10mm cubes in 10% nitric acid at 70°C ... 146
Figure F.22: Percent of total CCA extracted from 10mm cubes in 10% nitric acid at 70°C ... 147
Figure F.23: Percent of copper, chromium and arsenic extracted from 5mm cubes in 15% nitric acid at 70°C ... 148
Figure F.24: Percent of total CCA extracted from 5mm cubes in 15% nitric acid at 70°C ... 149
Figure F.25: Percent of copper, chromium and arsenic extracted from sawdust in 5% nitric acid at 90°C ... 150
Figure F.26: Percent of total CCA extracted from sawdust in 5% nitric acid at 90°C ... 151
Figure F.27: Percent of copper, chromium and arsenic extracted from 10mm wood cubes in 5% nitric acid at 90°C ... 152
Figure F.28: Percent of total CCA extracted from 10mm wood cubes in 5% nitric acid at 90°C ... 153
Figure F.29: Percent of copper, chromium and arsenic extracted from 5mm wood cubes in 10% nitric acid at 90°C ... 154
Figure F.30: Percent of total CCA extracted from 5mm wood cubes in 10% nitric acid at 90°C ... 155
Figure F.31: Percent of copper, chromium and arsenic extracted from sawdust in 15% nitric acid at 90°C ... 156
Figure F.32: Percent of total CCA extracted from sawdust in 15% nitric acid at 90°C ... 157
Figure F.33: Percent of copper, chromium and arsenic extracted from 10mm cubes in 15% nitric acid at 90°C ... 158
Figure F.34: Percent of total CCA extracted from 10mm cubes in 15% nitric acid at 90°C ... 159
Figure G.1: Percentage of copper, chromium and arsenic extracted from new post ... 160
Figure G.2: Percentage of total CCA extracted from new post ... 161
Figure G.3: Percentage of copper, chromium and arsenic extracted from new post (repeat). ... 162
Figure G.4: Percentage of total CCA extracted from new post (repeat). ... 163
Figure G.5: Percentage of copper, chromium and arsenic extracted from above ground portion of 11 year old post ... 164
Figure G.6: Percentage of total CCA extracted from above ground portion of 11 year old post ... 165
List of Figures

Figure G.7: Percentage of copper, chromium and arsenic extracted from below ground portion of 11 year old post. ... 166
Figure G.8: Percentage of total CCA extracted from below ground portion of 11 year old post. ... 167
Figure G.9: Percentage of copper, chromium and arsenic extracted from above ground portion of 17 year old post. ... 168
Figure G.10: Percentage of total CCA extracted from above ground portion of 17 year old post. ... 169
Figure G.11: Percentage of copper, chromium and arsenic extracted from below ground portion of 17 year old post. ... 170
Figure G.12: Percentage of total CCA extracted from below ground portion of 17 year old post. ... 171
Figure G.13: Percentage of copper, chromium and arsenic extracted from above ground portion of 33 year old post. ... 172
Figure G.14: Percentage of total CCA extracted from above ground portion of 33 year old post. ... 173
Figure G.15: Percentage of copper, chromium and arsenic extracted from above ground portion of 33 year old post (repeat). ... 174
Figure G.16: Percentage of total CCA extracted from above ground portion of 33 year old post (repeat). ... 175
Figure G.17: Percentage of copper, chromium and arsenic extracted from ground level portion of 33 year old post. ... 176
Figure G.18: Percentage of total CCA extracted from ground level portion of 33 year old post. ... 177
Figure G.19: Percentage of copper, chromium and arsenic extracted from above ground portion of 41 year old post. ... 178
Figure G.20: Percentage of total CCA extracted from above ground portion of 41 year old post. ... 179
Figure G.21: Percentage of copper, chromium and arsenic extracted from above ground portion of 41 year old post (repeat). ... 180
Figure G.22: Percentage of total CCA extracted from above ground portion of 41 year old post (repeat). ... 181
Figure H.1: Approximation of disposal volume in the years 2020 and 2025, using the predicted disposal requirements from. ... 183
Figure I.1: Pressure vessel used for CCA impregnation ... 188
Figure I.2: Untreated timber ready to be loaded into the pressure vessel ... 189
Figure I.3: Bundles of fully treated CCA wood ... 190
List of Tables

Table 2.1.1: Composition (%) of CCA ... 7
Table 2.1.2: Hazard classes of CCA wood .. 7
Table 3.0.1: Aged CCA posts acquired for experiments 3.4, 3.5, 3.7 and 3.8, sorted by region and age of post ... 23
Table 3.0.2: New CCA posts used ... 23
Table 3.2.1: Experimental schedule for experiment 3.2 27
Table 3.3.1: Experimental setup for experiment 3.3 32
Table 3.4.1: Posts used for experiment 3.4 ... 33
Table 3.4.2: Experimental order for experiment 3.4 34
Table 3.5.1: Posts used in experiment 3.5 ... 38
Table 3.6.1: Posts used in experiment 3.7 .. 42
Table 3.8.1: Details of posts used in experiment 3.8 44
Table 4.2.1: Actual size of 5 and 10mm chips for experiment 4.2 51
Table 4.2.2: Actual size of 5 and 10mm chips for experiment 4.2 52
Table 4.2.3: Size distribution of sawdust used in experiment 4.2 52
Table 4.2.4: CCA extracted from three complete extractions of samples from the new post used in experiment 3.2 ... 52
Table 4.2.5: Cu, Cr, and As detected as remaining in wood after experiment 3.2 60
Table 4.3.1: 1st/2nd order rate coefficients for removal of Cu, Cr and As from sawdust 62
Table 4.3.2: Copper, chromium and arsenic left in CCA sawdust and 10mm cubes soaked in nitric acid at room temperature .. 67
Table 4.4.1: Measured chip dimensions for the posts used in experiment 3.4 69
Table 4.4.2: Total CCA and water content of posts used in experiment 3.4 70
Table 4.4.3: Constants for general 2nd order models to fit all posts 72
Table 4.5.1: % extracted of copper, chromium and arsenic from each 30cm log 75
Table 4.6.1: Average and variation in CCA concentration in the new post 79
Table 4.8.1: Summary of CCA content in new post 93
Table 4.8.2: Summary of CCA content in 11 year old post 95
Table 4.8.3: Summary of CCA content in the above ground portion of 14 year old post 97
Table 4.8.4: Summary of CCA content in the below ground portion of 14 year old post 99
Table 4.8.5: Summary of CCA content in the above ground portion of 24 year old post 103
Table 4.8.6: Summary of CCA content in the below ground portion of 24 year old post 103
Table 4.8.7: Summary of CCA content in the above ground portion of 41 year old post 107
Table C.1: CCA formulations registered in Australia 118
Table C.2: Mass ratios of Cr/As and Cr/Cu for CCA formulations registered in Australia... 119
Table D.1: Equipment Errors.. 121
Table F.1: All experimental runs from experiment 3.2 .. 125
Table F.2: Constants for extraction rate models by least squares fitting of data from sawdust in 5% nitric acid at 50°C... 127
Table F.3: Constants for extraction rate models by least squares fitting of data from 10mm cubes in 5% nitric acid at 50°C... 129
Table F.4: Constants for extraction rate models by least squares fitting of data from 5mm cubes in 10% nitric acid at 50°C... 131
Table F.5: Constants for extraction rate models by least squares fitting of data from sawdust in 15% nitric acid at 50°C... 133
Table F.6: Constants for extraction rate models by least squares fitting of data from 10mm cubes in 15% nitric acid at 50°C... 135
Table F.7: Constants for extraction rate models by least squares fitting of data from 5mm wood cubes in 5% nitric acid at 70°C ... 137
Table F.8: Constants for extraction rate models by least squares fitting of data from sawdust in 10% nitric acid at 70°C... 139
Table F.9 Constants for extraction rate models by least squares fitting of data from 5mm cubes in 10% nitric acid at 70°C... 141
Table F.10 Constants for extraction rate models by least squares fitting of data from 5mm cubes in 10% nitric acid at 70°C (repeat). .. 143
Table F.11 Constants for extraction rate models by least squares fitting of data from 5mm cubes in 10% nitric acid at 70°C... 145
Table F.12: Constants for extraction rate models by least squares fitting of data from 10mm cubes in 10% nitric acid at 70°C... 147
Table F.13: Constants for extraction rate models by least squares fitting of data from 5mm cubes in 15% nitric acid at 70°C... 149
Table F.14: Constants for extraction rate models by least squares fitting of data from sawdust in 5% nitric acid at 90°C... 151
Table F.15: Constants for extraction rate models by least squares fitting of data from 10mm wood cubes in 5% nitric acid at 90°C ... 153
Table F.16: Constants for extraction rate models by least squares fitting of data from 5mm wood cubes in 10% nitric acid at 90°C... 155
Table F.17: Constants for extraction rate models by least squares fitting of data from sawdust in 5% nitric acid at 90°C... 157
Table F.18: Constants for extraction rate models by least squares fitting of data from 10mm cubes in 5% nitric acid at 90°C... 159
Table G.1: Constants for extraction rate models fit to data from new post 161
Table G.2: Total CCA remaining in CCA chips in new post 161
Table G.3: Constants for extraction rate models fit to data from new post (repeat) 163
Table G.4: Total CCA remaining in CCA chips in new post (repeat) 163
Table G.5: Constants for extraction rate models fit to data for below ground portion of 11 year old post ... 165
Table G.6: Total CCA remaining in CCA chips for below ground portion of 11 year old post ... 165
Table G.7: Constants for extraction rate models fit to data for below ground portion of 11 year old post ... 167
Table G.8: Total CCA remaining in CCA chips for below ground portion of 11 year old post ... 167
Table G.9: Constants for extraction rate models fit to data for above ground portion of 17 year old post ... 169
Table G.10: Total CCA remaining in CCA chips for above ground portion of 17 year old post ... 169
Table G.11: Constants for extraction rate models fit to data for below ground portion of 17 year old post ... 171
Table G.12: Total CCA remaining in CCA chips for below ground portion of 17 year old post ... 171
Table G.13: Constants for extraction rate models fit to data for above ground portion of 33 year old post ... 173
Table G.14: Total CCA remaining in CCA chips for above ground portion of 33 year old post ... 173
Table G.15: Constants for extraction rate models fit to data for above ground portion of 33 year old post (repeat) ... 175
Table G.16: Total CCA remaining in CCA chips for above ground portion of 33 year old post (repeat) ... 175
Table G.17: Constants for extraction rate models fit to data for ground level portion of 33 year old post ... 177
Table G.18: Total CCA remaining in CCA chips for ground level portion of 33 year old post ... 177
Table G.19: Constants for extraction rate models fit to data for above ground portion of 41 year old post ... 179
Table G.20: Total CCA remaining in CCA chips for above ground portion of 41 year old post ... 179
Table G.21: Constants for extraction rate models fit to data for above ground portion of 41 year old post (repeat) ... 181
Table G.22: Total CCA remaining in CCA chips for above ground portion of 41 year old post (repeat). ... 181
Acknowledgements

I am indebted to many people for vital support and advice through the course of this study. First and foremost, my principal supervisor associate professor Brian O’Neill for his patience and advice, both personal and professional. Without his assistance I would never have been able to complete this study. Further, I wish to thank my initial supervisor Dr Chris Colby. Brian and Chris made me aware of the CCA problem and gave me the freedom to approach it how I saw fit.

The support staff in the School of Chemical Engineering have also been amazing in the help they provided me. Laboratory managers Andrew Wright and Leanne Biddis were fantastic in their support and advice, giving me the time and space needed to run my various experiments. The Chemical Engineering workshop employees Jason Peak, Michael Jung and Jeffrey Hiorns who helped with construction of my experimental rig and access to all their wood cutting equipment. I want to especially thank Jeffrey for patiently cutting up thousands of tiny wood cubes for my experiments. Finally, the school secretaries, Mary Barrow and Elaine Minerds, whose help in administration have been vital in my time here.

I wish to thank Associate Professor Peter Ashman from the School of Chemical Engineering for access to his grinding equipment, despite me not being one of his students.

The School of Chemistry and Physics was fantastic in the support and advice they gave me, despite not being one of their students. Gino Ferese gave me time to use their fume cupboards, despite me accidentally flooding the lab, and Hugh Harris gave me excellent advice and time when I was attempting to gain access to the Australian Synchrotron.

Dr Benjamin Wade and Mr Angus Netting from Adelaide Microscopy were vital in their advice and assistance in preparation and analysis of all my samples.

Industry advice from Dr Harry Greaves, Mr Chris Titilaris and Mr John Blumson were crucial in my understanding of the nature of CCA wood treatment and disposal.

I wish to of course thank my family and friends, whose support and advice have kept me going. Their encouragement was vital.

And finally, I am most indebted to the personal support of my amazing wife, Helena Wood. She is the most important person in my life.
Abstract

Treated timber is a widely used construction material, as it is resistant to insect and fungal attack. The most commonly used timber treatment solution worldwide is copper chromium arsenate (CCA) pressure treated wood (APVMA 2005a). Environmental and health issues have been raised over CCA wood, with major particular concern raised on the possibilities of arsenic in the wood potentially leaching out. The Australian Pesticides and Veterinary Medicines Authority (APVMA) have limited its usage to minimise human contact with CCA structures (APVMA 2005a). In South Australia, CCA applications increased dramatically with the expansion of the winery industry where CCA treated timber posts were widely used for vineyard trellises. Due to the mechanical method by which most grapes are harvested, roughly 2% of all posts are broken and require disposal annually (SAEPA 2008). The Environmental Protection Agency of South Australia (EPASA) have placed restrictions on CCA disposal from vineyards (SAEPA 2004) and waste CCA stock is either stockpiled or sent to specially lined landfills incurring an estimated cost penalty of over $AU 200 per tonne\(^1\). Clearly, improved CCA treatment technologies must be developed to reduce (or eliminate) the cost of CCA disposal and to the footprint of land filled waste.

CCA timber disposal techniques currently being researched are focussed primarily on thermal and biological routes. Thermal techniques are problematic due to volatilization of the arsenic in the product, whilst biological removal techniques are very slow. Chemical remediation is an alternative and attractive disposal technique of interest using various acids to extract copper, chromium and arsenic. Nitric acid has been shown to be particularly effective (Honda, Kanjo et al. 1991), although research has been limited. Nitric acid is also used in one method of paper pulp production, and as such, there is the potential for a combined CCA extraction and paper pulp process. This has the attraction of turning a waste in a value added product.

The kinetics of copper, chromium and arsenic dissolution in nitric acid has been examined in this thesis. A key finding of the work identifies the size of CCA wood particles as the dominant factor affecting the extraction rate, whilst temperature and acid concentration only provide a minor effect. The extraction rate for all elements from CCA wood using nitric acid generally follow 2\(^{nd}\) order kinetics. Concurrently, a study examining wood chips of various ages taken from vineyards was performed using chip sizes typical required for paper production. It was found that despite significant variations in the concentration profile of CCA in posts, a general model based on the fraction of each element

\(^1\)Personal communication with John Blumson, Zero Waste South Australia, 22/7/08
could be created for posts of all ages. Over an 8 hour period, 65-80% of chromium, 50-70% of copper and 75-90% of arsenic was extracted from all posts.

Given the excellent extraction observed under relatively simple nitric acid extraction, further studies on the applicability of nitric pulping for CCA remediation are recommended. Minimizing chip size subject to fibre size constraints in paper production is key to improved removal and additional means for enhancing chip surface area are identified. Other stages present in paper pulping process may solublize additional CCA and these warrant further investigation. A basic economic estimation was undertaken, where it was found that creating paper pulp from CCA wood could be economically feasible, but will require further research to determine the expected costs and revenues involved.

The nature of the CCA wood waste was investigated. The expectation was that CCA posts would contain relatively consistent concentration profiles for copper, chromium and arsenic. However, it was observed that the concentrations were quite varied. Further, several posts produced during the wine boom in South Australia were very poorly treated with very poor penetration of the preservatives into the posts. This could result in a reduced lifetime for the posts, and potentially higher arsenic leaching than expected. It is also recommended that the frequency of these poorly treated posts be determined, as three of the six posts examined from this period were potentially poorly treated, implying it may be significant and unexpected problem. In addition, a study should be initiated to determine if these poorly treated posts are leaching higher levels of arsenic, by both a study of the surrounding soil and a simulated rainfall leaching experiment.

Based on the concern that more arsenic leached from pieces of CCA post left in deionised water than expected, an experiment on posts of various ages revealed that over a 100 day period, 1.5-3g of elemental arsenic could leach from a submerged CCA treated post. There is a serious concern that with CCA posts being landfilled, they will be exposed to water contact over the wet months, resulting in high arsenic leaching. It is theorised that this high arsenic leaching is due to insufficient chromium in the CCA solution. Previous studies have recommended higher chromium to arsenic ratios than are currently employed in Australia. Further studies on the extent to which this leaching can occur in landfill are recommended.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Connell Wood and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed..

date____________________________