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Abstract

In this thesis we prove a Tannaka duality theorem for (oo, 1)-categories. Classical Tannaka duality
is a duality between certain groups and certain monoidal categories endowed with particular structure.
Higher Tannaka duality refers to a duality between certain derived group stacks and certain monoidal
(00, 1)-categories endowed with particular structure. This higher duality theorem is defined over derived
rings and subsumes the classical statement. We compare the higher Tannaka duality to the classical
theory and pay particular attention to higher Tannaka duality over fields. In the later case this theory
has a close relationship with the theory of schematic homotopy types of Toén. We also describe three
applications of our theory: perfect complexes and that of both motives and its non-commutative analogue
due to Kontsevich.



Résumé

Dans cette these, nous prouvons un théoréme de dualité de Tannaka pour les (oo, 1)-catégories. La
dualité classique de Tannaka est une dualité entre certains groupes et catégories monoidales munies d’une
structure particuliere. La dualité de Tannaka supérieure renvoie, elle, a une dualité entre certains champs
en groupes dérivés et certaines (0o, 1)-catégories monoidales munies d’une structure particuliere. Cette
dualité supérieure est définie sur les anneaux dérivés et englobe la théorie de dualité classique.

D’un c6té, la correspondance de la dualité supérieure décrit les catégories monoidales symétriques
supérieures. Nous présentons ici la théorie générale des (oo, n)-catégories O-monoidales qui contient les
cas monoidale et monoidale symétrique. Les travaux de Toén et Vezzosi et ceux de Lurie présentent des
notions correspondantes de (oo, 1)-catégories cofibrées, des objets O-monoides et des objets O-modules
dans une oco-catégorie O-monoidale. Nous les étendons aux cas des (0o, n)-catégories et nous rappelons le
prolongement naturel des catégories abéliennes (resp. des anneaux commutatifs) au domaine des (oo, 1)-
catégories sous la forme des (0o, 1)-catégories stables (resp. des Fo-anneaux). On construit alors la
(00, 2)-catégorie large ambiante dans laquelle le théoréme de Tannaka ici prouvé sera vérifié : il s’agit de
I’(00, 2)-catégorie des (0o, 1)-catégories monoidales symétriques, R-linéaires, présentables et stables.

D’un autre coté, cette dualité décrit les champs en groupes dérivés, ou, plus généralement, les gerbes
dérivées. Nous introduisons et étudions ces objets avec un intérét particulier porté aux sites de R-
algebres, ou R est un F..-anneau, dotées de topologies positives, plates et finies. Ceci conduit a une
discussion sur les t-structures d’une (oo, 1)-catégorie stable. Nous commencons alors I’étude du théoréme
de dualité en introduisant les (0o, 1)-catégories rigides, les R-algebres de Hopf et le champ de foncteurs
fibres. Le théoreme de dualité est prouvé dans trois cas distincts, s’appliquant & des topologies différentes.
Dans chacun de ces cas, la preuve repose sur une conjecture concernant les endomorphismes lax sur la
(00, 1)-catégorie des R-modules et des R-algebres.

Nous comparons la dualité de Tannaka supérieure a la théorie de dualité de Tannaka classique et
portons une attention particuliere a la dualité de Tannaka sur les corps. Dans ce dernier cas, cette
théorie a une relation étroite avec la théorie des types d’homotopie schématique de Toén. Nous décrivons
également trois applications de la théorie : les complexes parfaits, les motifs et leur analogue non-
commutatif di a Kontsevich.



Acknowledgements

Firstly, I would like to thank Mathai Varghese and Michael Murray for accepting me as their student
at Adelaide. It was Mathai who first suggested I look at the classical Tannaka duality as a stepping stone
to my interest in understanding the geometric Langlands program. I thank him for these comments and
allowing me the freedom to uncover my own research topic. The first main paper I read on the subject
of Tannaka duality was Lawrence Breen’s beautifully written article in the motives proceedings. It is an
honor to thank Lawrence for accepting to be part of this jury. The impetus for this thesis came about in
around September 2007 after reading Bertrand Toén’s habilitation memoir. This memoir has remained
a source of inspiration throughout the duration of the project. It was Bertrand’s memoir together with
Jacob Lurie’s work in the early DAG volumes that inspired me to think that a Tannaka duality theorem
for infinity-categories could now be realisable. Thus it is a great pleasure to thank Jacob for accepting to
be a reporter for my thesis. His insights into the theory of derived algebraic geometry are clear throughout
this text.

My sincere gratitude goes to Carlos Simpson. His work on higher category theory has greatly influ-
enced my work and so it was a great pleasure to know that he would be both a reporter and part of
this jury. I would like to thank Ross Street and Dominic Verity for their support. My visit to Maquarie
before moving to Toulouse was extremely valuable and rewarding. In Sydney and Adelaide I would es-
pecially like to thank Mark Weber, Craig Wegener and Tony Nesci. Upon arriving in Toulouse 1 was
warmly welcomed by Michel Vaquié and Joseph Tapia. I would like to thank Michel and to Joseph and
Denis-Charles Cisinki for accepting to be part of the jury. In Toulouse I would also like to thank my
fellow students Chloé Grégoire, Thomas Gauthier and Alexandre Dezotti.

A large part of this thesis was written up at IHES. I wish to thank them for financal support. 1
would like to thank the University of Adelaide for financial support through a divisional scholarship, the
department of mathematics at the University of Adelaide and the Emile Picard lab in Toulouse for travel
support and greatfully acknowledge ANR grant HODAG for travel support.

Finally, and most importantly, I would like to thank Bertand Toén. This project has only come into
fruition due to his mathematical insights, generocity and friendship.

93: Shining: V (Halmstad), VI (Klagopsalmer) and VII (F6dd forlorare).



... To my father.



This work contains, to the best of my knowledge and belief, no material previously published or writ-
ten by another person, except where due reference has been made in the text. I give consent to this copy
of my thesis, when deposited in the University Library, being made available for loan and photocopying,
subject to the provisions of the Copyright Act 1968. I also give permission for the digital version of
my thesis to be made available on the web, via the University’s digital research repository, the Library
catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless
permission has been granted by the University to restrict access for a period of time.

James Wallbridge
Toulouse 21/07/2011



Contents

1

Introduction
1.1 Notation . . . . . . . . e

Higher category theory

2.1 (oco,m)-categories . . . . ..o
2.2 From model categories to (co,n)-categories . . . . .. . ...
2.3 Adjoints, limits and colimits . . . . . . .. ... oL
Monoidal structures

3.1 Monoidal (0o, n)-categories . . . . . . ...
3.2 Modules and comodules . . . . ...
3.3 Stable co-categories . . . . ...
3.4 Commutative ring spectra . . . . . . . . . . e
3.5 t-structures . ... L e
3.6 Linear and R-tensor co-categories . . . . . . . . . . . ... L e

Stacks, gerbes and topologies

4.1 Stacks . ...
4.2 Gerbes . . . . . e
4.3 The positive, flat and finite topologies . . . . . . . . . ... Lo
Tannaka duality for oco-categories

5.1 Rigid co-categories . . . . . . ... e e
5.2 Hopfalgebras . . . . . . . .
5.3 Neutralized Tannaka duality for co-categories . . . . . . . .. ... ... ... ... ....
5.4 Proof of the neutralized theorem . . . . . . . ... ... ... L o o
5.5 Neutral Tannaka duality for co-categories . . . . . . . . . . .. ... ... ... ......
5.6 Comparison with the classical theory . . . . . . . .. ... ... o oL
5.7 Tannakian oco-categories over fields . . . . . . . . . . ...
Applications

6.1 Perfect complexes and schematization . . . . . . . .. ... ... .. ... ... .....
6.2 Motives and non-commutative motives . . . . . .. ... oL Lo
Appendix

7.1 Enriched monoidal model categories . . . . . . . ... oL o
7.2 Adjunction data in an (00, 2)-category . . . ... ...
Notation index . . . . . . . . . oL e e

15
18

21
21
29
34

41
42
50
95
99
61
64

71
71
78
80

83
84
87
90
94
97
99
100

103
103
104



HIGHER TANNAKA DUALITY 15

1 Introduction

Classical Tannaka duality is a duality between certain groups and certain monoidal categories endowed
with particular structure. Higher Tannaka duality refers to a duality between certain group stacks and
certain monoidal co-categories endowed with particular structure. This duality theorem subsumes the
classical case. Our starting point is the philosophy developed by Grothendieck which is to consider the
fundamental groupoids (ie. 1l-truncated homotopy types) arising in a given context as automorphism
groupoids of certain “fiber” functors.

This philosophy began with Grothendieck’s study of Galois theory axiomatically using purely cate-
gorical methods [SGA]. He introduced the notion of a Galois category, that is, a category C' satisfying
conditions that imply that it is equivalent to the category of representations of a profinite group, together
with a “fiber functor” w from this category to the category of finite sets. More precisely, let (C,w) be a
Galois category and define the fundamental group of C' at the base point w to be

71 (C,w) := Aut(w).
Then 71 (C,w) is a profinite group and the functor
C — 7m(C,w)-FSet

is an equivalence of categories where FSet is the category of finite sets. This is the Galois duality
statement. By looking at the problem categorically Grothendieck was able to transfer the study of 1-
truncated homotopy types to contexts where such a notion was previously difficult to define. In this way
he defined a new topological invariant - the étale fundamental group.

An analogous notion in the case of compact topological groups was initiated much earlier by Tannaka
[Ta] who showed that a compact group can be reconstructed from its category of representations. The
group arises as the group of tensor preserving automorphisms of the forgetful fiber functor from the
category of representations to its underlying category of vector spaces. In [Kr], Krein characterised those
categories of the form Rep(G) which arise in this way.

The passage from Galois theory to Tannaka theory is the linearization process of replacing sets by
vector spaces. Following the Galois philosophy of Grothendieck above, Saavedra developed a Tannaka
duality theory for affine group schemes where the abstract category dual is termed a neutralized Tan-
nakian category [Sa]. The neutralized Tannaka duality statement is then that the automorphism group
of fiber functors is an affine group scheme and the Tannakian category is equivalent to the category of
representations of this affine group scheme. More precisely, let k be a field. Then

Rep, : AffGp;” — (Tany).

is an equivalence of categories where (Tany), is the category of pairs (T,w) where T is a k-Tannakian
category and w is a fiber functor. The category AffGp, on the right hand side is the category of affine
k-group schemes. Let (T,w) be a neutralized Tannakian category and define the algebraic fundamental
group of T" at the base point w to be

71 (T, w)™ = Aut®(w).
Then 7 (T,w)*9 is an affine group scheme and the functor
T — Rep(n(T,w)""?)

is an equivalence of categories. These affine group schemes are considered as algebraic versions of 1-
truncated homotopy types and lead to Deligne’s definition of the algebraic fundamental group [D2].
More generally, Saavedra wrote a non-neutral Tannaka statement which characterises those categories
T which are equivalent to the category of representations of the stack Fib(T') of fiber functors on T'. In
[D2], Deligne completed the proof that this stack is an affine gerbe (in the ffqe topology). More precisely
they showed that
Rep : Ger/79¢(k)°P — Tany,
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is an equivalence of categories where Tany, is the category of k-Tannakian categories and Ger!/ °(k) is
the category of affine gerbes over Spec(k) in the fiqc topology. When Fib(T) is the neutral gerbe of
G-torsors, for G an affine group scheme, we recover the neutral Tannaka statement. In [D2] the author
also includes an internal characterisation of Tannakian categories (ie. without the extra data of a fiber
functor) in characteristic 0. In [DR1], Doplicher and Roberts give an internal characterisation of the
categories arising as the dual of a compact group. As a result they were able to deduce the existence
of the compact gauge groups arising in quantum field theory by starting with a category satifying some
physically motivated simple properties [DR2].

In order to study higher homotopy types it is necessary to move to a higher categorical generalisation
of the above ideas. Work in this direction began in [T1] by Toén. It involves the use of oo-categorical
techniques recently developed in work by Joyal [Jo] and Lurie [Lu] and in the theory of “derived algebraic
geometry” by Lurie [LI, LII, LIII] and Toén and Vezzosi [TVI, TVII]. Informally, the passage from
categories to oco-categories involves replacing the category of sets by the oco-category of spaces (topological
spaces, Kan complexes or one such equivalent model). Indeed, one possible (although not so convenient)
model for an oco-category is a simplical category. This forces generalisations of other familiar categorical
concepts. The category of abelian groups is replaced by the co-category of spectra, an abelian category
is replaced by a stable oo-category, commutative rings are replaced by commutative ring spectra (called
E-rings) and a rigid category is replaced by a rigid co-category. More examples are discussed througout
the text.

In the spirit of the above, we prove the following pointed or neutralized Tannaka duality statement
for co-categories.

Theorem 1.0.1 (Neutralized co-Tannaka duality: see Theorem 5.3.13). Let 7 be a subcanonical topology.
Then the map

Perf, : TGp™(R)*P — (Tensp?).
18 fully faithful. Moreover, the adjunction Fib, - Perf, induces the following:

1. Let R be an Ex-ring. Then (T,w) is a pointed finite R-Tannakian co-category if and only if it is
of the form Perf,(G) for G a finite R-Tannakian group stack.

2. Let R be a connective Eo-ring. Then (T,w) is a pointed flat R-Tannakian oo-category if it is of
the form Perf,(G) for G a flat R-Tannakian group stack.

3. Let R is a bounded connective Eo,-ring. Then (T,w) is a pointed positive R-Tannakian co-category
if it is of the form Perf,(G) for G a positive R-Tannakian group stack.

The category TGp™ (R) is the co-category of R-Tannakian group stacks. These are affine group stacks
which are weakly rigid in an appropriate sense. The category (Tens%i,/g),k is the oo-category of pointed
rigid R-tensor co-categories. The objects in this category are rigid stable R-linear symmetric monoidal
oo-categories together with an exact R-linear symmetric monoidal functor to the oco-category of rigid
R-modules.

We will introduce three topologies on the co-category of R-algebras for an F.-ring R called the finite,
flat and positive topologies (denoted by fin, fl and > 0 respectively). A rigid R-tensor oo-category will
be called pointed Tannakian with respect to one of these topologies if it is equipped with a fiber functor
satisfying certain properties that reflect this topology (see Definition 5.3.10). A A-R-Tannakian group
stack for A € {fin, fl,> 0} is an R-Tannakian group stack such that its associated Hopf R-algebra reflects
the topology A (see Definition 5.3.12). A key step in the proof of the theorem is Conjecture 3.6.10. This
enables us to identify the co-category of lax monoidal endofunctors on Modpg in a suitable (oo, 2)-category
with the co-category of R-algebras.

Let (T,w) be a pointed A-R-Tannakian oco-category and define the algebraic homotopy type of T at
the base point w to be

(T, w)™9 = Aut®(w).
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Then 7(T,w)™ is a A-R-Tannakian group stack and the functor
T — Rep(n(T,w)™9)

is an equivalence of oo-categories.
We also have the more general neutral Tannaka duality statement for oo-categories.

Theorem 1.0.2 (Neutral oo-Tannaka duality: see Theorem 5.5.3). The adjunction Fib - Perf induces
the following:

1. Let R be an Ey-ring. Then T is a finite R-Tannakian oo-category if and only if it is of the form
Perf(G) for G a neutral finite R-Tannakian gerbe.

2. Let R be a connective Ey-ring. Then T is a flat R-Tannakian oo-category if it is of the form
Perf(G) for G a neutral flat R-Tannakian gerbe.

3. Let R be a bounded connective Eoo-ring. If (T,w1) and (T,ws) are two pointed positive R-Tannakian
oco-categories then there exists a positive cover R — @ such that

w1 ®r Q — w2 QR Q
18 an equivalence.

An oco-category is R-Tannakian with respect to a topology A € {fin, fI,> 0} if it is a rigid R-tensor
oo-category such there exists a fiber functor with respect to A (see Definition 5.5.1). A A-Tannakian gerbe
is a stack on the site of R-algebras with respect to A which is locally equivalent to the classifying stack of
a A-R-Tannakian group stack. It is said to be a neutral if there exists a global point (see Definition 5.5.2).
Since the positive topology is not subcanonical we rest with the weaker statement of (3). There may also
exist a reasonable notion of non-neutral co-Tannaka duality where the duality holds over an extension of
the base F..-ring but we will not consider this more general case here.

Overview

We include here a brief overview of the contents in this paper. See the beginning of each chapter for a
more detailed account of the results in each section. In Chapter 2 we begin by recalling the basic theory of
higher categories which for us will be that of (0o, n)-categories. Due to the foundational work of Simpson
and Hirschowitz in [HS], there exists a Quillen model structure on the category of (co,n)-precategories
which is cartesian closed. The existence of this model structure facilitates the study of all the standard
categorical notions as applied to (oo, n)-categories such as the theory of Kan extensions, limits and
colimits. We also discuss the Quillen equivalence between the model category of (oo, n)-precategories and
the model category of categories enriched over (oo, n — 1)-categories. This again simplifies certain higher
categorical constructions by allowing us to choose strict models. There exits a dictionary between model
categories and (oo, n)-categories obtained using the notion of localisation. We provide some localisation
results in the context of (0o, n)-categories.

One side of the higher Tannaka duality describes particular symmetric monoidal (oo, 1)-categories.
In Chapter 3 we introduce the general theory of O-monoidal (co,n)-categories which includes both the
monoidal and symmetric monoidal cases. A key theorem, due to Toén and Vezzosi in [TV3], is an
equivalence between O-monoidal (0o, n)-categories considered either as a functor from O or as a cofibered
(00, n)-category over O. We have corresponding notions of O-monoid objects, O-module objects and
algebra objects in an O-monoidal (0o, n)-category building on work of Lurie in [LII, LIII]. We recall
the natural extensions of abelian categories and commutative rings to the (oo, 1)-categorical realm in
the form of stable co-categories and Eoo-rings. We also consider t-structures on an (oo, 1)-category.
We then construct the large ambient (0o, 2)-category where our Tannaka duality theorem will live: the
(00, 2)-category of stable, presentable R-linear symmetric monoidal (oo, 1)-categories.
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The other side of the higher Tannaka duality describes derived group stacks, or more generally, derived
gerbes. In Chapter 4 we introduce and study these objects with particular interest to those on the sites
of R-algebras, for R an E.-ring, endowed with positive, flat and finite topologies (Definition 4.3).

We then embark on the study of the duality theorem itself in Chapter 5 by introducing rigid (oo, 1)-
categories (Definition 5.1.1), Hopf R-algebras (Definition 5.2.1) and the stack of fiber functors. The
duality theorem is proven in three cases depending on the chosen topology. In all three cases the proof
relies on a conjecture relating lax endomorphisms on the co-category of R-modules and R-algebras (see
Section 3.6). We compare the higher Tannaka duality to the classical theory and pay particular attention
to higher Tannaka duality over fields. In the later case this theory has a close relationship with the theory
of schematic homotopy types of Toén [T2].

The classical Tannaka duality theory has had a large impact on the mathematical landscape since the
pioneering paper [Ta] of Tannaka. Applications include differential Galois theory, Langlands duality, the
theory of Picard-Vessiot, Hodge theory, quantum field theory and the theory of motives. We discuss two
examples in the oco-categorical context in Section 6 of this paper: perfect complexes and and that of both
motives and its non-commutative analogue due to Kontsevich.

Relations to other work

The first article which discusses a theory of higher Tannaka duality is the paper [T1] by Toén. Here,
the theory is motivated and many of the key ingredients are introduced. Several conjectures are then
made. These ideas are then refined and the conjectures stated clearly in the authors influential habilitation
memoir [T6]. Tannakian oco-categories over fields are also discussed in loc. cit. and the present paper
can be seen as one approach to answering the conjectures posed in this paper. In order for our proofs to
be realised, we rely much on the foundational work on co-categories developed in [LI], [LII] and [LIII] by
Lurie. We also mention the references [FI] and the very recent [LVIII] for other approaches to derived
Tannaka duality.

1.1 Notation

We will assume basic familiarity with the theory of categories, enriched categories and model categories
at the level of [MaC], [Ke] and [Ho] respectively. However, for the benefit of the reader, we include in the
appendix a handful of results in the theory of enriched model categories referenced throughout the text.
It follows from the axioms of a model category that the class of weak equivalences (#') together with
the class of cofibrations (%) (resp. fibrations (%)) determine the class of fibrations (resp. cofibrations)
through a lifting property. Thus, when describing model structures in this paper we merely state one of
the two classes (%) or (%). The initial object in an arbitrary category will be denoted () and the final
object by .

Given categories C' and D, an adjunction F' 4 G between C' and D will be often denoted F': C = D :
G. Given a diagram

cLEe&D
in the category Cat of categories, recall that the comma category (F' | G) has as objects triples (c,d, f)
where ¢ € Ob(C), d € Ob(D) and f : Fc — Gd and as arrows (¢,d, f) — (¢, d’, f') pairs (h, k) where
h:c—c and k:d — d' such that f’' o Fh = Gko f. We will denote the overcategory (id | e) by E.,
and the undercategory (e | id) by E/..
The common indexing categories used throughout the paper are as follows.

e Let A denote the category of non-empty finite ordinals and order preserving maps. This is equivalent
to the category non-empty linearly ordered finite sets. We denote the ordinal n + 1 = {0, ...,n} by
[n]. An arrow f: [n] — [m] in A is said to be inert if it induces an isomorphism between [n] and a
convex subset of [m)].

e Let A, denote the category of (possibly empty) finite ordinals and order preserving maps. This is
equivalent to the category of linearly ordered finite sets. We denote the ordinal n by [n — 1] so that
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the empty ordinal 0 = @) is given by [—1]. The category A, is a monoidal category with monoidal
structure (A4, &, [—1])

e Let I' denote the category of pointed finite ordinals and point preserving maps. This is equivalent
to the category of all linearly ordered finite sets with a distinguished point *. We denote the
pointed ordinal n [[{*} by [n]. The category I' is a monoidal category with monoidal structure
(T, V,[0]). An arrow f : [n] — [m] in T is said to be inert (resp. semi-inert) if f=1{j} = {i} (resp.
FH4} €{0,{i}}) for all j € [m]—x. It is said to be null if f(i) = * for all i € (n). It is said to be
active if f~1{x} = {x}. Every arrow f in I' admits a factorisation f = f” o f’ by an inert arrow f’
followed by an active arrow f”. This factorisation is unique up to (unique) isomorphism.

Let .4 be a cartesian closed model category and x and y two objects of .#. Then the internal Hom
object Hom(z, y) in h.# will be denoted by RHom(z, y). An explicit model for RHom(z, y) will depend on
the context. For example, when all objects are cofibrant and the first variable is relatively simple, we will
commonly define RHom(x,y) := Hom(z, Ry) where R is a fibrant replacement for y. Alternatively, the
identification RHom(x, y) := Hom(Rz, Ry) will be used when it is more practical to have a composition
that is functorial.

Let C be an oco-category. The oco-category RHom (AP, C) of simplicial objects in C' will be denoted
sC. The oco-category RHom(A, C) of augmented simplicial objects in C' will be denoted s;C. Similarly,
we have the co-category of cosimplicial and augmented cosimplicial objects in C, denoted ¢C' and ¢ C
respectively, given by replacing A°? by A and A% by A,. For convenience, the category sSet of simplicial
sets will be denoted simply S.

An (00, n)-category is said to be small if the collection of objects form a set. Unless otherwise stated,
we will neglect any kind of set theoretic issues and assume that our (oo, n)-categories are small when
required.
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2 Higher category theory

Let m < n be a pair of non-negative integers which may also include oco. An (n,m)-category is an
n-category in which all k-morphisms are invertible for m < k < n. In this paper we will be primarily
concerned with the case where n = co and m € {0,1,2}. However it is instructive to see, and in our
case 1o less difficult to define, the general theory of (0o, n)-categories for arbitrary n. In Section 2.1
we introduce the theory of (oo, n)-categories. There are several different approaches to defining (oo, n)-
categories (see the review article [Le] for a summary together with the more recent [Re]). Instead of seeing
this as a burdon, we consider it a blessing since knowing that certain models are equivalent enables us
to move between one model or another depending on the given context or calculation. The nature of
the equivalence is a Quillen equivalence between certain model categories of (co,n)-categories: we take
the point of view that we are ultimately interested in the objects of the homotopy category. We will
concentrate on two models which are known to be Quillen equivalent:

PC(‘Kat(Oom_l)) = Cat(‘éat(oom_l))

where €at(o n—1) is a suitable model category of (co,n — 1)-categories. The category on the left-hand
side is the category of €at . ,—1)-precategories and will play the principal role for our model category of
(00, n)-categories. The category on the right-hand side is the category of € at (o ,,—1)-enriched categories
and is often useful when one would like to choose a strict model. To simplify notation, we make the now
common abuse of calling an (oo, 1)-category simply an co-category.

Model categories provide a very powerful tool for proving results in the theory of (oo, n)-categories.
Apart from being the natural setting to undertake comparison results as mentioned above, model cat-
egories themselves can be used to model (0o, n)-categories. In Section 2.2 we describe the construction
taking a model category to an (0o, n)-category called localisation. In fact any (oo, n)-category which is pre-
sentable in an appropriately defined sense is equivalent to the localisation of a combinatorial €’ at (o r—1)-
enriched model category. See Proposition 2.3.20 for a precise statement in the oco-categorical context.
Moreover, by Proposition 2.2.13, any (oo, n)-category can be fully embedded into the localisation of a
model category. This union between model categories and (0o, n)-categories is exploited to its full extent
in Proposition 2.2.11 where we prove the (0o, n)-categorical Yoneda lemma.

In Section 2.3 we discuss adjoints in an (0o, n)-category and review the main results concerning limits
and colimits in an oco-category. These simpler limits and colimits are sufficient for the constructions in
this paper. In particular, we discuss the important notion of co-category of ind-objects in an co-category.
If C' is an oco-category then the oco-category of prestacks on C' is freely generated under small colimits
by the image of the Yoneda embedding. The oo-category of ind-objects of C' is then the smallest full
subcategory of this co-category of prestacks which contains the image of the Yoneda embedding and is
stable under x-filtered colimits. Thus it is freely generated under x-filtered colimits by C'. We then recall
the adjoint funtor theorem (Proposition 2.3.21) for co-categories.

2.1 (oo,n)-categories

An (oo,n)-category is an oo-category where all k-morphisms are invertible for k& > n. The simplest
way to formulate a definition of (oo, n)-category is by induction: one defines an (oo, n)-category as a
category enriched over (co,n — 1)-categories. Thus we begin by defining a convenient notion of (oo, 0)-
category. This will play a similar role in the theory of (0o, n)-categories as that of a set, in our notation
a (0,0)-category, in the theory of categories: every category is naturally enriched over the category Set
of sets.

Recall that a map of simplicial sets A — B is said to be a Kan fibration if it has the right lifting
property with respect to all horn inclusions A? < A” for 0 < ¢ < n. A simplicial set A is said to be a
Kan complex if A — = is a Kan fibration.

Definition 2.1.1. An (00, 0)-category is a Kan complex.
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There exists a model category structure on the category S of simplicial sets due to Quillen which we
will call the Kan model structure, denoted S, whose fibrant objects are precisely the Kan complexes
[GJ]. The geometric realisation and singular complex functors define a Quillen equivalence

|e|:S = Top : Sing

where Top is the category of topological spaces with the usual model structure. Thus one can equally

think of an (oo, 0)-category as a topological space. We could now define an (0o, 1)-category as a Kan
enriched category. That is, as a fibrant object in a certain model category Cat(S ) of categories enriched
over the model category of simplicial sets with the Kan model structure. Although this definition leads
to a reasonable definition of (oo, 1)-category it suffers from a serious drawback: the model structure on
S_~-enriched categories is not internal, ie. there does not exist a reasonable notion of an S _-enriched
category of functors between two S _-enriched categories. This is analogous to the theory of model
categories itself not being an internal theory. A solution to this problem is to work in a more general
setting where composition in the definition of an S -enriched category is only defined up to equivalence.
This leads to the definition of a Segal category. More generally, we can define the notion of a weak
M -category for .4 an arbitrary model category.

Notation 2.1.2. Let S be a set. We denote by Ag the category consisting of:

e An object of Ag is a pair ([n],¢) where [n] € A and ¢: [n] — S is an arbitrary map taking values
in the set S. These objects will be written as strings of elements (zg = ¢(0), ..., z, = ¢(n)) of S.

e Let ([n],c) and ([m],d) be two objects of Ag. An arrow from ([n], c) to ([m],d) is an element of the
set As(([n],), ([m], d)) = {u € A([n], [m]) : e = do u}.

Definition 2.1.3. Let .# be a model category. An . -precategory is a pair (S, A) where S is a set of
objects and

AN — A
is a functor such that A(x) is a final object of .# for all x € S.

A map (S, A) — (T, B) of .#-precategories is a pair (f, F)) where f : S — T is a map of sets and
F: A= Bo(f.):AY — # is a natural transformation where f, : AY — A7’ denotes the natural
map. Let PC(.#) denote the category of .#-precategories.

We will commonly abuse notation by referring to an .#-precategory (S, A) as simply A and a map
(o, F) : (S,A) — (T,B) as simply F' : A — B. We will sometimes denote by Ob(A4) := S the set of
objects of A. We will abuse notation by writing 2 € A in place of z € Ob(A). Thus z,y € A will
mean z,y € S for an .#-precategory (S, A). For two objects z,y € A, we will also utilise the notation
Map 4(x,y) for the object A(z,y) in .# or simply Map(z,y) if the .#-precategory A is clear from the
context. We remark that one of the main reasons for imposing the condition A(x) = * in Definition 2.1.3
is to obtain a cartesian structure on the model category of .#-precategories. It effectively amounts to
requiring strict units. See Section 19.3 of [S2] for further discussion.

Let .# be a monoidal model category for the cartesian product. Then every .#-enriched category C
is a .4 -precategory (5, A) setting S = Ob(C) and

A(zg,...,zn) = C(xo,21) X ... X C(Tp_1,Ty)
for all z; € C. This induces a fully faithful functor
& : Cat(#) — PC(A).
We will very often consider an .#-enriched category C as an .#-precategory by identifying C' with &(C).

Example 2.1.4. Let .# = Set be the category of sets with the trivial model structure, ie. the weak
equivalences are the isomorphisms and all maps are both fibrations and cofibrations. Then the fully
faithful functor & is simply the nerve functor Cat — S. We will often abuse notation by identifying a
category as a simplicial set using this functor.
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Definition 2.1.5. Let .# be a model category whose weak equivalences are stable under finite products.
A functor A: AY — ./ is said to satisfy the Segal condition if for all n > 2 the map

A(lnl, o) — ] A e)

1<i<n
is a weak equivalence in .# where ¢;([1]) := c({i — 1,}).

Definition 2.1.6. Let .# be a model category with finite products. An .#-precategory is said to be a
weak M -category if it satisfies the Segal condition.

A weak S _-category is also referred to as a 1-Segal category in the literature (see Section 2 of
[HS]). We are now interested in defining a model structure on the category PC(.#) of .4 -precategories
whose fibrant objects are weak .#-categories. This not only facilitates our study of the category of
M -precategories by making available all the tools inherent in the theory of model categories, like the
existence of homotopy limits and colimits, but is also necessary for a rigorous comparison to other model
structures. We will soon see that there exists a Quillen equivalence between a certain model category of
M -enriched categories and a model category of .#-precategories which we introduce presently.

There exists three model structures on the category of .#-precategories known as the projective, Reedy
and injective model structures. All three have the same set of weak equivalences but differ in their choice
of cofibrations. They are Quillen equivalent. The model structure most important for us is the Reedy
model structure. This model structure, contrary to the other two, is known to be an internal model
structure, ie. a model structure which is a monoidal model structure for the cartesian product monoidal
structure. This enables us to define an (oo, n)-category through an inductive procedure. We start with
some preliminaries.

Let PC(S, .#') denote the category of .#-precategories with a fixed set S of objects, ie. PC(S, #) :=
Hom(AY /S, . #) where S on the right hand side is considered as a discrete subcategory of Ag in the
obvious way. We make the following assumptions on the model category . :

Definition 2.1.7. A model category .# is said to be cartesian excellent if it satisfies the following
conditions:

1. The model category .# is combinatorial.
2. Every object in .# is cofibrant.

3. The model category .# is a monoidal model category for the cartesian product and the functor
x X o: M — M preserves small colimits for all z € ..

4. Weak equivalences in .# are stable under filtered colimits.

Every cartesian excellent model category is excellent by Definition 7.1.15. Thus by Proposition 7.1.17
and Remark 7.1.18 there exists a projective and injective model structure on PC(S,.#) denoted by
PC(S, #) s and PC(S,.# ).y respectively. A map (f,F) : (S,A) — (T,B) in PC(#) is said to be a
projective (resp. injective) cofibration if f : S — T is an injective map of sets and fiA — B is a cofibration
in the projective (resp. injective) model structure on PC(T,.#). By Proposition 14.3.1 of [S2] there also
exists a Reedy model structure on PC(S, .#) denoted PC(S, .#)z.

By the theory of left Bousfield localisation, see Proposition 7.1.23, we can obtain three other model
structures on the underlying category PC(S, .#) with the same set of cofibrations but where we enlarge
the class of weak equivalences. By Theorem 14.1.1 of [S2] one can localise the projective and injective
model structures on PC(S, .#) at a set of maps which enforce the fibrant objects to be exactly those which
are projectively and injectively fibrant respectively and satisfy the Segal condition of Definition 2.1.5. We
denote these two model stuctures by PC(S,.#)";, and PC(S, .#)’, respectively. Similarly, by Theorem
14.3.2 of loc. cit. there exists a Bousfield localisation PC(S,.# )", of PC(S, .# )% whose fibrant objects
are the Reedy fibrant diagrams satisfying the Segal conditions.
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If # is a model category, we will denote by h.# the homotopy category of .# obtained from .# by
formally adjoining inverses to all weak equivalences. Let (S,C) be a weak .#-category. The homotopy
category of (S,C), denoted h(S, C), is the h.#Z-enriched category consisting of:

o Ob(L(S,0)) = S.
e For every x,y € S, Mapy,s,cy(2,y) = [C(z,y)] where [o] : # — h.

e For zp,...,z, € 5, composition Mapy, (g (0, 71) X ... x Mapy, g oy (Tn—1, Zn) — Mapyg oy (w0, Tn)
is given by composing the inverse of the weak equivalence C(zo,...,z,) — C(zg,21) X ... X
C(zp—1,n) with the map C(zo,...,z,) — C(x0,2z,) and applying the functor [e].

We obtain in this way a functor h : PC(.#) — Cat(h.#). A map F : C — D between .#-categories
is said to be an equivalence if the induced functor hF : hC' — hD is an equivalence of h.Z-enriched
categories, ie.

e For every z,y € C, the map C(z,y) — D(F(z), F(y)) is a weak equivalence in ..
e Every y € D is equivalent to F(z) in the homotopy category hD for some z € C.

A functor between . -categories satisfying these two conditions is said to be fully faithful and essentially
surjective respectively. When referring to an .#/-enriched category as a weak .#-category we will call
it a strict .4 -category. When C' is an .# -enriched category, hC will refer to the h.#-enriched category
h&(C).

Definition 2.1.8. A map (f, F) : (S, A) — (T, B) of .#-precategories is said to be a categorical equiva-
lence if there exists a commutative diagram

(S,A) —— (T, B)
a B

(S/7AI) 4¢'> (T/,B/)

where - and 3 are trivial cofibrations in PC(S, .#)’; and PC(T, .# )5 respectively such that the induced
map h(S’, A’) — h(T’, B’) is an equivalence of h.#-enriched categories.

If A is a cartesian excellent model category then there exists a projective (resp. injective) model
structure on the category PC(.#) of .#-precategories where the cofibrations are the projective (resp.
injective) cofibrations and the weak equivalences are the categorical equivalences. These two model
structures will be denoted by PC(.# )4 and PC(.#) s respectively. An important observation is that
the fibrant objects of PC(.#) s are precisely the locally fibrant .#-categories, ie. those .#-precategories
(S, A) for which A(zo,...,z,) is a fibrant object of .# for all sets of objects zg ...z, and which satisfy
the Segal condition.

The projective model structure on PC(.#) is not cartesian closed. There does however exist a model
structure on PC(.#) which lies between the projective and injective model structures in a chain of left
Quillen functors. We will introduce the relevant cofibrations. Let Ag,, denote the full subcategory of
Ag spanned by objects ([m], ¢) with m < n. The inclusion i, : Ag, — Ag induces a natural restriction
functor

iy, : Hom(AY, A#) — Hom(AY, , .4 )

which has a fully faithful left adjoint (i, ) given by the left Kan extension along the inclusion 4,. The
nth skeleton functor is given by

sky, 1= (ip)1 0y, : Hom(AY, #) — Hom(AY, ).
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For an explicit characterisation of sk, (A) for a functor A : AY — .#, we refer the reader to Section 15.1
of [S2]. It follows from Lemma 15.1.1 of [S2] that the skeleton functor can be naturally extended to a
functor sk, : PC(.#) — PC(.#) between the category of .#-precatgories. A map F' : A — B in PC(.#)
is said to be a Reedy cofibration if the map

A ] skn(B)— B
Skn(A)

is an injective cofibration for all n > 0.

Theorem 2.1.9. Let 4 be a cartesian excellent model category. There exists a left proper, combinatorial
model structure on the category PC(.#) of M -precategories in which

(€¢) The cofibrations are the Reedy cofibrations.
(#) The weak equivalences are the categorical equivalences.

The fibrant objects are those .4 -precategories (S, A) that are Reedy fibrant in PC(S, # )% and satisfy the
Segal condition.

Proof reference. See Theorem 21.2.1 of [S2]. The characterisation of fibrant objects follows from Propo-
sition 21.4.1 of [S2]. O

This model structure will be called the Reedy model structure on PC(.#) and will be denoted
PC(A)z. An important remark is that when .# is a presheaf category and the cofibrations are the
monomorphisms in .#, then the Reedy model structure on PC(.#) coincides with the injective model
structure on PC(.#) (see Proposition 15.7.2 of [S2]). This holds in particular for the model category of
(00, n)-precategories described below. There exists a chain of Quillen equivalences

PC(M) o S PC( M) S PO(M) 5.

The model category PC(.# )z is a cartesian closed model category which is moreover cartesian ex-
cellent. This follows from Theorem 21.3.2 of [S2]. The cartesian closed structure implies that for any
two objects A and B of PC(.# )4, there exists an .#-precategory B* together with an evaluation map
BA x A — B such that

Hom(C, B*) — Hom(C x A, B)

is bijective for every C' € PC(.#)4. The object B4 will be called the internal Hom object and will be
denoted also by Hom(A, B). The cartesian structure also implies that the homotopy category hPC(.#)
is cartesian closed (see Theorem 4.3.2 of [Ho]). The internal Hom objects of hPC(.#)z will be denoted
RHom(A, B), see Notation 1.1.
We are now in a position to define an (0o, n)-category by induction. Let PCY(.#)5 := .# and for
any n > 1
PC" (M) := PC(PC" () 7).

Note that since for a fibrant object C' in PC™(.# )4 the PC™ ! (.#)-precategory C(xg, ..., x,) is fibrant
in PC" " (.#)4 for any collection of objects zq, ...z, in C, the object C satisfies the Segal condition
iteratively on each sub-mapping space for all 1 <1¢ < n.

The category S of simplicial sets with the Kan model structure is a cartesian excellent model
category. We have defined S_¢ to be the model category of (0o, 0)-categories. Thus the model category of
(00, n)-categories is given by PC™ (S )% and will be denoted by €at (o ) . The model category € at (oo n)
will always be regarded as a €'at (o, n)-enriched category unless otherwise stated. An (oo, n)-precategory
will refer to an arbitrary object of ¢'at(. ). We of course are particularly interested in the fibrant
objects. A fibrant (oo, n)-precategory is a weak ¢ 'al(,,—1)-category satisfying a Reedy condition. This
Reedy condition can often be ignored in applications since every fibrant (co,n)-precategory is equivalent
to a locally fibrant weak @ at (o ,—1)-category (without the Reedy condition) by the equivalence to an
object in the projective model structure on PC(.#). We make the following definition:
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Definition 2.1.10. Let n > 1. An (oo, n)-precategory C' is said to be an (oo, n)-category if it is a weak
% at (o,n—1)-category such that for any object z in C, the (0co,n — 1)-precategory C(z) is an (co,n — 1)-
category.

Let C be an (oo, n)-category and (hD)’ a subcategory of hC. Then the homotopy pullback D :=
C x!'o (hD) in G at(sony Will be called a subcategory of C' (as opposed to a sub-(oo,n)-category for
convenience of notation). The 1-morphisms in an (0o, n)-category will be simply called arrows. The
category of (0o, n)-categories will be denoted Cat (o, ). We will make the now standard abuse of referring
to an (oo, 1)-category as an oo-category. Since these are the (0o, n)-categories most often used in this
paper, this also lightens the notation.

Example 2.1.11. We have seen that every ¢at (o —1)-enriched category is naturally an (oo, n)-category.
In particular, every category C can be thought of as an (0o, n)-category through the full embedding
Cat — Cat (s n): the image of C' has the same set of objects with C'(zo,...%,) := Homg(zg, 21) X ... X
Homg (2n-1,Zn).

We briefly remark that there is a well defined way of passing from (oo, n)-precategories to (0o, n+m)-
precategories using an extension of the Poincaré n-groupoid construction of Tamsamani in [Ts2] which
we will denote by [],,. In fact there exists a Quillen adjunction

Ry, 1 Cat(oontm) = Catoom : []

m

where the left adjoint, called the realisation, formally adjoints inverses to all k-morphisms for k > n (see
Section 2 of [HS] for more details). There also exists a right adjoint which associates to an (oo, n 4+ m)-
category C' an (oo, n)-category which we denote by £7(C). This (0o, n)-category, called the n-groupic
interior in [HS], can be informally regarded as the (oo, n)-category obtained from C by discarding all non-
invertible k-morphisms for k > n. It satisfies the following universal property: for any (co,n)-category
D, the map

RHom(D, 8"(C)) — RHom(D, C)

is an equivalence.
Proposition 2.1.12. Let A be an (0o, n)-precategory. Then the following hold.
1. For every (oo, n)-category C, the (0o, n)-precategory RHom(A, C) is an (00, n)-category.

2. Let C — D be an equivalence of (0o, n)-categories. Then RHom(A,C) — RHom(A, D) is an
equivalence of (0o, n)-categories.

3. Let C be an (oco,n)-category and f : A — B be an equivalence of (0o, n)-precategories. Then
RHom(B, C) — RHom(A, C) is an equivalence of (00, n)-categories.

Proof. This is deduced from Theorem 10.1.1 of [S2]. O

We have found that the model category ¢ 'at(o ) is enriched over itself and hence €at( ) is a
strict €’at (o n)-category and hence an (oo, n + 1)-precategory. Let .# be a model category and .#° the
full subcategory of .# spanned by the fibrant-cofibrant objects. Then for two objects C' and D in the
(00,n + 1)-precategory (%at( n))°, the mapping space

Map (a0 (C, D) = Hom(C, D)

is a fibrant object of €'at (o ) by Proposition 2.1.12. Hence (€'at (,,))° is a fibrant object in PC(%at (o p)) 2
(with the projective model structure). However, (€at(,n))° is not a fibrant object of €at o ni1):
(€at(oo,n))° is not Reedy fibrant in €'at (o p+1)-

For calculational convenience it is helpful to be able to pass from a .#-precategory to a strict model
where composition is strictly defined. Let .# be a cartesian excellent model category. There exists a
left proper, combinatorial model structure on the category Cat(.#) of .#-enriched categories in which
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the weak equivalences are the equivalences of strict .#-categories. This follows from Proposition A.3.2.4
of [Lu]. We will call this model structure the enriched model structure on Cat(.#) and denote it by
Cat(#)s. It follows from Theorem A.3.2.24 of [Lu] that an object of Cat(.# )¢ is fibrant with respect
to the enriched model structure if and only if it is locally fibrant. The enriched model structure on
Cat(.#) is not cartesian. The cartesian product of two cofibrant .#-enriched categories is not necessarily
cofibrant. This is one of the main advantages for considering the model category of .#-precategories
where an . -precategory of morphisms in the form of the internal Hom between two objects is available.
There exists a Quillen equivalence

%:PC(%)yﬁCat(%)gtﬁ

between the category of .#Z-precategories with the projective model structure and the category of .-
enriched categories with the enriched model structure by Theorem 2.2.16 of [L2]. The left adjoint to the
fully faithful inclusion & is constructed as follows. Let S be a set and consider the following category
Jz,y(S) where:

e An object in J, ,(S) is a pair (s,4),x where s = (so,...,s,) € S"*! such that sg = z, s, = y and
i={0=1ig<...<i=n}ezZk"

o An arrow (s,%)nk — (£, J)m, in J3 4 (S) is a map f : [m] — [n] such that the following hold:
- f(0) =0 and f(m) = n.
- For any 0 < p <m, sy, = tp.
- For each 0 < ¢ <, there exists 0 < r < k such that i, < f(jq) < f(hg+1) < trt1.

Given any . -precategory (S, A) and {z,y} € S, we define a functor H;;‘,y given by
Hﬁy c Iy y(S) — A
($,0)n g > A(S0y -+ 8iy) X A(Siys--vySip) X oo e X A(Siy_1s- vy Sn)-

The left adjoint § can now be defined as follows. Let (S, A) be a .#-precategory. The .#-enriched
category (S, A) in Cat(.#) consists of:

o Ob(F(S, A))=S.
e For any X,Y € 5, the mapping space is given by Mapg(S’A)(x, y) := colim Hf’y.
e For any sequence of elements (o, ...,z,) in S, the composition

A

Jrowr (S) X oo X T 12 (S) = g, (S) Hegan
is canonically isomorphic to ngign H,, , 2,- The composition law for
Mapg s 4y(T0, 71) X ... X Mapg (g 4y (Tn—1,2n) — MaDg(s, 4) (%0, Tn)
is then given by colim ngign Haé-fl,a;,- . colim Haﬁm

It follows that a map (f, F) : (S, A) — (T, B) in PC(.#) is a categorical equivalence if there exists a
commutative diagram

(S,A) —— (T, B)
a B

(5/714./) 4‘75’ (T/7B/)
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where o and (8 are trivial cofibrations in PC(S,.#)';, and PC(T,.#)'; respectively and such that the
induced map F(5’, A’) — F(T’, B’) is an equivalence of .# -enriched categories.

We will now discuss further examples of cartesian excellent model categories. We have seen that the
fibrant objects of Cat(S), where S is endowed with the Kan model structure, provide models for (oo, 1)-
categories. However, it is possible to construct other models of (oo, 1)-categories by working directly in
the category of simplicial sets itself. For example, one can ask for certain lifting properties to be satisfied
in the spirit of the Kan lifting property or ask that a certain collection of 1-simplices be distinguished.
The first of these leads to the notion of a weak Kan complex (also called quasicategories in the literature
[Jo]) and the second to the notion of a marked simplicial set. We will discuss the model category of weak
Kan complexes (and its equivalence to the model category of simplicial categories) presently and refer
the reader to [Lu] for the theory of marked simplicial sets.

From a category, one can produce a simplicial category through the following construction:

Construction 2.1.13. Let Grph be the category of reflexive graphs (ie. one truncated simplicial sets).
From the adjunction
U : Grph 2 Cat : V,

where the right adjoint is the forgetful functor, we obtain the corresponding comonad L = UV on Cat.
The counit € : L — I and comultiplication 6 : L — L? can be used to construct “face” and “degeneracy”
maps given by d? : LieL"~%: L™ — L™ for 0 <i <mands?: L'§L" "1 L" — " for 0 <i<n-—1
respectively. We can use these maps to construct a simplicial object L,C in Cat

o (do,d1,d2) 120 (do,d1) LC 5 ¢

given by L,C = L™"t'C. Here LC is simply the free category on C where the morphisms are freely
generated by the non-identity morphisms of C. Since the simplicial set [n] — Ob(L,,C) is constant (with
value Ob(C)), L.C can be viewed as a simplicial category

L, : Cat — Cat(S)
L*(C)(‘r/y)n = Ln+1C($,y).

This is a convenient way to associate an S-enriched category, and hence an co-category, to any ordinary
category.

Example 2.1.14. Applying Construction 2.1.13 to the category [n] we obtain the following simplicial
category L,[n]: the objects of L.[n] are the elements of [n] and for 4, j € [n] the mapping space is given
by
. 0 if s> 7,
L.[n)(i,5) = .
N(P; ;) otherwise,
where P; ; denotes the partially ordered set by inclusion {[m] C [n] : (4,7 € [m]) A (Vk € [m])[i < k < j]}.
For i < j <k in [n], composition L.[n](j, k) X L.[n](i,j) — L«[n](i, k) is induced by ([I], [m]) — [[] U [m].

From a simplicial category, one can produce a simplicial set through the simplicial nerve (also called
the homotopy coherent nerve).

Definition 2.1.15. The simplicial nerve functor N : Cat(S) — S is given by
N(C)n = Homcag(s) (Ls[n], C)
where C' € Cat(S).
From the equality Homc,y(s)(L«[n], C) = Homg(A[n],N(C')), we construct a left adjoint to N,

¢:S — Cat(S),
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by left Kan extending L, along the Yoneda functor y : A — S. Thus

¢(A) = (Lany L,)(A) = colim(y,4 — A 25 Cat(S)) = colim, L. [n].
In the case when C € Cat C Cat(S), the simplicial nerve corresponds to the ordinary nerve.

A map A — B of simplicial sets is said to be a categorical equivalence if €(A) — &€(B) is a weak
equivalence of S-enriched categories. The category S of simplicial sets admits a left proper, combinatorial
model structure in which the cofibrations are the monomorphisms and the weak equivalences are the
categorical equivalences. This was first proven by Joyal in [Jo] and later proven by Lurie in [Lu] as stated
here.

We will call this model structure the Joyal model structure on S and denote it by S 4 . It is a
cartesian excellent model category. The fibrant objects of this model category can be explicitly described
as follows. A map A — B of simplicial sets is said to be an inner fibration if it has the right lifting
property with respect to all horn inclusions A} — A" for 0 < ¢ < n. A simplicial set A is called a weak
Kan complex if A — % is an inner fibration. The fibrant objects in the Joyal model structure are precisely
the weak Kan complexes (see Theorem 2.4.6.1 of [Lu]). Furthermore, there exists a Quillen equivalence

C:S/ﬁCat(S%):N

between the category S of simplicial sets with the Joyal model structure and the category Cat(S) of
simplicial categories with the Kan model structure (Theorem 2.2.5.1 of [Lu]).

Thus weak Kan complexes provide an adequate theory of (oo, 1)-categories. Every category is a weak
Kan complex. In fact we have the following characterisation of those simplicial sets A which arise as
(the nerve of) a category: there exists a small category C' and an isomorphism A ~ C' if and only if
A — x has the unique right lifting property with respect to all horn inclusions A" — A" for 0 < i < n.
Unsurprisingly, there is also a very close relationship between the category of simplicial sets S y with the
Joyal model structure and the category of simplicial sets S _» with the Kan model structure: the category
S is the Bousfield localisation of S » with respect to the singleton set S = {x — A'}.

In summary, we have the following chain of Quillen equivalences (where the arrows denote left Quillen
functors):

Cat(oo,1) — Cat(Sy) «— S 4.

Thus an oco-category may also refer to a fibrant object of the closed model category S 7. Throughout this
paper, we will frequently use and cite results from [Lu],[LI],[LII] and [LIII] when using oco-categories. In
these references, the theory of weak Kan complexes is chosen for a model of (0o, 1)-categories. Through
the chain of Quillen equivalences above, we will be content in the understanding that all constructions in
the (00, 2)-category of weak Kan complexes has a corresponding and equivalent statement in the (oo, 2)-
category of oo-categories in our sense. Finally, if # — .4 is a Quillen equivalence between two model
categories then PC(.#) — PC(.4") is a Quillen equivalence so we have an equivalence

Cgat(oo,g) — PC(S])

between model categories of (oo, 2)-precategories. Thus an (oo, 2)-category may also refer to a fibrant
object of the closed model category PC(S ).

2.2  From model categories to (oo, n)-categories

Definition 2.2.1. Let C be an (oo, n)-category and S a set of arrows in C. A localisation of C' along S
is a pair (LgC,l) where LgC is an (00, n)-category and [ : C' — LgC'is a functor such that the following
universal property is satisfied: for any (oo, n)-category D, the induced map

RHom(LsC, D) — RHom(C, D)

is fully faithful and its essential image consists of those functors F': C' — D which send each arrow in S
to an equivalence in D.
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Here the localisation is taken in the (0o, n+1)-category of (0o, n)-categories (see Definition 2.2.9). One
may also consider localisations taken in certain subcategories of this (0o, n + 1)-category. See Section 2.3
for one example. We will often refer to a localisation (LgC,!l) of C along S as simply LgC. It follows
from the universal property that the localisation commutes with finite products, ie. if S and T are
sets of morphisms in C' and D respectively, then the natural map Lgx7(C x D) — LgC x LpD is an
equivalence of (oo, n)-categories. The following proposition is an existence result for the localisation of
an (0o, n)-category.

Proposition 2.2.2. Let C be an (0o, n)-category. An explicit model for the localisation (LsC\1) is given
by the homotopy pushout diagram

S x [1] C

S x [1] —— Ls(C)

in €at(s,n) where m is the groupoid generated by one isomorphism {0 — 1}.

Proof. Firstly, note that we are only interested in the set S containing 1-morphisms. From Section 2.1
we can consider the associated statement in the model category Cat(%'at (oo ,—1)) of €at (s ,,—1)-enriched
categories. The proposition now follows from Section 8.2 of [T3] after making the admissible replacement
of dg-categories to €’at (o, ,—1)-enriched categories (or more generally categories enriched in any excellent
model category). O

Note that since this is a homotopy pushout taken in the model category of (oo, n)-precategories, it is
necessary in general to compose with a fibrant replacement functor to obtain an (oo, n)-category LsC.
It follows that

h(LsC) — S~1(hC)

is an equivalence of categories where S~1(hC') is the category obtained by formally inverting the elements
of S.

Example 2.2.3. Let C be an (oo, n)-category with a zero object. For any subset {x;};cr of objects of
C' we can construct the quotient (co,n)-category C/(x;) given by the localisation LgC' of C at the set of
maps S = {x; — 0};c7. The essential image of RHom(C/({x;), D) — RHom(C, D) consists of all arrows
F :C — D such that F(x;) ~0in D for all ¢ € 1.

Every category C can be regarded as a (strict) co-category either by identifying C' with its nerve (a
weak Kan complex) or considering the set C(z,y) for two objects z,y € C as a discrete simplicial set (a
simplicial category and thus an oo-category). More generally we may consider a pair (C,.S) consisting of
a category C together with a set of morphisms S of C' and construct the localised category S~!C. This
procedure can be refined using the simplicial localisation construction of Dwyer and Kan [DK]. Let L.C
denote the simplicial category of Construction 2.1.13. The simplicial localisation of the pair (C, W) is
the localisation (L,W)~Y(L.C) := LYK (C). It has the property that there exists a natural isomorphism
moLEK(C) ~ S71C showing that in general, LE®(C) contains higher homotopical information not
encoded in S~!C. If C is a category, then LgC is an oo-category and LgC — LgK (C) is an equivalence
of co-categories [DK]. When . is a model category we will let L.# := Ly .# be the localisation of .#
along the set of weak equivalences W of .#. Thus h(L.#) — h.# is an equivalence of categories.

If A be an excellent model category and o/ an .#-enriched model category, we will write L/ for the
localisation of &7 with respect to its set of weak equivalences W in the sense of enriched category theory,
ie. if D is a category and C is a D-enriched category then the localisation of C' along a set of arrows S of
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C is a pair (LgC,1) where LgC is a D-enriched category and [ : C' — LgC'is a D-enriched functor such
that for any D-enriched category E, the induced map

Homycat(p)(LsC, E) — Homycay(p)(C, E)

is fully faithful and its essential image consists of those D-enriched functors which send each arrow in
S to an equivalence in F. When C' is a D-enriched category, a localisation of C' will always refer to a
localisation in the enriched sense unless otherwise stated.

Let .4 be an excellent model category and &/ and A two .4 -enriched model categories. Let f : &/ —
2 be a right Quillen functor. Since f is right Quillen, the restriction map Rf : &7 — %7 between
fibrant objects preserves equivalences and thus induces a map Lo/ — L%/ of .# -enriched categories.
The existence of functorial fibrant replacement functors then ensures the existence of a diagram

L =Lt Lyt =S oy

and thus a map L.# — L.# well defined in hCat(.#). When .# = € at(o n—1), we have a well defined
(up to homotopy) map of (co,n)-categories. When &/ — £ is an equivalence of .#-enriched model
categories then clearly L.# — L.4 is an equivalence of .#-enriched categories.

Example 2.2.4. When C'is a simplicial category LC' is equivalent to the simplicial nerve NC of C. More
generally, when . is a simplicial model category we have an equivalence L.#Z — N(.Z°) of co-categories.

When & is an enriched model category, we will denote by «7° the full subcategory of & spanned
by the fibrant-cofibrant objects. This .#-enriched category is a fibrant object of Cat(.#) and is in fact
equivalent to the localisation of .o7.

Lemma 2.2.5. Let .4 be an excellent model category and </ be an M -enriched model category. Then
the map

Lo — of°
is an equivalence of M -enriched categories.

Proof. Let o/¢ be the subcategory of &/ spanned by the cofibrant objects. The natural equivalences
Q:o — ¢ and R: &/° — &/° induce a chain of equivalences L(f) ~ L(&/¢) ~ L(2/°) ~ o/° between
M -enriched categories. O

Let .# be an excellent model category. Then the symmetric monoidal structure on .# induces a
symmetric monoidal structure on the model category Cat(.#)s of .#-enriched categories. Given two
M -enriched categories C' and D, the objects of the .#-enriched category C' ® D are pairs (z,y) where
x € C and y € D and the mapping space between two objects (x,y) and (a/,y’) is given by

Mapcgp((2,9), (2, y")) = Mape (z, ") @ Mapp (y,y')

where the tensor product on the right hand side is taken in .#. We know that Cat(.# )¢ is not an internal
model category (the tensor product bifunctor is not left Quillen since it does not preserve cofibrant
objects). However, the derived tensor product ®" is: there exists an internal Hom object in hCat(.#)e
which we denote by RHom(C, D).

Proposition 2.2.6. Let .# be an excellent model category and </ a combinatorial M -enriched model
category. Let C be a . -enriched category and /€ be endowed with the projective model structure. Then
there exists an equivalence

RHom(C, &7/°) — (/°)°

of M -enriched categories.



32 J. M. WALLBRIDGE

Proof. The proof is simply a corollary of Lemma 6.2 of [T3] after making the admissible replacement of
the monoidal model category of complexes of k-modules by an arbitrary excellent model category. Let
(h(<7))"*° be the set of isomorphism classes of objects of h(</“). By Lemma 6.2 of loc.cit., the map
[C,27°] — (h(«/¢))"° is an isomorphism. Thus we have the following chain of isomorphisms

[D, RHom(C, &7°)] = [D x C, &/°] == (h(e/ “*P)) = (h((« ) 7)™ =~ [D, (7)°].
Since the construction is functorial in D, the result follows. O

The following is the very useful strictification theorem.

Proposition 2.2.7. Let .# be an excellent model category and </ a combinatorial M -enriched model
category. Let C be a . -enriched category and /€ be endowed with the projective model structure. Then
there exists an equivalence

L(«/¢) — RHom(C, L)

of M -enriched categories.

Proof. This follows from Proposition 2.2.6 and Lemma 2.2.5. O

Example 2.2.8. Let A be an (oo, n)-precategory, D a %'at (s ,—1)-enriched category and §(A) — D an
equivalence. Then the induced map

L((Fat(so,n))”) — RHom(A, LE at (. n))
is an equivalence of (0o, n)-categories.

We will now define the co-category and (0o, n)-category of (oo, n)-categories using the the localisation
functor.

Definition 2.2.9. We denote by:

o Cat(, ) 1= LCat(o,n) the (00, n + 1)-category of (oo, n)-categories (where we view €at(o n) as a
@ at (oo, ny-enriched model category). This is equivalent to (€at(oc,n))°-

. Cat(fo)n) = LEat(o,n) the oo-category of (0o, n)-categories (where we view €at(o,n) as a (Set-
enriched) model category). We have equivalences Cat(y, ) ~ LSCat”(Q;m) o~ N(Catf;m)) where
Catf;yn) is the simplicial category whose objects are (0o, n)-categories and whose mapping space

between any two objects C' and D is the (co,0)-category &°(RHom(C, D)).

We denote by K := Cat( o) the oo-category of (00, 0)-categories. The oo-category K will play an
important role in the remainder of the text fulfilling an analogous role as the category of sets does in
ordinary category theory. We have equivalences K ~ (S )° ~ N(Kan) where Kan is the simplicial
category of Kan complexes.

Definition 2.2.10. Let C be an (0o, n)-category and z and object of C. Consider the map evy :
RHom([1],C') — C given by evaluation at 0. Then the induced homotopy pullback

C,/ = RHom([1], C) x¢ {z}
will be called the undercategory of C' with respect to the object x.

Likewise, consider the map ev; : RHom([1],C) — C given by evaluation at 1. Then the induced
homotopy pullback
C), = RHom([1], C) x¢ {z}
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will be called the overcategory of C with respect to the object x. When C' is the (co,n + 1)-category
Cat o, of (00, n)-categories, the mapping space in (Cat( ,))/x between two objects f : A — X and
g : B — X will be denoted by

RHom y (A, B) := RHom(A, B) Xggom(a,x) {f}-
Let X be an (oo, n)-category and consider the functor

PI‘X . cfat(oom) - Cat(oom)
A — RHom(A?, X)

between categories. The (0o, n)-category Prx (A) will be called the (0o, n)-category of X -valued prestacks
on A. When 4 is an (oo, n)-precategory and X is the (oo, n)-category Cat ., ,_1) of (00, n—1)-categories,
we write Pr(A) for Preae , (A) and refer to Pr(A) as the (co,n)-category of prestacks on A. This

(00, n)-category will also be denoted A™. Let A be an (0o, n)-precategory. Then we can replace A by a
strict €'at (o, ,—1)-enriched category C := F(A). Let CP x C — Fat(oo,,—1) be the natural Cat (o n—1)-

enriched bifunctor. By adjunction this gives a map C' — (‘ﬁat(oo,n_l))cop where the right hand side is

equivalent to A" by the strictification theorem. We will refer to the composition
A~ C = (Catsn-1))°" ~ A",
which is well defined in h%at( ), as the Yoneda embedding.

Proposition 2.2.11 ((co,n)-Yoneda lemma). Let A € Cat( ) be an (0o,n)-precategory. Then the
Yoneda embedding A — Pr(A) is fully faithful.

Proof. From Section 2.1, every (oo, n)-precategory A can be associated with a €’at (s ,,—1)-enriched cat-
egory C := F(A°P). Let D be a fibrant replacement of C' and (€at(cc,n—1))"” be endowed with the
projective model structure. The Yoneda embedding can be written as the following composition of maps

AL &((Cat(sen—1)P)?) L RHom(A®, B(Fat oo,n-1))°) = RHom (A, Cat (o 1))

Since &(Cat (o,n—1))° is an (oo, n)-category, RHom(A, & (€ at (s ,,—1))°) can be identified with an expo-
nential object [Qﬁ(%at(mm_l))o]mw] in h%at (). Using the equivalence h€at (o ) ~ hCat(Cat (o n-1)),
the map j is an equivalence from Example 2.2.8. We then apply the adjoint to F' and factor it as

3(A) = D? — (@(m,nA))Dop-

It remains to show that the second map of Cat(s,,—1)-enriched categories is fully faithful. This follows
from the classical enriched Yoneda lemma [Ke]. O

We have the following characterisation of Pr(A4) in terms of a universal property: for every (oo, n)-
category C, there exists an equivalence

RHom(C, Pr(A4)) — RHom(C' x A", Cat( ,,—1)
of (00, n)-categories.

Definition 2.2.12. Let C be an (oo, n)-category. A prestack F' € Pr(C) is said to be representable if
it lies in the essential image of the Yoneda embedding C — Pr(C). Similarly, a prestack F' € Pr(C°P) is
said to be corepresentable if it lies in the essential image of the Yoneda embedding C°? — Pr(C°P).

Equivalently, a presheaf F' in Pr(C) is said to be representable if the h#’at (o ,—1)-enriched functor
hF : hC°P — h%( =~ h%at (o n—1) is representable.

oco,n—1)
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Proposition 2.2.13. Let C be an (co,n)-category. Then there erists a G at (oo n—1)-enriched model
category </ and a fully faithful map
C— Lo

of (00, n)-categories.

Proof. Let D := §(C) be a strict model for C. Then the proposition follows from the composition
c L R@(COP7 L%at(oo,nfl)) = R@(Dopv L((gat(oo,nfl)) — L((Cgat(oo,nfl))Dop)

using the fully faithful (co,n)-Yoneda lemma of Proposition 2.2.11 and the strictification theorem of
Proposition 2.2.7. We conclude by setting &7 := (%at(oom_l))Dop. O

In the next section, we will use this property to characterise (0o, n)-categories having special proper-
ties, for example (0o, n)-categories which we call presentable, by placing natural conditions on the model
category o/ and asking that the fully faithful map C' — Lg7 is an equivalence.

2.3 Adjoints, limits and colimits

Definition 2.3.1. Let C be an (0o, n)-category, k < n and 0 < m < k. The homotopy k-category hyC
of C' is given as follows:

e Let ;G : X — Y be a pair of (k — 1)-morphisms in C. A k-morphism from F' to G in h;C is an
isomorphism class of k-morphisms from F to G in C.

e The (k —m)-morphisms in h;C are the (k — m)-morphisms in C.
By convention, a 0-morphism in C' is an object of C.

Thus hoC is simply the set of isomorphism classes of objects in C. We will denote h;C by simply hC'.
Composition is well defined since 75 commutes with finite products and thus we obtain a well defined
functor

hy, : Cat(mm) — Caty,

for k <n.

Let C be a 2-category and f: x — y and g : y — = be l-morphisms in C. Recall that an adjunction
in C is a pair of 2-morphisms («, 3) where o :id; — go f and 8 : f o g — id, such that the following
compositions

Fefoidy %% fogof P a0 f o f

g~idy0g 2% go fog - goid, ~ g

coincide with the identities id; and id, respectively. We write (o, 8) : f 4 g to denote that f is left
adjoint to g in the adjunction («, ).

Definition 2.3.2. Let C be an (co,n)-category for n > 2. An adjunction in C is an adjunction in the
2-category hoC'.

If amap f: 2 — y in an (0o, n)-category C' admits a right adjoint g then this right adjoint is uniquely
determined up to homotopy.

Example 2.3.3. An adjunction between two (0o, n)-categories is an adjuction in the (oo, n+ 1)-category
Cat( ). An adjunction between F’ and G induces an adjunction hF' 4 hG between homotopy categories.
However, if F' and G are functors such that the induced functor hF : hC' — hD of h¢'at (., ,)-enriched
categories admits a right adjoint hG then F and G may not be necessarily adjoint. The condition merely
guarantees the existence of a right adjoint to F.
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Example 2.3.4. If F: ¢ 2 D : G is an adjunction between €’at (. ,—1)-enriched categories then the
induced diagram F : LC = LD : G is an adjunction between (co,n)-categories. If F: o = % : G is a
Quillen adjunction between € at (o n—1)-enriched model categories then the induced diagram F': Lo/ =
L% : G is an adjunction between (oo, n)-categories. More generally, F' induces a diagram

L(2/°) ~ RHom(C, Le/) = RHom(C, L&) ~ L(%°)
using the strictification theorem.

In the definition of an adjunction in an (oo, n)-category C' in Definition 2.3.2 we have considered the
data (o, ) : f - g as living in the 2-category hoC'. Here the unit and counit maps « and 3 are compatible
in a strict 2-categorical sense, ie. (B®idy)o (idf®a) =idy and (idy® 8) o (e ®idy) = idy. More generally
we may consider the adjunction as living in the (oo, n)-category itself. In this case we would need to
specify equivalences u : (3®ids)o(id; ®a) — idy and v : (id, ® 8) o (a®id,) — id, together with higher
dimensional equivalences which describe compatibility conditions between u and v, higher dimensional
equivalences between these equivalences and so on. The object which includes all of this information is
called an adjunction datum.

In this paper we will be interested in adjunction datum between two objects  and y in an arbitrary
(00, 2)-category C. The collection of all adjunction data between these two objects form an co-category
denoted by ADat, ,(C). Let C(z,y)+ denote the subcategory of the co-category C(z,y) spanned by
those objects f : © — y which admit right adjoints and whose morphisms are equivalences of these maps.
Then there exists an equivalence

ADat, ,(C) — C(z,y)

of co-categories. This important result, stating that every map between two objects in an (0o, 2)-category
which admits a left adjoint can be extended (uniquely up to a contractible space of choices) to an
adjunction datum, will be proved in Proposition 7.2.6.

We will now recall the notions of limit and colimit in the higher categorical setting together with some
related results. In this paper, limits and colimits in co-categories will suffice.

Definition 2.3.5. Let D be an oco-precategory and ¢ : I — J a full inclusion of co-precategories in
RHom (1, J). Let C be an oco-category, p : C' — D a map and i* : RHom(J,C) — RHomp (I, C) the
restriction functor. Then the left adjoint to * (if it exists)

i1 : RHomp (I,C) — RHomp(J,C)
is called the p-left Kan extension functor along i relative to D.

Dually, a right adjoint to ¢* (if it exists) is called the p-right Kan extension functor along i. Let
J = D = x. The projection I — * yields a well defined map

¢:C — RHom(I,C)

called the constant diagram functor which sends an object x € C to the constant functor I — {z} C C.
An oco-category C is said to have (co)limits with respect to the oo-precategory I if the constant diagram
functor ¢ : € — RHom([I,C) has a right (resp. left) adjoint. In this case the right adjoint is denoted by
lim; : RHom(Z,C) — C and the left adjoint by colim; : RHom(I,C) — C. Note that although lim;F'
and colimy F' are not uniquely determined by the diagram F' : I — C, they are unique up to a contractible
(00, 0)-category of choices.

Example 2.3.6. Let C be an oco-category. A pullback in C is a limit of the diagram {1 — 0 < 2}.
Likewise, a pushout in C is a colimit of the diagram {1 « 0 — 2}.

Example 2.3.7. Let C be an co-category. If C' admits all (small) colimits then C' is tensored over K. If
C' admits all (small) limits then C' is cotensored over K. See Section 3.2 for more details on the notions
of tensored and cotensored co-categories.
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An oco-category admits all finite limits if and only if it admits pullbacks and a final object. A functor
between oo-categories preserves finite limits if and only if it preserves pullbacks and final objects. An
analogous statement holds for finite colimits by passing to the opposite co-category. Let F': C — D be
a functor between oco-categories. If C' admits finite limits then F is said to be left exact if it preserves
finite limits. If C' admits finite colimits then F' is said to be right exact if it preserves finite colimits. It
is said to be ezact if it is both left and right exact. We denote by Hom'™(C, D) (resp. Hom™(C, D))
the full subcategory of Hom(C, D) spanned by the left exact (resp. right exact) functors.

Recall that a cardinal x is said to be regular if it cannot be given as the coproduct of fewer than
cardinals of cardinality less than . If k is a regular cardinal and C' is an co-category with pullbacks and
k-small products then C' admits k-small limits. Moreover, if F': C' — D is any functor into an arbitrary
oo-category D, then F preserves k-small limits if and only if F' preserves pullbacks and k-small products.
An analogous statement holds for x-small colimits by passing to the opposite co-category. An co-category
is said to be complete if it admits all (small) limits and cocomplete if it admits all (small) colimits. It
is said to be bicomplete if it is both complete and cocomplete. Let F' : C — D be a functor between
oo-categories. If C' admits small limits then F' is said to be continuous if it preserves small limits. If
C admits small colimits then F' is said to be cocontinuous if it preserves small colimits. It is said to be
bicontinuous if it is both continuous and cocontinuous. We denote by Hom®*(C, D) (resp. Hom®*(C, D))
the full subcategory of Hom(C, D) spanned by the continuous (resp. cocontinuous) functors.

The following proposition shows that the existence of homotopy limits and colimits in a simplicial
model category ensures the existence of limits and colimits in its associated oco-category in the sense of
Definition 2.3.5.

Proposition 2.3.8. Let & be a combinatorial simplicial model category. Then L(%7) admits all limits
and colimits.

Proof. Let C be an oco-category and D := F(C) the simplicial category associated to C. Then the
existence of homotopy colimits in %7 ensures the existence of the left Quillen functor holimp : &P — o
(left adjoint to the constant diagram functor) where 7P is endowed with the projective model structure.
This induces the functor

colim¢ : RHom(C, Le?) ~ RHom(D, Le?) ~ L(o/P) — Lot

left adjoint to the constant diagram functor which we identify with the colimit functor. A similar analysis
follows for the limit functor. O

Proposition 2.3.9. Let C be an co-category. The Yoneda embedding C — Pr(C') preserves small limits.
Proof reference. See Proposition 5.1.3.2 of [Lu]. O

Proposition 2.3.10. Let A be an oco-precategory and C an oo-category which admits small colimits.
Then composition with the Yoneda embedding A — Pr(A) induces an equivalence

RHom“*(Pr(A),C) — RHom(4, O)
of co-categories.
Proof reference. See Theorem 5.1.5.6 of [Lu]. O

Let A be a collection of co-precategories. An oo-category C' is said to admit A-indexed colimits
if it admits colimits along all diagrams indexed by elements in A. A functor F' : C — D is said to
preserve A-indexed colimits if it preserves colimits along all diagrams indexed by elements in A. We
denote by RHom 4(C, D) the full subcategory of RHom(C, D) spanned by those functors which preserve
A-indexed colimits. If C' is an co-category and D an oco-category which admits A-indexed colimits then
any functor functor F': C' — D can be extended, essentially uniquely, to an .A-colimit preserving functor
G : Pr(C) — D where Pr(C) is an co-category admitting A-indexed colimits.
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Proposition 2.3.11. Let C be an oco-category and A a collection of oo-precategories. Then there exists an
co-category PrA(C) admitting A-indexed colimits and a fully faithful functor y : C — Pr*(C) satisfying
the following universal property: for any oo-category D admitting A-indexed colimits, composition with
y induces an equivalence

RHom 4(Pr*(C), D) — RHom(C, D)

of co-categories.
Proof reference. This is a special case of Proposition 5.3.6.2 of [Lu]. O

When A is the collection of all co-precategories, the oo-category PrA(C') is identified with the oo-
category of prestacks by Proposition 2.3.10. Given an oo-category C, we may also define other oo-
categories, thought of informally as the co-categories associated to C' by formally adding colimits of type
A, using this universal property.

Definition 2.3.12. Let k be a regular cardinal. An oo-category C' is said to be k-filtered if for any
functor F': A — C indexed by a k-small co-category A, there exists a natural transformation from F' to
a constant functor in Cat .

A functor F' : C' — D is said to be k-filtered if C is r-filtered. An oo-category is said to be filtered
if it is w-filtered and likewise for a functor. Every oco-category with a final object is x-filtered for every
regular cardinal k.

Definition 2.3.13. Let C' be an oco-category, « a regular cardinal and A the class of all small x-filtered
simplicial sets. Then the oo-category of ind-objects of C is given by Ind,(C) := Pr(C).

For k = w, the oo-category of ind-objects of C will be simply denoted Ind(C'). Let A be the class of
all small k-filtered oco-precategories. The oco-category of ind-objects of C' admits the following character-
isation:

e The objects of Ind, (C) are functors I — C where I € A.

e Given two objects F : I — C and G : J — C in Ind,(C), the mapping space is given by

Map(F, G) = lim colim C(F (i), G(5)).
ap(F, G) = lim colim C(F(i), G(j))

By Proposition 5.3.5.14 of [Lu], the Yoneda embedding y : C' — Ind,(C) taking z to the functor z : ¥ — C
preserves all x-small colimits which exist in C. The essential image of y consists of objects satisfying the
following:

Definition 2.3.14. Let C be an oco-category which admits k-filtered colimits. An object x in C' is said
to be k-compact if the corepresentable functor

C(z,0):C =K
preserves k-filtered colimits.

If C admits filtered colimits and x is w-compact then z is said to be compact. Let C°P* denote the full
subcategory of C' spanned by the compact objects. Let C' and D be oco-categories which admit x-filtered
colimits and f : C &2 D : g be an adjunction. If g preserves r-filtered colimits then f preserves x-compact
objects.

If k is a regular cardinal, then an oo-category C is said to be k-closed if every diagram in C' indexed
by a k-small simplicial set admits a colimit in C. Clearly, an co-category C is equivalent to Ind, (D) for
some small co-category D if and only if the oco-category C' is k-closed and has a small subcategory D
consisting of k-compact objects such that every object of C' is a k-filtered colimit of objects of D. This
motivates the following.
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Definition 2.3.15. Let k be a regular cardinal. An oco-category C is said to be k-accessible if there
exists a small co-category D such that
Ind, (D) — C

is an equivalence of co-categories.

An oo-category is said to be accessible if it is k-accessible for some regular cardinal x. If C is an
accessible oco-category then a functor F': C' — D is said to be accessible if it preserves k-filtered colimits
for some regular cardinal k. One can show that if C' and D are accessible co-categories then a functor
F : C — D is accessible if F' admits a left or right adjoint. Let C' be an oco-category and k a regular
cardinal. Then C is k-accessible if and only if C' admits small k-filtered colimits and is generated under
small x-filtered colimits by an essentially small full subcategory D C C of k-compact objects.

Example 2.3.16. For any small co-category C, the co-category of prestacks Pr(C) is accessible. In
particular, the co-category K of spaces is accessible. More generally, for any accessible co-category C
and any oo-precategory A, the co-category RHom(A, C) is accessible.

Definition 2.3.17. An oo-category C is said to be presentable if it is accessible and admits small colimits.

Example 2.3.18. If C is a presentable co-category and A is an oco-precategory then the oco-category
RHom(A, C) is presentable. This follows from Example 2.3.16 and the fact that colimits are calcu-
lated pointwise in functor categories. In particular, the oco-category of prestacks Pr(A) is presentable.
Furthermore, if C' and D are presentable co-categories then RHom®**(C, D) is presentable.

Let Cat?_ denote the full subcategory of Cat_ spanned by the presentable oco-categories and colimit
preserving functors.

Example 2.3.19. Let C be a presentable co-category. Then the overcategory C,, and the undercategory
C/, are presentable (Proposition 5.5.3.10 and Proposition 5.5.3.11 of [Lu]).

Let C be an co-category and S a set of arrows of S. In the setting of presentable co-categories, the
theory of localisations of Section 2.2 has a simple characterisation: LgC' can be identified with a full
subcategory of C. An object x in C is said to be S-local if for every arrow f :y — z in S, the induced
map C(z,z) — C(y, 2) is an equivalence in K. An arrow f : 2 — y in C is said to be an S-equivalence
if for every S-local object z in C, the induced map C(y, z) — C(x, z) is an equivalence in K. Let C be
a presentable oo-category and (LsC,[) a localisation of C in the (oo, 2)-category Cat? . Then an object
x in C' is S-local if and only if it belongs to LgC'. Furthermore, every element of S is an S-equivalence
in C. A localisation in the setting of presentable co-categories will be called a Bousfield localisation to
distinguish from the more general localisation of Definition 2.2.1.

Proposition 2.3.20. Let C be an co-category. The following conditions are equivalent.
1. The oco-category C' is presentable.

2. There exists a combinatorial simplicial model category 4 and an equivalence

C~LA.

3. There exists a reqular cardinal k and an equivalence C — Ind, (D) for a k-cocomplete co-category

D.
4. There exists a small co-category D such that C is an (accessible) localisation of Pr(D).

Proof reference. The equivalence between (1) and (2) follow from Proposition A.3.7.6 of [Lu] together
with the equivalence N(.#°) — L.#. The others follow from Theorem 5.5.1.1 of loc. cit.. See also
[S3]. O
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Let C be a presentable co-category. By Proposition 5.5.2.2 of [Lu], a functor F : C? — K is
representable if and only if it preserves small limits. Similarly, a functor F' : C' — K is corepresentable
if and only if it is accessible and preserves small limits (Proposition 5.5.2.7 of [Lu]). An important
ramification of the representability statement is that a presentable co-category is bicomplete. We also
have the following adjoint functor theorem:

Proposition 2.3.21. Let C and D be presentable co-categories. A functor F : C — D admits a right
adjoint if and only if it preserves small colimits. It admits a left adjoint if and only if it is accessible and
preserves small limits.

Proof reference. See Corollary 5.5.2.9 of [Lul. O

Let C be an oo-category. A full subcategory D of C is said to be stable under colimits if for all
I € Fatw, the functor colim; factors through D. Let C admit all small colimits and {z,} be a set of
objects of C. Then the {z,} are said to generate C under colimits if for any full subcategory D of C
containing {z,,} which is stable under colimits, we have C = D. A map F : I — C is said to generate C
under colimits if the image F(Ob(I)) generates C under colimits.

If k is a regular cardinal, an oco-category C' is said to be x-compactly generated if it is presentable and
k-accessible. An oo-category which is w-compactly generated will simply be called compactly generated.
An oo-category C is k-compactly generated if and only if there exists a small co-category D which
admits k-small colimits and an equivalence C' — Ind, (D). For example, the oo-categories K and Catd,
are compactly generated.

If C' is an oco-category which admits colimits along AP then an object = in C' is said to be projective if
the functor C'(x, ) : C' — K corepresented by x preserves colimits along A°P. The collection of projective
objects in an oo-category is stable under finite coproducts. Let C' be an oco-category which admits small
colimits and {z, } a collection of objects of C. The collection {z,} is said to be a set of compact projective
generators for C' if it satisfies the following conditions:

e Each element of {z,} is both a projective and compact object of C.
e The full subcategory of C spanned by the elements of {z,} is essentially small.
e The collection {z,} generates C' under small colimits.

If C is an co-category which admits small colimits then C' is said to be projectively generated if there exists
a set of compact projective generators for C'. For example, the co-category K is projectively generated.
Its set of compact projective generators is the set of spaces which are homotopy equivalent to finite sets.
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3 Monoidal structures

In Section 3.1 we discuss the general theory of monoidal (0o, n)-categories. We will only need the special
case of n = 1 and n = 2 but it is convenient and instructive to state our definitions for all n. The indexing
category used throughout this section determines whether the monoidal structure is symmetric or merely
associative. Thus we will generally speak of an O-monoidal structure where O = I' determines the
symmetric case and O = A° determines the associative case (see Notation 1.1 for the definitions of the
various indexing categories used here). We describe the general procedure of associating an O-monoidal
oo-category to an O-monoidal category refining the localisation process of Section 2.2. More generally,
one can associate an O-monoidal (oo, n)-category to a € at (o ,—1)-enriched O-monoidal model category.
An important result is then Proposition 3.1.7 which is an (oo, n)-categorical version of the Grothendieck
construction which associates to a functor, taking values in the model category of (oo, n)-categories, a
certain cofibered (oo, n)-category. This construction is very useful for endowing an (oo, n)-category with
a monoidal structure. In this section we also define lax O-monoidal functors and O-monoid objects whilst
describing several important examples.

In Section 3.2 we define the (oo, n)-category of O-module objects in an O-monoidal (0o, n)-category
(passing to the opposite (oo, n)-categories defines the (oo, n)-category of O-comodule objects). This
utilises the general notion of an (co,n)-category being O-tensored of an O-monoidal (co,n)-category.
We define what it means for an (oo, n)-category O-tensored over a O-monoidal (co,n)-category to be
enriched and cotensored. We also recall the proof giving conditions on a presentable co-category to be
enriched and cotensored over an O-monoidal oo-category. We then recall from [LIII] the construction
of the symmetric monoidal structure on the oo-category of modules and construct an extension to the
(00, n)-categorical case. This enables us to define the (oo, n)-category of commutative algebra objects
in a symmetric monoidal (oo, n)-category. Finally we describe the very useful result of the equivalence
between the (oo, n)-category of commutative R-algebra objects in a symmetric monoidal (oo, n)-category
and the (0o, n)-category of commutative monoid objects under the object R.

In Section 3.3 we introduce the notion of a stable co-category. A stable co-category can be described
as a pointed oo-category with finite limits whose loop space functor is an equivalence of oco-categories
(Proposition 3.3.2). Stable co-categories replace the role of abelian categories in the co-category realm.
Indeed, after defining the co-category Sp of spectrum objects in the co-category of spaces, called spectra,
together with its natural symmetric monoidal structure, we will see in Proposition 3.3.13 that every
stable co-category is naturally enriched over spectra. Endowing Sp with its natural t-structure, Propo-
sition 3.5.14 states that the heart of Sp is equivalent to the category of abelian groups.

The next step is to introduce our notion of ring in the oo-categorical context. Since a commutative
ring in classical algebra is simply a commutative monoid object in the category of abelian groups, it is
natural to define a “generalised” commutative ring as a commutative monoid object in the co-category
of spectra. These objects, called commutative ring spectra or more simply F..-rings, are introduced
in Section 3.4. An important subcategory of F..-rings are those which are connective: objects whose
nth homotopy group of underlying spectra vanishes for n < 0. We show in Proposition 3.5.15 that the
subcategory of connective 0-truncated E-rings is equivalent to the category of commutative rings.

In Section 3.5 we provide a brief review of t-structures in the oco-categorical context. Our main
examples are the canonical non-degenerate t-structures on the co-category of spectra and the co-category
of modules over an F.-ring. We define the notions of t-exactness and what it means for a functor between
stable oco-categories to create a t-structure. We discuss the heart of a stable oo-category admitting
a t-structure and show that it admits a symmetric monoidal structure when the stable co-category is
symmetric monoidal. Finally we prove an important lemma which provides conditions under which
a functor between stable co-categories admitting non-degenerate t-structures commutes with limits of
cosimplicial objects (Lemma 3.5.16).

In Section 3.6 we introduce the notion of an R-linear co-category for R a commutative monoid object in
a symmetric monoidal co-category (Definition 3.6.1). When R is an E.-ring we extend this to define the
(00, 2)-category Tensl,%X of R-tensor oo-categories and lax symmetric monoidal functors (Definition 3.6.8)
which makes use of a lax comma category construction. An R-tensor co-category is a symmetric monoidal
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oo-category which is R-linear, stable and presentable. We give two examples of R-tensor oo-categories

arising from the theory of differential graded categories and spectral categories. An important ingredient

in the Tannaka duality theorem for co-categories is Conjecture 3.6.10 which states that the co-category

of commutative R-algebras is equivalent to the oco-category of endomorphisms of the co-category Modg

of R-modules in an appropriate subcategory of the (0o, 2)-category of R-tensor oo-categories and lax

symmetric monoidal functors. Assilming this conjecture we find that the oco-category of comonads on
ax

Modpg in the (oo, 2)-category Tensg® is equivalent to the oo-category of comonoid objects in the oo-
category of R-algebras.

3.1 Monoidal (oo, n)-categories

Throughout this section we will let O denote an element of the two object set {A°P,T'}. For each n > 1
and 0 < ¢ < n, consider the n inclusions p; : [1] — [n] in A given by p;({0,1}) = {i — 1,i} and the n
pointed maps p; : [n] — [1] in T given by p;(j) = {j} if ¢ = j and p;(j) = * otherwise.

Definition 3.1.1. Let .# be a model category. An O-Segal monoid object in A is a functor A : O — A

such that for each n > 0, the map

IT; Ap:)
—_—

A([n]) A"

is a weak equivalence in ./ .

Let SeMon® (.#) denote the full subcategory of Hom(Q,.#) spanned by the O-Segal monoid objects.
By convention, the map A([0]) — * is a weak equivalence in the definition of an O-Segal monoid object.

Remark 3.1.2. Let n > 1, 0 < i <n and p; : [n] — [1] be the map in A given by p;(j) = {j} ifi =3
and @) otherwise. A Segal monoid object in .# can also be described as a functor A : Ay — .# such that

[T, A(pi)
-

A([n]) A"

is a weak equivalence in ..

Let .# be an excellent model category and &/ an .#-enriched model category. It is well known
that there exists a model structure on the .#-enriched category of functors «7©, given by a Bousfield
localisation of the projective model structure, whose fibrant objects are precisely the O-Segal monoid
objects. We denote this .#-enriched model category by SeMonO(,Qf ). and call it the special model
structure. Let RSeMon® («7) denote the full subcategory of RHom(O, /) spanned by the O-Segal monoid
objects. Then from Section 2.2 we have equivalences

L(SeMon® (/) &) ~ (SeMon® (/) 5)° ~ RSeMon® (L.¢7) ~ RSeMon® («7°)
in Cat(.#).

Definition 3.1.3. An O-monoidal (00, n)-category is an O-Segal monoid object in the model category
G at (s0,n) of (00, n)-categories.

An O-monoidal functor is simply a natural transformation of functors. A A°P-monoidal (oo,n)-
category will be called a monoidal (co,n)-category and a I'-monoidal (oo,n)-category a symmetric
monoidal (co,n)-category. Likewise for O-monoidal functors. Since €at( ) is a @at (s n)-enriched
model category, the model category SeMon® (€at(son)). is the Cat (o ny-enriched model category of O-
premonoidal (0o, n)-precategories. Let @?wm) := RSeMon® (LCat(oon)) = RSeMon® (Cat(y ) denote
the (0o, n + 1)-category of O-monoidal (0o, n)-categories. In particular we denote by:

o %&)n) := RSeMon®"” (Cat (s ) the (00,1 + 1)-category of monoidal (oo, n)-categories.

° %?1;40)”) = RSeMonF(%(

s0,n)) the (00, n + 1)-category of symmetric monoidal (oo, n)-categories.
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Note by Proposition 2.2.6 that there exists an equivalence
RM(O, ((gat(oo,n))o) - ((Cgat(oo,n))o)o

of €'at (o ,)-enriched categories. This important strictification result enables us to consider the (oo, n+1)-
category of O-monoidal (0o, n)-categories as ordinary functors into €'at () (as in the right hand side)
as opposed to the much less explicit description of functors into some fibrant replacement of €at (o y)-
Let A be an (0o, n)-category. The underlying (oo, n)-category of an O-monoidal (0o, n)-category A is
given by A([1]). More explicitly, an O-monoidal (oo, n)-category A encodes the following structure:

e A unit object 14 : A([0]) — A([1]) induced by the zero map [0] — [1] in O.
e An O-monoidal product ® : A[1] x A[1] — A[1] given by the composition
A1) x A1 = A({0,1}) x A({1,2}) < A((2)) — A({0,2}) = A[1]
induced by the three inclusions [1] < [2] in O.
e All higher homotopy coherences of the O-monoidal product.

Let C' be a O-monoidal (0o, n)-category. Then the homotopy n-category h,C' inherits the structure
of a O-monoidal category. It is simply given by the composition

@ i ‘Kat(oo,n) h."> Catn — Cgat(oo,n)

which satisfies the conditions to be an (O-Segal monoid object owing to the fact that the functor h,
commutes with finite products. In the opposite direction, let (C,.S) be a pair consisting of a O-monoidal
category C' together with a set of arrows S of C containing all the isomophisms and such that the
tensor product bifunctor preserves maps in S. Then we can associate to (C,S) a symmetric monoidal
oo-category LgC as follows. Let Fin denote the O-monoidal category of finite sets and bijective maps.
We first consider the functor

No(C): O — Cat
[n] = Hom® (Homg ([n], Fin), C)

where Hom$ ([n], Fin) is the O-monoidal category of functors sending 0 to 1. Composing N (C) with
the inclusion Cat — (Cats,)®, we obtain a functor

No : Cat® — Cat?

where No(C) : O — Fat is a symmetric monoidal co-category with the property that No(S),, = S,.
We now set
LEC: O — Faty,
[n] = Ls,No(C)

which is a O-monoidal co-category owing to the fact that the localisation L preserves finite products. We
also obtain the following universal property: for every O-monoidal co-category D, the induced map

RHom® (LY C, D) — RHom® (C, D)

is fully faithful and its essential image consists of those symmetric monoidal functors F' : C' — D which
send each arrow of S in C([1]) to an equivalence in D([1]). When .# is a symmetric monoidal model
category we set LO.# := LY, .#°. The underlying O-monoidal category L°.# ([1]) is equivalent to L. .

Lemma 3.1.4. Let # be a monoidal model category and </ a combinatorial O-monoidal A -enriched
model category. Then the tensor product on LO .o/ preserves (small) colimits separately in each variable.
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Proof. Since h.es is closed with respect to the O-monoidal structure, the functor x ® e commutes with
colimits since it is a left adjoint. O

Although the definition of an @-monoidal (0o, n)-category as a O-Segal monoid object is useful in a
variety of applications, it is often easier to construct an O-monoidal (0o, n)-category using the language
of cofibered (oo, n)-categories which we introduce here. For the special case of n = 1 see Section 3.2 of
[Lu] and Section 1.3 of [TV3]. Let I be a category and consider an object p : A — I in the category
(Cat(s,n))/r- An arrow f in A(a,b) is said to be p-cocartesian if for all ¢ € A, the induced morphism

A(b7 C) - A(CL, C) ><I(p(a),p(c)) I(p(b),p(c))
is a weak equivalence in ¢'at (o n_1)-

Definition 3.1.5. An object p : A — [ in the category (€at( )/ is said to be a cofibered (co,n)-
category if for every arrow u : ¢ — j in I and every object a in A with p(a) = 4, there exists a p-cocartesian
arrow f such that p(f) is isomorphic to v in the undercategory I;,. A morphism in the homotopy category
of (‘Kat(oo’n)) /1 1s said to be cocartesian if it preserves cocartesian arrows.

The (non-full) subcategory of h((€'at(s,n)),/r) consisting of cofibered objects and cocartesian mor-
phisms will be denoted by h((%at(w,n)),r). An important observation is that the condition to be
cofibered is stable by equivalences in €at (o ). There exists a Quillen adjunction

/ : (Cgat(m,n))l =2 (Cat(son))/1 : Secy
I

which is defined as follows. The left adjoint [, acts on a functor F' : I — €at (s n) to give the (co,n)-
precategory of elements of F, ie. the objects of f[ F are pairs (i, X) where ¢ € I, X € F(i) and

(/IF)((i17X1)7'">(in7Xn)) =[] Flin)(X1....,X0)

11—

for objects {(ix, X&) }1<k<n where the X}, on the right hand side now denote the image of X, € F (i) by
the maps F'(ix) — F(i,). The sum is over all diagrams in I of the form i; — ... — 4,. The right adjoint
Secy acts on an object A — I of (€at(o n))/1 as

Secr(A) := Hom;(e/7, A) : I — Cat(on)-

Since f ; breserves weak equivalences between cofibrant objects and Sec; preserves weak equivalences
between fibrant objects we obtain a derived adjunction

L / B((at (o)) = h(Fat(om),r) : RSecr.
I

The left derived functor L [, factors through the subcategory h((€at (s n)) 1), To see this let
p: A= ]LfIF — I be the image of the functor F' : I — %at( ) by the map fl. We can suppose
that p is a fibration of (0o, n)-categories since the property of being fibered is invariant by equivalences in
(€at(so,n))/r- Let u:i— jbean arrow in I and a € A with p(a) ~ 4. As p is a fibration, the isomorphism
p(a) ~ i can be recovered from an equivalence a — a’ in A with m(a’) = i. Thus we can continue by
assuming that p(a) = i. The object a is then of the form (i, X) with X € F (). Let Y = F(u)(X) € F(j).
Then the arrow u and the identity id : Y — Y define an element

€ (L/IF)((LX%(%Y)) = 11 FOH(X),Y)

vii— g
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with p(a) = u. Also, if (k, z) € A, the following square

[T F®)y).2) = T Fk)(w(x)2)

vij—k wii—k

I1(y,k) I(i,k)

op(a)
is a pullback and hence a homotopy pullback since the map op(«) is a map between discrete simplicial
sets. This shows that « is cocartesian with p(«) = u and hence that p is fibered. It remains to show that
if f: F — G is a morphism in (€'at (s )", then the induced map L [, f : L [, F — L [; G is cocartesian.
Since the map L [, f sends an arrow (u, &) in L [; F' to the arrow (f(u), f(«)) in L [; G, the result follows
from the following lemma.

Lemma 3.1.6. An arrow (u,) in ([; F)((i,X),(4,Y)) is cocartesian if and only if o is an equivalence

Proof. By definition the pair (u, ) consists of a map u : i — j together with a map « in F(j)(u.(X),Y).
Let us assume firstly that (u, «) is cocartesian. Then there exists a homotopy pullback square

[I FR)(v),2) == [ Fk)(r(X),2)

w:j—k Kii—k

I(p(Y),p(2))

e L 0(X), p(2)).

Since the square is a homotopy pullback, the homotopy fiber of p over an object v in I(p(Y),p(Z)) is
equivalent to the homotopy fiber of p over v o w, ie. for all Z € F(k), the map

oa: F(k)(v.(Y), Z) — F(k)(v.u.(X), 2)

is an equivalence. By the Yoneda lemma, this implies that « is an equivalence in F(j). The converse
follows similarly. 0

Let RSec{® denote the subfunctor of RSec; formed by the cocartesian sections. This subfunctor acts
on a fibrant object p: A — I of (¥at(wn))/1 as

RSec{®(A) (i) = Hom§(i/7, A)

where the right hand side is the full sub-(oco, n)-category spanned by the cocartesian maps i,; — A. The
adjunction | ; 1 Secy induces, from the factorisation properties above, an adjunction L J ; 1 RSec?”.
Proposition 3.1.7. Let I be a category. Then the adjunction
L / 0(Cat oo m)') — h((Fatioon) 1) : RSecE
I

s an equivalence of categories.

Proof reference. The proof follows an analogous argument to that of the n = 1 case in [TV3]. O

Let A be an (oo, n)-precategory and Ap, the fiber of the map p: A — O at [n] € O. Proposition 3.1.7
states that a O-monoidal (oo, n)-category may be described as a cofibered object p : A — O in the
category h((¢'at(so.n))/0) such that

I, i n
Ap) —— (Apy)
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is an equivalence of (co,n)-categories for each n > 0 (here the p; are the same maps in O given at the
start of this section). We identify Ap) with the underlying (oo, n)-category of A. We will often abuse
notation by referring to an @-monoidal (0o, n)-category p: A — O as simply A.

Let p: A — O be an O-monoidal (co,n)-category. Then an arrow f in A is said to be p-inert if f is a
cocartesian arrow in A such that p(f) is inert in O (see Notation 1.1 for the definition of an inert arrow
in O0).

Definition 3.1.8. Let p: A — O and ¢ : B — O be two O-monoidal (co,n)-categories. A functor
F : A — B is said to be O-monoidal if the diagram

A - B

o

commutes and F' carries p-cocartesian arrows to g-cocartesian arrows. It is said to be lax O-monoidal if
F' carries p-inert arrows to g-cocartesian arrows.

Let RHom% (A, B) and RHom@* (A, B) denote respectively the full subcategory of the (0o, n)-category
RHom (A, B) spanned by the O-monoidal and lax O-monoidal functors.

We have an equivalence between the (co,n + 1)-category of O-monoidal (oo, n)-categories and the
(00, + 1)-category consisting of O-monoidal (oo, n)-categories p : A — O with mapping space between
two objects p: A — O and ¢ : B — O given by Map(A, B) := RHom (A, B). We abuse notation by also
referring to this (oo, n+1)-category as %fﬂo’n): it will be clear from the context if we are considering our
O-monoidal (0o, n)-categories as Segal monoid objects or as cofibered objects. Similarly, we denote by
%fmla;) the (oo, n+1)-category consisting of O-monoidal (oo, n)-categories with mapping space between

two objects p: A — O and ¢ : B — O given by Map(A4, B) := RHom](%X(A, B).

Definition 3.1.9. Let p: C — O be a O-monoidal (0o, n)-category. A O-monoid object in C'is a lax O-
monoidal section of p (where the identity map O — O endows the trivial category [0] with a O-monoidal
structure).

The (00, n)-category of O-monoid objects in C' will be denoted Mon®(C) := RHom&*(O, C) . When
O = A the (oo,n)-category of O-monoid objects, called monoid objects, will be denoted Mon(C).
When O = T, the (0o, n)-category of O-monoid objects, called commutative monoid objects, will be
denoted CMon(C). An O-comonoid object in C' is a O-monoid object in C°?. Let Comon®(C) denote
the (oo, n)-category of O-comonoid objects in C, Comon(C) the (oo, n)-category of comonoid objects
in ¢ and CComon(C') the (oo, n)-category of commutative comonoid objects in C. For a O-(co)monoid
object A, we will sometimes use the notation A,, := A([n]).

Example 3.1.10. Let p: C — O be an O-monoidal (oo, n)-category and A an (oo, n)-precategory. Then
the (oo, n)-category RHom(A, Cfy1) inherits the structure of a O-monoidal (0o, n)-category RHom(A, C) —
O called the pointwise O-monoidal structure where we define

RHom(A, C) := RHom(A, C) X priom(4.0) O

giving RHom(A4, C),) ~ RHom(A4, Cppy). As a result, there exists an equivalence

Mon® (RHom(A, C)) — RHom(A, Mon®(C'))

of (00, n)-categories.
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Example 3.1.11. Let C' be a O-monoidal (oo, n)-category and Dpyj a full subcategory of Cpyj. Assume
that for every equivalence x — y in Cfy, if y € Dpyj then x € Dypyy. Define a subcategory D of C by
letting an object x € (Y, belong to D if and only if the image under [];(p:)« : Cf,) — (Cp1))™ belongs to
(Dpyy)". Then it is clear that the restriction map D — O is a O-monoidal (oo, n)-category if D is closed
under tensor products and contains the unit object of C'.

Example 3.1.12. Let p : C' — I' be a symmetric monoidal co-category. Then by Example 1.8.20 of
[LITI], there exists a symmetric monoidal structure on the co-category CMon(C') of commutative monoid

objects in C, induced by the that on C, which we will denote by CMon(C'). Moreover, by Proposition
2.7.6 of loc. cit., the tensor product of commutative monoid objects corresponds to the coproduct.

Example 3.1.13. Let C be a symmetric monoidal co-category. Then the oo-category Pr(C) of prestacks
on C' admits a symmetric monoidal structure which is characterised, up to symmetric monoidal equiva-
lence, by the properties that the tensor product bifunctor ® : Pr(C) x Pr(C) — Pr(C) preserves small
colimits seperately in each variable and that the Yoneda embedding C' — Pr(C) can be extended to a
symmetric monoidal functor. Similarly, if C' admits finite colimits and the tensor product bifunctor pre-
serves finite colimits seperately in each variable then the co-category Ind(C) of ind-objects of C' admits
a symmetric monoidal structure which is characterised, up to symmetric monoidal equivalence, by the
properties that the tensor product bifunctor ® : Ind(C) x Ind(C) — Ind(C') preserves small colimits
seperately in each variable and that the Yoneda embedding C' — Ind(C) can be extended to a symmetric
monoidal functor. These two statements follow from a more general statement for a symmetric monoidal
oo-category C' admitting colimits indexed by an arbitrary collection of simplicial sets. See Proposition
4.1.8 of [LIII] for a precise statement.

Example 3.1.14. Let C' be an (co,n)-category and x be an object of C. The (co,n — 1)-category
End(x) := C(z, ) of endomorphisms of X admits a monoidal structure given by composition where

End(z) : A? — Gat (oo n-1)
[n] — C(z,...,x)

is a functor satisfying the Segal condition. A (co)monad on an object x in an (oo, n)-category C' is a
(co)monoid object of End(x). Thus Mon(End(z)) and Comon(End(x)) denotes respectively the (0o, n—1)-
category of monads and comonads on an object z in an (0o, n)-category with respect to the composition
monoidal structure.

Example 3.1.15. Let .# be a combinatorial monoidal model category. It follows from Theorem 1.6.17
of [LIT] that if every object of .#Z is cofibrant then there exists an equivalence

L(Mon(.4)) — Mon(L(A4))

of oco-categories. Equivalently, the statement holds if the cofibrant condition on objects is replaced by
the conditions that the model category . is left proper, the class of cofibrations in .# is generated by
cofibrations between cofibrant objects, the monoidal structure on . is symmetric and .# satisfies the
monoid axiom (see Definition 3.3 of [SS2]). Similarly, by Theorem 4.3.22 of [LIII], if .# is a combinatorial
symmetric monoidal model category with the conditions that .# is left proper, the class of cofibrations
in ./ is generated by cofibrations between cofibrant objects, .# satisfies the monoid axiom and every
cofibration in .# is a power cofibration (see Definition 4.3.17 of loc. cit.) then the map

L(CMon(.#)) — CMon(L(.#))
is an equivalence of co-categories.

Proposition 3.1.16. Letp : C — O be a monoidal (0o, n)-category. Then the (co,n)-category Mon® (C)
has an initial object A such that the unit map 1c,,, — A([1]) is an equivalence in Cyyj.
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Proof reference. The proof follows an analogous argument as the (oo, 1)-categorical statement as covered
in Proposition 1.4.3 of [LII] (monoidal case) and Corollary 2.3.10 of [LIII] (symmetric monoidal case). O

We will now show that O-monoidal (0o, n)-categories also naturally arise from €at (o ,—1)-enriched
categories equipped with a O-monoidal structure. More generally, given an O-monoidal €'at (o n—1)-
enriched model category, one can construct a O-monoidal (oo, n)-category.

Construction 3.1.17. Let .# be a model category and C' an .#-enriched category with a weakly
compatible @O-monoidal structure. We define an .#-enriched category C as follows:

e An object is a pair ([n], (zo,...,2,)) where each z; € C.

e The mapping space between two objects ([n], zs), ([m], ye) is given by

C((In],aa), (Imlwe)) = 1 H C(Q i y))
wn]—[m] \j€[m]-{0}  u(i)=j

Proposition 3.1.18. Let C' be a fibrant € at (o n—1)-enriched category and C the € at(so,n—1)-enriched

category of Construction 3.1.17 . Then the forgetful map p : C — O is an O-monoidal (00, n)-category.

Proof. We first show that p is a cofibered (0o, n)-category. Let u : [n] — [m] be a map in O and ([n], z.)
an object of C over [n]. We choose an arrow f : ([n], ze) — ([m],ys) in C where p(f) is isomorphic to u in
Opyy such that f; : @ x; — y; is an equivalence for each 1 < 7 < m. The arrow f is p-cocartesian
by definition if

u(i)=j

C(([ml, yo)s ([0, 20)) = C(([n], ), ([1]; 20)) X0 (g, O[m], (1))

is an equivalence in €at(s ,—1) Which translates into the requirement that

Q) wjs2) ( & =)

v(j)=k (vOU)(i):k
is an equivalence. Thus it suffices to show that the map f’ : ®(vou)(i):k T; — ®v(j):k y; is an equivalence
in C. This follows since f = @, ;) f; where each f; is an equivalence. Finally, the maps p; : [n] — [1]

in O induce an isomorphism 5[n] ~ Cn by observation. O

Let &/ be an O-monoidal .#-enriched model category for an aribitrary monoidal model category .#
(see Definition 7.1.10 of Section 7.1). Let o be defined as in Construction 3.1.17. We will denote by o°

the full subcategory of o spanned by those objects ([n], (xq, ..., 2,)) where each z; is a fibrant-cofibrant
object of <.

Proposition 3.1.19. Let & be an O-monoidal € at (s ,,—1)-enriched model category and let o be defined
as in Construction 3.1.17. Then the forgetful map p : &/° — O is an O-monoidal (00, n)-category.

Proof. We first show that p is a cofibered (0o, n)-category. Let u : [n] — [m] be a map in O and ([n], ze)
an object of & over [n]. We choose an arrow f : ([n],ze) — ([m],ye) in &° where p(f) is isomorphic
to u in O, such that f; : ®u(z) ;T —yjisa trivial cofibration for each 1 < 57 < m. The arrow f is
p-cocartesian by definition if

A (([m], y), ({1, 20)) = o (([n] a), (1], 20)) Xt 1) O[], 1)

is an equivalence in €’at(s ,,—1)- This translates into the requirement that

A Q) vipnan) = ( Q) @i )

(i) =k (vou) (i) =k
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is an equivalence. Thus it suffices to show that the map f’ : ®(vou)(i):k T; — ®U(j):k y; is a weak
equivalence in /. This follows since f’ = ®v( )=k fj where each f; is a weak equivalence. Finally, the

maps p; : [n] — [1] in O induce an isomorphism (,sz?g )] (,557\6)" by observation. O

Example 3.1.20. The model category €'at (o ) of (00, n)-categories is an O-monoidal ¢'at ( ,)-enriched
model category for the cartesian product. Thus Cat ., ,,) := L(%'at( n)) is a monoidal (oo, n)-category.

Explicitly, the cofibered category @(m_’n) = (%(wm))o is given as follows:

e The objects are pairs ([n], (Co, ..., Cy)) where [n] is an object of O and each C; is a fibrant (co,n)-
precategory.

e A map between two objects ([n],Cs) and ([m], D) is a map u : [n] — [m] in O together with a

collection of functors [[,;—; Ci — D;.

When the (0o, n + 1)-category Cat(oo’n) is equipped with the cartesian monoidal structure then
Mono(avat(

oo,n)) - %?oo,n)

is an equivalence of (0o, n + 1)-categories. This follows from the following more general equivalence. Let
p: C — O be an O-monoidal (oo, n)-category and D an arbitrary (oo, n)-category. Let u : [1] — [n]
denote the map [1] ~ {0,n} — [n] in A and u : [n] — [1] denote an active arrow in I'. A functor
F:C — D is said to be a lax cartesian structure if for any pair (z, f;)1<i<, Where x is an object in Cj,
and f; : © — x; denote the natural maps in C' under [],(pi)« : Cpn) — (Cpy)™, then F(z) = [[, <<, F(z:)
in D. It is said to be a weak cartesian structure if it is a lax cartesian structure such that for any
p-cocartesian arrow f : x — y in C under uy : Cj,) — Cpyj, then F(f) is an equivalence in D. It is said
to be a cartesian structure if F' induces an equivalence Cj;) — D. Let RILI()imx’lax(C7 D) denote the full
subcategory of RHom(C, D) spanned by the lax cartesian structures. Then for any cartesian structure
F : C — D, composition with F' induces an equivalence

Mon?(C') = RHom5* (0, C) — RHom™"'** (0, D) = RSeMon® (D)
of (00, n)-categories. See Proposition 1.4.14 of [LIII] for a proof in the (0o, 1)-categorical case.

Proposition 3.1.21. Let F : C — D be a O-monoidal functor between O-monoidal (00, n)-categories.
Then F is an equivalence if and only if F induces an equivalence of underlying (0o, n)-categories.

Proof. Let us assume that Cj;) — Dy is a categorical equivalence. We will show that F' is fully faithful
and essentially surjective. Since Dy,) ~ (Dpyj)" then F' is O-monoidal if and only if for every p-cocartesian
arrow f in C covering a map u : [1] — [n] in O, the image F(f) is a g-cocartesian arrow in D. Let z,y € C
and let @ : 2’ — y be a p-cocartesian arrow of C' lifting u. Then there exists a diagram of homotopy fiber
sequences

C’[1] ('Ia .Z‘/)

Dy (F(x), F(2))

C(x,y)

O([1], [n))-

Since the top horizontal map is an equivalence by assumption, F' is fully faithful. It is essentially surjective
since any z € D is equivalent in Dy, to the image by F' of some z in Cf,. O
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Let C be a symmetric monoidal co-category. A symmetric monoidal structure on C' is said to be
compatible with countable colimits if for any simplicial set A with only countably many simplices, the
oo-category C' admits A-indexed colimits and for any « in C, the functor e ® x : C — C preserves these
colimits. If C' is compatible with countable colimits then the forgetful functor CMon(C) — C admits a
left adjoint

Fr: C — CMon(C)

which we refer to as the free functor. A precise statement can be found in Proposition 2.6.8 of [LIII]. If
C is equivalent to L.# for .# a symmetric monoidal model category then Fr is equivalent to a functor
Fr: L.# — L(CMon(.#)) by Example 3.1.15 so

Fr(z) = LSym(z)
where Sym(z) := [[,,50 #®"/Z,.

3.2 Modules and comodules

Definition 3.2.1. Let p: D — O be a O-monoidal (0o, n)-category. An (co,n)-category C' is said to be
O-tensored over D if there exists a map F': C' — D in €at( ) such that:

1. The composition (po F) : C' — O is cofibered in (€at(on)) /0
2. The map F carries (p o F')-cocartesian arrows of C' to p-cocartesian arrows of D.

3. For each n > 0, the inclusion {n} C [n] induces an equivalence Cj,) — D, x C{,} of (oo, n)-
categories.

Let C be an (oo, n)-category O-tensored over D. We will refer to the fiber Cg as the underlying
(00, n)-category of C' and by abuse, also denote it by C'. We obtain a natural diagram

Cioy < Cpp = Dy x Oy

which induces an O-monoidal bifunctor @ : D) x Clgp — Clg), together with its higher (-monoidal
structure, which is well defined up to homotopy. An (oo, n)-precategory C which is A°P-tensored over
D is said to be left-tensored over D. An (0o, n)-precategory C' which is I-tensored over D is said to be
simply tensored over D. One can similarly define an (co, n)-precategory right tensored over a monoidal
(00, n)-category by replacing the inclusion {n} C [n] in Definition 3.2.1 by the inclusion {0} C [n].

Proposition 3.2.2. Let C be a O-monoidal (00, n)-category. Then the O-monoidal product ® : C x C —
C endows C with the structure of an (0o, n)-category O-tensored over itself.

Proof. The case of n =1 and O = A°? was given in Example 2.1.3 of [LII]. A similar argument can be
used to prove this more general case. O

Definition 3.2.3. Let A be a monoidal (0o, n)-category and C an (oo, n)-category left-tensored over A.
Let a € A and z,y € C. If the functor

AP — %(oo,nfl)
ar—Cla®w,y)

is representable, the representing object will be denoted Mor(z,y) and called the morphism object of x
and y. The (0o, n)-category C is said to be enriched over A if the functor is representable for all z,y € C.
If the functor

c? — %(oo,n—l)
z— Cla®x,y)

is representable, the representing object will be denoted Exp(a,y) and called the exponential object of a
and y. The (oo, n)-category C' is said to be cotensored over A if the functor is representable for all a € A
and y € C.
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It follows directly from Definition 3.2.3 that morphism objects are characterised by the following
universal property: there exists a map ev : Mor(z,y) ® x — y such that composition with ev yields an
equivalence

A(a,Mor(z,y)) — Cla © ,y)

of (0o, n — 1)-categories. Likewise, exponential objects are characterised by the following universal prop-
erty: there exists a map ev : a ® Exp(a,y) — y such that composition with ev yields an equivalence

C(z,Exp(a,y)) = Cla® z,y)

of (co,n — 1)-categories. The composition Mor(y, z) ® Mor(z,y) ® © <> Mor(y, 2) ® y > z yields a
composition map
Mor(y, z) ® Mor(x,y) — Mor(z, 2)

and the chain of equivalences A(b, Mor(a, Mor(z,y))) ~ A(b®a, Mor(z,y)) ~ C(b®a®z,y) ~ A(b, Mor(a®
x,y)) yields an equivalence
Mor(a, Mor(z,y)) — Mor(a ® z,y)

of morphism objects.

Example 3.2.4. When C is a monoidal (0o, n)-category then C' is naturally left-tensored over itself. If
it is furthermore enriched, then the morphism object Mor(e, d) is just the internal Hom object Hom(c, d)
in C.

Proposition 3.2.5. Let A be a monoidal co-category and C' an co-category left-tensored over A. Suppose
further that C and A are presentable co-categories. Then the following hold:

1. The oo-category C' is enriched over A if the functor
oRxr:A—C
preserves small colimits for all x € C.

2. The co-category C' is cotensored over A if the functor
a®e:C —C
preserves small colimits for all a € A.

Proof. Let a = colim;a; be an object in A. A prestack is representable if and only if it preserves small
limits. Therefore, the oco-category C' is enriched over A if C(colim;a; ® z,y) ~ lim;C(a; ® z,y). By
assumption, C(colim;a; ® z,y) ~ C(colim;(a; ® x),y) which is naturally equivalent to lim;C(a; ® z,y).
The second statement follows similarly. O

Let C and D be (oo, n)-categories which are tensored over the (oo, n)-category Cat, and let

oco,n—1)
F : C — D be a functor. Then there exists a natural map

A® F(x) > F(A® )

for any (oco,n — 1)-category A and any object x in C. The functor F is said to preserve the tensored
structure if this map is an equivalence.

Proposition 3.2.6. Let C' and D be (00, n)-categories which are tensored over the (co,n)-category
Cat( 1y 0of (00,n — 1)-categories. Suppose that F': C — D is a functor which preserves the ten-
sored structure. Then F is an equivalence of (0o, n)-categories if and only if

A'F . &'C — &'D

is an equivalence of co-categories.
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Proof. Assume R'F is an equivalence. We will show that F is fully faithful and essentially surjective.
Since 7<1C is equivalent to 7<1 (&' C), essential surjectivity follows by assumption. Let A € Cat
and z and y be objects of C. Then we have the following diagram

oo,n—1)

(A,C(a:,y)) - MapCat‘x’ (A’D(F‘T7Fy))

n—1) (c0,n—1)

1\/IapCatQo
(o0,

Mapgio(A® z,y)

Map g p(F(A® ), F(y))

of Kan complexes. The lower horizontal arrow is an equivalence by assumption, the left vertical arrow
is an equivalence by the tensored property of C' and the right vertical arrow is an equivalence by the
tensored property of D together with the supposition that F' preserves the tensored structure. Thus the
upper horizontal arrow is an equivalence and F' is fully faithful. O

Definition 3.2.7. Let p : C — O be an O-monoidal (oo, n)-category and F : C — C' exhibit C as
O-tensored over itself. An O-module object of C is a functor A : O — C such that

1. If u: [n] — [m] is an inert map in O with u(n) = m then A(u) is a p o F-cocartesian arrow of C.

2. The composition F o A: O — C' is a O-monoid object in C. The map po F o A coincides with the
identity on O.

The information of Definition 3.2.7 is encoded pictorially in the following commutative diagram:

16) A . C

C.

Let ModO(C’) denote the full subcategory of Hom, (O, C) spanned by the O-module objects of C. When
O = A an O-module object will be called a left module object and we will denote the (oo, n)-category
of left module objects in C' by Mod”(C). When @ = T, an O-module object will be called a module
object and we will denote the (oo, n)-category of module objects in C' by Mod(C).

Let p: C — O be an O-monoidal (0o, n)-category, F : C — C exhibit C' as O-tensored over itself and
A an O-module object of C. Then the composition F o A induces a functor 6 : Mod® (C') — Mon®(C).

Definition 3.2.8. Let p: C — O be an O-monoidal (0o, n)-category and R an O-monoid object in C.
Then the (0o, n)-category of R-O-modules in C is given by the homotopy fiber §~1(R) of the forgetful
map 6 : Mod®(C') — Mon®(C).

We will denote by Mod%(C) the (co,n)-category of R-O-modules in C. When O = A%, an R-O-
module will be called a left R-module and we will denote the (oo, n)-category of left R-modules in C' by
Mod%(C). When O = T, an R-O-module will be called an R-module and we will denote the (co,n)-
category of R-modules in C by Modg(C). When the (0o, n)-category C is clear from the context, the
(00, n)-categories Mod%(C') and Modg(C) will be replaced by Mod and Modg respectively. Let C' be
an O-monoidal (0o, n)-category and R an O-comonoid object in C. By definition, the (oo, n)-category of
comodules in C over R is

Comod$(C) := Mod$§, (CP)°P.

Example 3.2.9. Many examples of oco-categories of modules arise from the localisation of model cat-
egories of modules. More precisely, let .#Z be a combinatorial O-monoidal model category and R an
O-monoid object of .#. Assume that R is cofibrant as an object of .Z (or in the symmetric case, that .#
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satisfies the monoid axiom [SS2]). Then the category Modg(.#) of R-modules admits a combinatorial
model structure where a map is a fibration if and only if it is a fibration in .# and a weak equivalence
if and only if it is a weak equivalence in .#. If .# is endowed with a simplicial model structure, then
Modpr(#) is a simplicial model category (Proposition 2.5.1 of [LII]). If we further assume that .# sat-
isfies the conditions of Example 3.1.15, furnishing an equivalence s : L(Mon®(.#)) — Mon® (L(.#)) of
oo-categories, then the natural map

L(Mod () — Mod$ g (L(.4))
is an equivalence of co-categories. This follows from Theorem 2.5.4 of [LII].

Notation 3.2.10. Let K*¢ denote the full subcategory of RHom([1],T") spanned by the semi-inert arrows.
Let K™% denote the full subcategory of K spanned by the null arrows. There are two natural maps
ev; : K* — T given by evaluation on ¢ € {0,1}. A morphism in K* is said to be inert if its images under
eo and e are inert in I

Let p : C — T be a symmetric monoidal (co,n)-category. We define an (oo, n)-precategory 9 (C')
through the following universal property: for every (oo, n)-precategory A equipped with a map A — T’
the map )

RHomp (A, M(C)) — RHoMpgom({1},1) (A XRHom({0}.r) K, C)
is an equivalence. Thus _
M(C)pn) — RHomppom ((13,1) (K5 C)

is an equivalence where Kﬁf]> denotes the homotopy fiber of K** — RHom({0},T) at [n]. An object of

IM(C)p is then given by a commutative diagram

K[Sf]> e

Let 9(C) denote the full subcategory of M(C') spanned by those vertices for which the functor F' preserves
inert morphisms.

Similarly we define an (oo, n)-precategory 2A(C) through the following universal property: for every
(00, n)-precategory A equipped with a map A — I' the map

RMF(A’ Q‘(C)) — RMRHOJ({lLF) (A X]RHoim({O},F) I(null7 C)

is an equivalence. Thus
A(C)n) — RHOMp g0 (1y.r) (K1Y, C)

[n]>>

is an equivalence where K ﬁﬁﬁ denotes the homotopy fiber of K™ — RHom({0},T") at [n]. An object of

(C)py is then given by a commutative diagram

null
K[1]> > C

Let 21(C) denote the full subcategory of 21(C) spanned by those vertices for which the functor F' preserves
inert morphisms. We define

Modg(C) := M(C) ¥ {R}-

Under some mild assumptions, the (0o, n)-category of R-modules inherits a symmetric monoidal structure.
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Proposition 3.2.11. Let C' be a symmetric monoidal (0o,n)-category and R a commutative monoid
object of C. If C' admits colimits of simplicial objects such that for every object x in C the functor e ® x
preserves these colimits, then the projection

p: Modg(C) =T
is a symmetric monoidal (0o, n)-category. The unit object of p is canonically equivalent to R.
Proof. The oco-categorical statement is part (1) of Proposition 3.6.6. in [LIII]. O

The symmetric monoidal product offered by Proposition 3.2.11 is called the relative tensor product
and for two R-modules M and N will be denoted M ® g N. See Section 4.5 of [LII] for a detailed discussion
of the relative tensor product functor. The above construction is functorial in p and hence we obtain a
functor

Mod(C) : CMon(C) — Catfg/[om)

R — Modg(C)
(ftR—=Q)—e®rQ

where e ®p @ is the symmetric monoidal base change functor left adjoint to the forgetful functor
Modg(C) — Modg(C).

Lemma 3.2.12. Let C be a presentable co-category satisfying the conditions of Example 3.2.9. Then the
bifunctor ® : Modg(C) x Modr(C) — Modg(C) preserves colimits seperately in each variable.

Proof. This follows from Example 3.2.9 and Lemma 3.1.4. O

——O0
Thus by Proposition 3.2.5, the symmetric monoidal co-category Mody (C') is cotensored and enriched
over itself.

Definition 3.2.13. Let C be a symmetric monoidal (oo, n)-category and R a commutative monoid object
of C'. Then an commutative R-algebra object in C' is a commutative monoid object in the symmetric
monoidal (oo, n)-category Modg(C).

Let CAlgg(C), or simply CAlgy, denote the (oo, n)-category CMon(l\//E)?lR(C)) of commutative R-
algebra objects in C. The (oo, n)-category CAlgg(C) inherits the structure of a symmetric monoidal
(00, n)-category where the tensor product is given by the tensor product in C' (see Example 3.1.12).
Furthermore, this tensor product coincides with the coproduct in the (oo, n)-category of commutative
R-algebras. We will denote this symmetric monoidal (oo, n)-category by C/Eg(C) = m(mR(C)).

Let C be a symmetric monoidal co-category such that the symmetric monoidal product preserves
(small) colimits separately in each variable and the fiber Y, is a presentable co-category for all n > 0.
In this case we will say that C is a presentable symmetric monoidal co-category. If C is a presentable
symmetric monoidal co-category then CMon(C) is a presentable co-category. This follows from Corollary
2.7.5 of [LIII]. Moreover, if C' is a presentable symmetric monoidal co-category then the oco-category
Mod r(C) is a presentable symmetric monoidal oo-category by Theorem 3.4.2 of [LIII]. Combining these
two results, the oo-category CAlgy(C') is a presentable oo-category.

Consider CMon(C)g, as the following (outer) homotopy pullback

CMon(C)g; — CMon(Mod(C)) — 4 RHom([1], CMon(C))

CMon(CMon(C) x I') 2 RHom({0}, CMon(C))
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where R is given by the composition of the lower horizontal arrows and 6 and 6’ are constructed as in

Section 3.2 of [LIII]. Then there exists a natural map g : CMon(l\//I\oTiR(C)) — CMon(C)g, given by
the universal property of the diagram.

Proposition 3.2.14. Let C be a symmetric monoidal (0o, n)-category, R a commutative monoid object
in C and Modg(C) the (00, n)-category of R-modules in C. Then there exists an equivalence

Or : CAlgp(C) — CMon(C) g,
of (00, n)-categories.

Proof. The (0o, n)-categories CAlgg(C) and CMon(C) g, are tensored over Cat ., ,,_1) and the map Op
preserves this tensored structure. Thus from Proposition 3.2.6 it suffices to prove the analogous statement
for co-categories. This follows from Corollary 3.2.7 of [LIII]. O

3.3 Stable oco-categories

In this section we will review the basic theory of stable co-categories. A more detailed account can be
found in [LI]. Let C' be an oo-category. We call an object which is both initial and terminal in C' a null
object and denote it by 0 € C'. An oco-category is said to be pointed if it contains a null object.

Definition 3.3.1. An co-category C' is said to be stable if it is pointed, admits finite limits and colimits
and pullback and pushout squares coincide.

Note that if a functor between stable co-categories is left or right exact it is automatically exact. Let
%é‘o denote the full subcategory of the (oo, 2)-category Cat., of co-categories spanned by the stable
oo-categories and exact functors. Let C be a pointed oo-category and f : x — y an arrow in C. A kernel
of f is a pullback = x, 0 and a cokernel of f is a pushout y[], 0. They are uniquely determined up
to equivalence in C. A full subcategory of a stable co-category is said to be a stable subcategory if it
contains a zero object and is closed under the formation of kernels and cokernels.

The (00, 2)-category Cat admits all (small) limits and all (small) filtered colimits. Since limits
and filtered colimits in an (oo, 2)-category are computed by taking limits and filtered colimits of the
underlying oo-categories, this result follows from Theorem 5.4 of [LI] and Proposition 5.6 of [LI]. The
structure of a stable co-category induces a heavy simplification of the nature of its limits and colimits:
if k is a regular cardinal, then a stable co-category has all k-small limits (resp. colimits) if and only if
it has k-small products (resp. coproducts). Furthermore, an exact functor between stable co-categories
preserves k-small limits (resp. colimits) if and only if it preserves k-small products (resp. coproducts).

Let C be a pointed co-category with finite limits. The loop functor Q of C is the endomorphism of C'
given by

Q:z—0x0.
x

This functor admits a left adjoint
Yix—0 H 0
xr
called the suspension functor. The following proposition provides a useful equivalent definition of a stable
oo-category.

Proposition 3.3.2. Let C be a pointed co-category. Then C' is stable if and only if it admits finite limits
and the loop functor Q : C — C' is an equivalence of co-categories. Likewise, C' is stable if and only if it
admits finite colimits and the suspension functor X2 : C' — C' is an equivalence of co-categories.

Proof. This follows from Proposition 4.4 of [LI] followed by Corollary 8.28 of [LI]. O

Example 3.3.3. If C is a stable oo-category and A is an co-precategory then the oo-category RHom(A, C')
is stable.
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Example 3.3.4. Let C' be a stable co-category and k a regular cardinal. Then Ind,(C) is a stable
oo-category. See Proposition 4.5 of [LI].

Example 3.3.5. Let C be a stable, O-monoidal co-category and R a O-monoid object in C such that
the map z — R®x is exact for all z € C'. Then Modg(C’) is a stable co-category. Moreover, the forgetful
functor Mod$(C') — C'is exact. This is a special case of Proposition 4.4.3 of [LII].

Example 3.3.6. Let C' be a stable co-category and Zx the linearly ordered set of non-negative integers
(thought of as a category in the obvious way). Then there exists an equivalence sC — RHom(Z>, C)
of co-categories. The map assigns to a simplicial object X in C' the filtered object F' in RHom(Z>¢, C)
where F'(n) is the colimit of the n-skeleton of X. This is the co-categorical Dold-Kan correspondence.
See Theorem 12.8 of [LI].

Example 3.3.7. A pointed, closed model category .Z is said to be stable if the adjunction ¥ -4 Q is an
equivalence in the homotopy category h.#. Thus for any stable model category .#, the co-category L.
is stable. Moreover, if .# is a cofibrantly generated, proper, stable, simplicial model category with a set
P of compact generators, the authors in [SS1] prove an equivalence between .# and the model category
Modg(py of modules over a certain spectral endomorphism category £(P) (see Definition 3.7.5 of loc.
cit.). We thus obtain an equivalence of stable oo-categories L(.#) — L(Modg(p)).

Example 3.3.8. Let A be an abelian category with enough projective objects and C(A) the simplicial
model category of chain complexes in A. Then the derived oo-category L(C(A)) of A is a stable oo-
category. The homotopy category hL(C(A)) can be identified with the derived category D(A) of A.
Likewise, one can define the bounded (resp. bounded above, bounded below) derived co-category of A.
See Section 13 of [LI] for more details.

Note that, in the spirit of Section 2.1, it would be natural to define a stable co-category as a fibrant
object of a model category PC(Sp) of precategories enriched over the monoidal model category Sp
of symmetric spectra with the S-model structure (see Example 7.1.14) and smash product monoidal
structure. Proving the existence of a closed structure on this conjectured model category would lead to a
reasonable definition of the (co, n+1)-category of stable (0o, n)-categories by iteration. However, since we
do not wish to develop a general theory of precategories enriched over a general monoidal model category,
Definition 3.3.1 will suffice for our purposes. Note that one could also define a stable (oo, n)-category
using our definition by iteration by allowing a stable (oo, n)-category to be a Catﬁoo’nfl)—category where
Cat(Loo,nq) is the category of stable (co,n — 1)-categories (ie. with the trivial model structure).

Let C be an co-category with finite limits and Z the linearly ordered set of integers which we consider
as a filtered category. Let T be an endofunctor on C. We construct the following endofunctor

¢ : RHom(Z, C) — RHom(Z, C)
defined by ¢(F)(n) := T(F(n +1)).

Definition 3.3.9. Let C' be an co-category with finite limits and 7" an endofunctor on C. A T-spectrum
object of C' is a functor F : Z — C such that F' — ¢(F) is an equivalence in RHom(Z, C).

The oo-category of T-spectrum objects in C, denoted Sp,(C), is given by the homotopy pullback
Spr(C) RHom(Z, C)

(#,id)

RHom(Z, C) ~% RHom(Z, C) x RHom(Z, C)

where d denotes the diagonal map. The equivalence d(G) =~ (¢,id)(F) induces the equivalences F «—
G = ¢(F) whose composition gives the equivalence required in Definition 3.3.9. The co-category of T-
spectrum objects in C' comes naturally equipped with an evaluation functor Ev,, : Sp;(C) — C for every
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n € Z which acts on a spectrum F and picks out its n-th term F(n). If C' is a presentable co-category
then this evaluation functor admits a left adjoint Fr,, : C' — Sp(C).

We will be particularly interested in the case where the endofunctor T is the loop functor. In this
case, if C' is a pointed co-category with finite limits then the oo-category Spq,(C) is a stable co-category
(see Proposition 8.27 of [LI]). This defines a natural functor Spg from the (oo, 2)-category of pointed
oo-categories with finite limits and left exact functors to the (0o, 2)-category %Olo of stable oco-categories
whose right adjoint is the forgetful functor.

Let C, denote the full subcategory of RHom([1],C') spanned by those morphisms z — y for which x
is a terminal object of C'. We call C, the oo-category of pointed objects of C. If C is pointed, then the
forgetful functor C, — C' is an equivalence of co-categories.

Definition 3.3.10. A spectrum is a {2-spectrum object of the co-category K, of pointed spaces.

Let Sp := Spo(K.) denote the oo-category of spectra. The oo-category Sp is stable and presentable.
It follows from Definition 3.3.9 that the oco-category Sp of spectra can be identified with the homotopy
limit of the tower
(. -k 2K K.

Recall the homotopy group functor on spectra m, : Sp — Ab which takes a spectrum A to the abelian
group Homys, (S[n], 4). A map f: A — B of spectra is an equivalence if and only if it induces isomor-
phisms 7, A — 7, B for all n € Z. Let K7™ denote the smallest full subcategory of KC which contains the
final object and is stable under finite colimits. Then Ind(lCicm) — K, is an equivalence of co-categories
and thus IC, is compactly generated. Moreover, let ICQ;" denote the colimit of the sequence

(Kfm = fin 2,y

in the (00, 2)-category of co-categories and exact functors. Then the oco-category of spectra is compactly
generated where Ind(K/i") — Sp is an equivalence of co-categories.

Example 3.3.11. Let C' be an oco-category and X an oo-category which admits finite limits. There
exists an equivalence Sp(Prx (C')) — Prg,(x)(C) of co-categories.

Let C be a presentable oco-category. Then the oco-category Spg(Cy) is presentable and the natural
functor Ev,, : Spq(Cy) — C admits a left adjoint Fr, : C — Spg(C.). Let C = K and * be the final
object of K. The object Fro(*) of Sp will be called the sphere spectrum and will be denoted by S.

Proposition 3.3.12. The oco-category Sp admits a symmetric monoidal structure which is uniquely
characterized by the property that the unit object of Sp is the sphere spectrum S and the bifunctor ® :
Sp x Sp — Sp preserves colimits seperately in each variable.

Proof reference. This follows from Corollary 4.1.16 of [LIII]. O

This monoidal structure will be called the smash product monoidal structure on Sp. Let Sp be
category of symmetric spectra endowed with the S-model structure (see Example 7.1.14). The Sp can
be lifted to a simplicial symmetric monoidal model category. By Corollary 4.1.16 of [LIII] there exists an
equivalence LSp ~ N(Sp°®) — Sp of symmetric monoidal co-categories.

Let C be a stable co-category and = be any object of C'. We use the following notation

Yy if n >0,
zn=9q ., .
Q "z ifn <0,

for the object x[n] of C' given by taking the nth power of the suspension and loop functors. We use the
same notation for the corresponding object in hC. There naturally exists a spectrum of maps between
any two objects in C. For all z,y € C, since x =~ 0 X, 0, the space Maps(x,y) (pointed by the zero
map) is the zeroth space of the spectrum

- Mape (2, y[2]) 5 Mape (2, y[1]) 5 Mapo(z,y) 5 Mape (2[1], y) 5 Mape (2], y) > ...
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More precisely, let Cat?  be the full subcategory of the (oo, 2)-category of co-categories spanned by
presentable objects and colimit preserving functors. Let %;’p denote the full subcategory spanned by
stable, presentable objects. We have the following.

Proposition 3.3.13. Let C be a stable, presentable co-category. Then C' is tensored and enriched over
the oo-category Sp of spectra.

Proof. By Proposition 4.2.7 of [LII] there exists an equivalence

Mods, (Cat?,) — Cat’”

of (00, 2)-categories. This follows since the (oo, 2)-category Cat-? is left tensored over the co-category
Sp of spectra which is the unit object of %;’p and a presentable co-category which is tensored over Sp
where the tensored structure preserves (small) colimits is automatically stable. Finally, since the functor
e ® 1z : Sp — C preserves (small) colimits for all z € C, the result follows from Proposition 3.2.5. O

Let C' be a stable oo-category. Then we can guarantee that C' is enriched over the oco-category of
spectra using the following criterion (see Corollary 15.2 of [LI]): a stable oo-category C' is presentable
if and only if C' admits small coproducts, the homotopy category hC' is locally small and there exists a
k-compact generator x in C for a regular cardinal  (ie. if the condition mg Map(z,y) ~ * implies that
y is a null object of C).

Recall that a triangulated category is an additive category A together with a translation functor
A — A:xz — z[1] (an equivalence of categories) and a collection of distinguished triangles of the form
x — y — z — x[1], which satisfy appropriate axioms. We refer the reader to [Ne| for the complete list of
axioms. The homotopy category of a stable co-category C' is a triangulated category. This can be seen as
follows. By definition, C' admits finite coproducts and hence hC does. Also, by the chain of equivalences

Homyc (z,y) ~ 7o Mape(z, y) ~ 71 Map (Qa, y) ~ 5 Map (%2, y),

where the base point is the zero map, the set Homypco(x,y) is an abelian group. Thus hC is an addi-
tive category. We let the suspension functor ¥ : & — z[l1] denote the translation functor which is an
autoequivalence by Proposition 3.3.2. Finally, a triangle

xLyizix[l]

in hC will be called distinguished if there exists a double pushout diagram

x ! -y >0

|§
h
z

in C such that 0’ and 0 are zero objects, the morphisms f and g represent f and g respectively and h
is given by the composition ¢poh : z — x[1] where ¢ : w = z[1] is the isomorphism determined by the
outer pushout rectangle. It remains to show that this triangulated structure satisfies the axioms of a
trianglulated category. This follows from Proposition 3.3.2 followed by Theorem 3.11 of [LI].

o’ -

> W

Definition 3.3.14. A spectrum A is said to be connective if m,A ~ 0 for all n < 0. It is said to be
discrete if it is connective and 0-truncated.

We denote by Sp® (resp. Sp?) the full subcategory of Sp spanned by the connective (resp. discrete)
spectra. The oco-category of connective spectra is the smallest full subcategory of Sp closed under colimits
and extensions which contains the sphere spectrum S. It is projectively generated with the sphere
spectrum being a compact projective generator. In Section 3.5 we will see that the oco-category of
discrete spectra is equivalent to the category of abelian groups.
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3.4 Commutative ring spectra

Definition 3.4.1. A commutative ring spectrum is a commutative monoid object in the oco-category Sp
of spectra with respect to the smash product monoidal structure.

A commutative ring spectrum will be referred to as an E.-ring. The oco-category of E.-rings will be
denoted € := CMon(Sp). The oo-category & will play the role of our generalised theory of rings. If R is an
E-ring, then by Proposition 3.2.14, the co-category of commutative R-algebras CAlgy := CMon(Modg)
in Sp is equivalent to €p,.

Example 3.4.2. Let S™ be the simplicial n-sphere. For any commutative ring k, one can associate an
FE.-ring spectrum Hk called the Eilenberg Mac Lane ring spectrum which is the sequence of simplicial
abelian groups k® S™ where (k® S™),, is the free abelian group on the non-basepoint m-simplices of S™.
The basepoint is identified with 0.

For R € ¢ and n € Z, let m, R denote the nth homotopy group of the underlying spectrum of R. We
can identify 7, R with the set mo Mapg,(S[n], R) where S denotes the sphere spectrum. The commutative
structure on R endows the direct sum @, ¢z, (R) of the homotopy groups {m,, (R)}nez with the structure
of a graded commutative ring, ie. for each a € m, R and b € m,,(R) we have ab = (—1)""ba. In particular,
moR is a discrete commutative ring and 7, R has the natural structure of a my(R)-module.

An E-ring R is said to be connective if 7w, R ~ 0 for all n < 0. The full subcategory of commutative
ring spectra spanned by the connective objects, denoted &¢, is equivalent to the co-category CMon(Sp€)
of commutative monoid objects in the oco-category of connective spectra. We can think of connective
FE..-rings as simply spaces endowed with an addition and multiplication satisfying the axioms for a
commutative ring up to coherent homotopy. More precisely:

Proposition 3.4.3. Let Evg : €° — K denote the composition €¢ — Sp® — K. Then
0 : € — Modr(K)
s an equivalence of oco-categories for the monad T = Evg o Frg on K.

Proof. The functor Evy : € — K is conservative, preserves finite colimits of simplicial objects and
admits a left adjoint Fro. Beck’s theorem of Proposition 5.2.13 then asserts that 6 is an equivalence of
oo-categories. O

An E-ring R is said to be bounded if ;(R) = 0 for i > n for some n. It is said to be discrete if it is
connective and O-truncated. We let &? denote the full subcategory of & spanned by the discrete objects.
A connective E.-ring R is discrete if and only if for all n > 0 the homotopy group m, R is trivial. The
oo-category €? is equivalent to the co-category CMon(Spd) of commutative monoid objects in the oo-
category of discrete spectra. The co-category of commutative ring spectra contains, as a fully subcategory,
the ordinary theory of commutative rings Rng. See Proposition 3.5.15 for a precise statement.

A convenient way to manipulate algebra in the context of ring spectra is to utilise its model categorical
interpretation. Let Sp be endowed with its S-model structure of Example 7.1.14. The category CMon(Sp)
inherits the structure of a simplicial model category again by [Sh]. Let CMon(Sp) be endowed with this
S-model structure. Then by Example 3.1.15 there exists an equivalence

s: LCMon(Sp) — €&
of co-categories. Furthermore, by Example 3.2.9, there exists an equivalence
LModg(Sp) — Modr)(Sp)
of co-categories.

Lemma 3.4.4. Let R be an Ey-ring. The co-category of modules Modpg is a stable co-category.
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Proof. By the above discussion, the co-category Modpg is equivalent to the localisation of a stable model
category. The localisation of a stable model category is a stable co-category (Example 3.3.7). O

Example 3.4.5. When R € € is discrete, ie. an ordinary commutative ring, the triangulated category
hModpg corresponds to the classical derived category of Modg.

Example 3.4.6. Let k be a field of characteristic zero and dgAlg; the model category of commutative
differential graded k-algebras where the weak equivalences are given by the quasi-isomorphisms (see
Section 5 of [SS2]), ie. the model category of commutative monoid objects in the symmetric monoidal
model category C'(k) := C'(Mody(Ab)) of chain complexes of k-modules. By Theorem 5.1.6 of [SS1] there
exists a Quillen equivalence Mod g (Sp) — C(k) where the model category Sp of symmetric spectra is
endowed with the S-model structure. Thus we have a diagram

CMon(L Mod g (Sp)) — CMon(LC(k))

CAlng(Sp)

of oo-categories. The left vertical arrow is an equivalence by Example 3.2.9 and the right vertical arrow
is an equivalence by Example 3.1.15. Therefore the co-category of Hk-algebras in Sp can be identified
with the localisation of the model category of commutative differential k-algebras.

LdgAlg,

Let R be a connective Eo-ring and CAlgy := CMon(Mod%) the oo-category of connective commu-
tative R-algebras. The oco-category CAlg}, is projectively generated with the compact projective objects
being identified with those connective commutative R-algebras that are retracts of a finitely generated
free commutative R-algebra. If (CAlg%)/P denotes the smallest full subcategory of CAlg% which contains
all finitely generated free R-algebras and is stable under finite colimits then

Ind((CAlg%)/?) — CAlg%

is an equivalence of oco-categories. Moreover, the oco-category CAlgf is compactly generated with the
compact objects being the finitely presented R-algebras.

Consider the co-category Modg of R-modules for R an Eo-ring. If M is an R-module we will denote
by 7, M the homotopy group of its underlying spectrum. For any object M € Modg, the set &, czm, M
forms a graded module over the graded commutative ring @,eczm, R. The co-category (Modg)>o is the
smallest full subcategory of Modg which contains R and is stable under small colimits. A module M
in Modp, is said to be connective if m,M = 0 for all n < 0 and we call (Modg)>o the oco-category of
connective R-modules. Likewise, a module M in Modpg is said to be anti-connective if m,,M = 0 for
all n > 0. An R-module is said to be free if it is equivalent to a coproduct of copies of R and finitely
generated if it can be written as a finite coproduct of copies of R.

Let R be a connective E-ring. An R-module M is said to be projective if it is a projective object
of the oco-category (Modpr)>o of connective R-modules (note that the co-category Modg has no nonzero
projective objects). The R-module M is projective if and only if there exists a free R-module N such
that M is a retract of N. If N is moreover finitely generated, then M is a compact projective object of
(Modg)>o. This is equivalent to M being projective and moM being finitely generated as a mgR-module.
The oo-category of of connective modules over a connective F.-ring is projectively generated.

Let R be a connective Eoo-ring. Then the inclusion CAlg}, < CAlgj, commutes with colimits so there
exists an adjunction

i: CAlgh = CAlgg : (o)¢
where the right adjoint is called the connective cover. Explicitly, a connective cover of an R-algebra A
isamap f: A — A° such that A° is connective and for any connective R-algebra B, there exists an
equivalence
MapCAlgR(B7 A) — Ma‘pCAlg%(B’ A°)
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of (00, 0)-categories.
Let C' be an oco-category and x,y € C. Then y is said to be a retract of x if it is a retract of = in hC|,
ie. there exists a diagram y — z = y which coincides with the identity idy in hC.

Definition 3.4.7. Let C be a stable co-category. Let CPf denote the smallest stable subcategory of C
which contains the unit object and is closed under retracts. An object x € C is said to be perfect if it is
an object of CPe,

Let R be an E-ring. There exists equivalences
perf cpt
Mody," ~ Modp

of co-categories. Furthermore if R is a connective E,-ring and Modﬁ%p denotes the smallest stable subcat-
egory of Modg which contains all finitely generated projective modules then there exists an equivalence

fgp perf
Modg" — Mody

of co-categories (see Remark 4.7.26 of [LII]).

3.5 t-structures

Let T be a triangulated category. Recall that a ¢-structure on T is a pair of full subcategories, T<¢ and
T, stable under isomorphism and which satisfy the following conditions:

1. Tgo[—l} g TSO and Tzo[l] g Tzo.

2. For all z € T, there exists a distinguished triangle y — z — z — y[1] where y € T>¢ and
AS Tgo[—l].

3. If x € Tsp and y € T<g[—1] then T'(z,y) = 0.

The axioms imply that the distinguished triangle in condition (3) is unique up to isomorphism. Also,
condition (1) implies that any subcategory in the pair determines the other. See [BBD] for further
discussion. For ease of notation we write T<,, := T<g[n| and T>,, := T>¢[n]. Note that the indexing we
use follows the homological convention. To pass to the cohomological indexing of loc. cit. we note that
T<p =T>"" and Ts,, = T<7".

Definition 3.5.1. Let C be a stable co-category. Then C' is said to admit a t-structure if there exists a
t-structure on the homotopy category hC'.

Let C be a stable co-category. The full subcategory of C' spanned by the objects of (hC)<,, and
(hC) >, will be denoted by C<,, and C>,, respectively.

Example 3.5.2. When C is a presentable stable co-category, any small collection of objects {x,} de-
termines a t-structure on C. The construction is as follows (see Proposition 16.1 of [LI]). One builds a
subcategory C’ of C' as the smallest full subcategory of C' containing {z,} which is closed under small
colimits and such that for every distinguished triangle

r—y—z— z[l]

for which z and z are in C’, then y is in C’. In this case, there exists a t-structure on C' such that
C’ = C>¢ and C> is presentable.

We call a t-structure on a presentable stable oo-category C' accessible if the subcategory Cs( is
presentable. It follows that if C' admits an accessible t-structure then C<q is also presentable. The
t-structures that we will be concerned with in this paper are the following accessible t-structures on the
oo-category of spectra and the co-category of R-modules for R a connective F,-ring.
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Example 3.5.3. There exists an accessible t-structure on the oo-category Sp of spectra given as follows:
e Sp is the full subcategory of Sp spanned by the objects {A € Sp|vn > 0,7, A ~ 0}.
e Sp is the full subcategory of Sp spanned by the objects {A € Sp|vn < 0,m, A ~ 0}.

Example 3.5.4. Let R be a connective E,-ring. Then there exists an accessible t-structure on the
oo-category Modpg of R-modules where

o (Modg)<o is the full subcategory of Mod g spanned by the objects {M € Modg |Vn > 0,7, M ~ 0}.
o (Modg)>o is the full subcategory of Modg spanned by the objects {M € Modg |Vn < 0,7, M ~ 0}.

This t-structure is left and right complete. With this t-structure, the heart of Modg is equivalent to the
abelian category of discrete modules over the ring mo(R).

Definition 3.5.5. Let C be a stable co-category. A t-structure on C is said to be non-degenerate if for
all objects x in C, if 7, ,& = 0 for all n then z = 0.

Let C' be a stable co-category. A t-structure (C<g, C>o) on C' is non-degenerate if and only if U;C<; =
U;C>; = C and N;C<; = N;C>; = 0. The t-structures of Example 3.5.3 and Example 3.5.4 are non-
degenerate. The usefulness of this non-degeneracy is that it enables us to check equivalences in these
oo-categories on their corresponding truncations in the following sense. By Corollary 6.6 of [LI], the
oo-category C<y, is stable under limits in C' and the co-category C>,, is stable under colimits in C'. Hence
there exists a left adjoint

T<n - C — an

to the inclusion map C<,, — C and a right adjoint
Ton : C — Csy

to the inclusion map C>, < C. By Proposition 6.10 of [LI] there exists an equivalence 7<., © 7>y, =~
T>n © T<m of functors from C' to C<,, N C>, which we will denote by 7, ,,, : C — C[n,m]-

Definition 3.5.6. Let C' and D be stable oo-categories admitting t-structures. A functor F': C — D is
said to be left (vesp. right) t-exact if it is exact and sends C<g into D<q (resp. sends C>¢ into Dx>g). It
is said to be t-ezact if it is both left and right t-exact.

Lemma 3.5.7. Let C and D be stable co-categories admitting t-structures and let F' 4 G be an adjunction
between them. Then F is right t-exact if and only if G is left t-exact.

Proof. Let F' : C — D be right t-exact. Then for any z € Cso we have F(x) € D>¢. Thus for any
y € D<_1, Homyp(F(z),y) ~ Homyc(z, G(y)) = 0. Therefore G(y) € C<_1. O

Another consequence of having a non-degenerate t-structure on a stable co-category is the following.
We say that a stable oo-category C' endowed with a t-structure is left t-complete if the natural map

C — holim,,C<,, := holim,{... — Ccy —=5 Ccy =% CcoC =5 .}

is an equivalence of co-categories. By Proposition 7.3 of [LI], if a stable co-category with a t-structure

admits countable products such that C'>¢ is stable under countable products, then C is left t-complete if
and only if N;C>; = 0.

Definition 3.5.8. Let C be a stable co-category and D a stable co-category admitting a t-structure
(D<o, D>g). A functor F : C — D is said to create a t-structure on C if C<g := {x € C|F(x) € D<o}
and Csg := {x € C|F(z) € D>} define a t-structure on C.

Definition 3.5.9. Let C be a stable co-category with a t-structure (C<g,C>0). The heart of C is the
full subcategory H(C') := C<o N C>q.
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Let C be a stable co-category admitting a t-structure. Then for any object x € C' and n > —1, the
object = belongs to C<,, if and only if the space C(y, ) is n-truncated for all y € C¢. Thus for x and y
in H(C), the group m,,C(z,y) vanishes for all n > 0 and so there exists an equivalence

H(C) — hH(C)
of co-categories.

Definition 3.5.10. Let C be a stable symmetric monoidal co-category. A t-structure on C'is said to be
compatible with the symmetric monoidal structure if for all € C' the functor z ® e is exact and Cs¢ is
closed under tensor products and contains the unit object.

Example 3.5.11. The t-structure on the co-category Sp of spectra of Example 3.5.3 is compatible with
the symmetric monoidal structure. As a result, by Proposition 3.1.11, the co-category Sp© of connective
spectra inherits the structure of a symmetric monoidal oo-category. Let R be a connective E,-ring.
By extension, the oo-category Mod% of connective R-modules and connective R-algebras CAlgh :=
CMon(Mod%) inherit symmetric monoidal structures.

Proposition 3.5.12. Let C' be a stable symmetric monoidal co-category which admits a t-structure that
is compatible with the symmetric monoidal structure. Then the heart H(C) of C inherits the structure of
a symmetric monoidal category.

Proof. By Example 3.1.11, the oo-category C>( inherits the structure of a symmetric monoidal oo-
category. Then Proposition 1.3.12 of [LII] states that the truncation functor 7<, : C>o — (Cs0)<n
satisfies the following condition: if f : x — y is an arrow in C>¢ and g : £ ® z — y ® z the induced map
for an object z in C>q, then 7<,g is an equivalence if 7<,, f is an equivalence. By Proposition 1.31 of
[LIII], the co-category (C>0)<n inherits the structure of a symmetric monoidal co-category. Taking the
case n = 0 the result follows. O

Definition 3.5.13. Let C be a stable co-category admitting a t-structure and let n € Z. We define a
functor

7t C — H(C)
x +— 19,0(x[—n]).

Let C be a stable oo-category. It follows from Theorem 1.3.6 of [BBD] that the category H(C) is
abelian. One can show that the heart of a presentable stable co-category equipped with an admissible
t-struture is a presentable abelian category. Let Ab denote the category of abelian groups. When C' is
the co-category Sp of spectra we have the following result.

Proposition 3.5.14. Let Sp be endowed with the t-structure given by Example 3.5.3. Then the functor
H(Sp) — Ab
is an equivalence of co-categories.

Proof. This follows from Proposition 9.2 of [LI] so we only make a few comments. Let X be an object in
Sp. Then X is an object of H(Sp) if and only if X (n) is a pointed object of K which is both n-truncated
and n-connective. A pointed object * — z in an oco-category C' is called an Filenberg-MacLane object of
degree n if it is both n-truncated and n-connective (see Definition 7.2.2.1 of [Lu]). Let EM,,(C) denotes
the full subcategory of C, spanned by the Eilenberg-MacLane objects of degree n. Thus

H(Sp) = holim{. .. & EM; (K) < EMy(K)}

and one can show that this sequence stabalizes with value Ab after n = 2. O
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Proposition 3.5.15. The functor
7g . €4 — Rng

s an equivalence of co-categories.

Proof. This follows from Proposition 4.2.11 of [LIII] so again we will only sketch the proof. The map
@4 — CMon(71<oSp°) is an equivalence of co-categories. There exists an equivalence Sp? = H(Sp) — Ab
of oco-categories by Proposition 3.5.14 and the induced symmetric monoidal structure on H(Sp) coincides
up to canonical equivalence with the symmetric monoidal structure on the category Ab owing to the
properties that m9S ~ Z and the induced tensor product on H(Sp) preserves colimits seperately in each
variable. Thus CMon(H(Sp)) ~ CMon(Ab) =: Rng. O

Lemma 3.5.16. Let C and D be stable co-categories admitting non-degenerate t-structures. Let f : C —
D be a t-ezact functor. If X is a cosimplicial object in C such that there exists k > 0 with wi(X,) =0
for alli >k and all n then

lim X i X

is an equivalence in D.

Proof. We can choose k = 0. Since the t-structure on D is non-degenerate, we can check the equivalence
on the truncation

TZ—N(f(h?IlH Xn)) — TZ—N(li}ln f(Xn)).

The functor f is t-exact and the truncation commutes with limits so we are reduced to proving
fUm(r> N Xn)) — lim f(7> -y Xn)).

The limits in C|_p ) are considered as limits in C'<g. Note that C|_x g is a subcategory of C' where
the mapping spaces are N-truncated. Any limit along A in an oo-category whose mapping spaces are
N-truncated is a finite limit. Since f is t-exact it commutes with finite limits and truncations so the
induced functor f : C|_n g — D[N, preserves finite limits and the result follows. O

3.6 Linear and R-tensor oco-categories

In this section we will construct the (oo, 2)-category of R-linear, stable, presentable, symmetric monoidal
oo-categories which we will call R-tensor co-categories. In Example 3.1.20 we saw an explicit construction
of the cartesian monoidal structure on the (oo, 2)-category Cat., of co-categories. From Proposition
4.1.7 of [LII] and Proposition 4.1.10 of [LIII], we deduce that there exists an O-monoidal structure on the
(00, 2)-category Cat?  of presentable co-categories. This is a subcategory of @m which can be explicitly
described as follows:

e The objects are pairs ([n], (Co,...,Cy)) where [n] is an object of O and each C; is a presentable
fibrant (oo, 1)-precategory.

e A map between two objects ([n],Cs) and ([m], D) is a map u : [n] — [m] in O together with a
collection of functors Hu(i): ; Ci = Dj which preserve colimits seperately in each variable.

Let @Zo denote this subcategory. One can show (see loc. cit.) that the unit object of Cat?_ with
this O-monoidal structure is the co-category K of spaces. Let @&O denote the subcategory of %g}
spanned by presentable O-monoidal co-categories whose monoidal bifunctor preserves colimits seperately
in each variable and whose morphisms are colimit preserving O-monoidal functors. Then we have an
equivalence

Mon® (Cat.,) — Cat?:®
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of (00, 2)-categories (see the discussion following Example 3.1.20). Thus an O-monoidal oo-category C
belongs to Mon® (@i) if and only if C' is presentable and the tensor product bifunctor ® : Cyj X Cpqy —
Cp preserves (small) colimits seperately in each variable.

Let C' be a presentable symmetric monoidal co-category. Then the oco-category I\mR(C) of R-
modules in C' is a presentable symmetric monoidal co-category with a bicontinuous monoidal product.
Thus mR(D) belongs to CMOH(@ZO). We can then make the following definition.

Definition 3.6.1. Let D be a presentable symmetric monoidal co-category. A presentable co-category
is said to be R-linear if it is endowed with the structure of a Modr(D)-module object in the symmetric
monoidal (oo, 2)-category Catio of presentable co-categories.

The (00, 2)-category of R-linear co-categories is given by Modyod (D) (@Zo) Note that an R-linear
oo-category is a presentable co-category C which is left-tensored over the co-category Modg (D). Then
the functor e ® x : Modg(D) — C preserves colimits for all € C owing to the monoidal structure on
Cat? . Thus by Proposition 2.3.7 the presentable co-category C' is enriched over Modg (D) as expected.
By Proposition 3.2.14, there exists an equivalence

CMon(l\//E)Til\/[odR (@Zo)) ~ CMon(@i)ModR /-

of (00, 2)-categories. The term on the left hand side is the (oo, 2)-category of R-linear presentable sym-
metric monoidal co-categories and R-linear symmetric monoidal functors.

Example 3.6.2. Let D be a presentable symmetric monoidal co-category. Then Mod r(D) is an R-linear
oo-category.

Example 3.6.3. Let k be a commutative ring and C' a presentable k-linear symmetric monoidal category
(ie. a presentable symmetric monoidal category with a Mody(Ab)-module structure). Then L(C) is a
k-linear oo-category, ie. if the map Mody — C of categories endows C with a k-linear structure then
the map of oco-categories L(Mody) — L(C) endows L(C) with a k-linear structure. More generally,
if A is a k-linear symmetric monoidal model category, ie. a Mody(Ab)-enriched symmetric monoidal
model category in the sense of Definition 7.1.6 where Mod(Ab) is endowed with the model structure of
Example 7?7, then L(.#) is a k-linear oo-category.

Example 3.6.4. Let .# bea combinatorial}?—monoidal model category. Then by Proposition 3.1.19, MO
is an O-monoidal co-category. Moreover, .#° is presentable with a colimit preserving tensor product bi-
functor so .#° is an object in Mon® (%ﬁo). We can thus form the oo-category of modules Mod (%ﬁo).

Now let .#" be an .#-enriched model category. Define N° as follows:

e An object is a pair ([n], (xg,...,2,)) where for each 0 < ¢ < n — 1, the x; are fibrant-cofibrant
objects of .# and z,, is a fibrant-cofibrant object of 4.

e The mapping space between two objects ([n], zs), ([m], ye) is given by

A (]2, (mlwe)) = ] [T 2(Q ziy) x A Q) iym)

wiln)—[m] \jelm-{m}  u(i)=j u(i)=m

Then .4 is an .#°-module object in Mod (@Zo)

Example 3.6.5. Let k be a commutative ring and C(k) the symmetric monoidal category of complexes
of k-modules. Recall that a differential graded category (or dg-category) is a C(k)-enriched category.
Likewise, let Sp denote the category of symmetric spectra. Recall that a spectral category is a Sp-
enriched category. Let E denote both C(k) and Sp and let us speak of an E-enriched category to
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subsume both examples. Let .# be a combinatorial E-enriched model category (see Definition 7.1.6) and
C an E-enriched category. Then the category .#¢ can be endowed with the projective model structure
where the fibrations and weak equivalences are taken objectwise. The model category .#Z€ is an E-
enriched model category. Let E be endowed with its natural E-enrichment. Then a left C-module is a
E-enriched functor C' — E (similarly we can define a right C-module by replacing C' by C°P). Let Mod¢
denote the category of left C-modules. We can consider E as a E-enriched model category and so the

category Modc is a E-enriched model category. By Example 3.6.4, the oo-category Modc is a B -module
object of Cat . Thus when C is a dg-category, the oco-category Modc isa C(k) ~ Mode(Sp) module

object and hence a Hk-linear co-category. Likewise, when C' is a spectral category Modc is an S-linear
oco-category.

We will now provide the tools needed to construct the (0o, 2)-category of R-tensor oo-categories. Let
Np,J_
Cat

o denote the full subcategory of @; spanned by presentable oco-categories which are moreover
stable oco-categories. The projection @:p — O determines an O-monoidal structure on the (0o, 2)-
category CatP:" of stable, presentable co-categories (see Proposition 4.2.3 of [LII] and Proposition 4.1.14
of [LIII] for the closely related oco-categorical case). One can show (see loc. cit.) that the unit object
of %&L with this O-monoidal structure is the oco-category Sp of spectra. Let @&L’O denote the
subcategory of %g spanned by stable, presentable O-monoidal co-categories whose monoidal bifunctor
preserves colimits seperately in each variable and whose morphisms are colimit preserving O-monoidal
functors. Then we have an equivalence

—p, L
Mon® (Cate, ) — Cat?-©

of (00, 2)-categories (see the discussion following Example 3.1.20). Thus an O-monoidal oo-category C

—p,L
belongs to Mon® (%ﬁo ) if and only if C is stable, presentable and the bifunctor ® : Cpyj x Cpyp — Cpy
preserves colimits separately in each variable.
Let R be an E.-ring. Then the stable, presentable symmetric monoidal co-category Modg belongs

—p, L
to CMon(%ﬁo ). Applying this observation to Proposition 3.2.14 gives the equivalence

— —p, L ——p,L
CMon(Modyodp (%ZO ) =~ CMon(%ﬁo )Modp /-

of (00, 2)-categories. The term on the left hand side is the (0o, 2)-category of R-linear, stable, presentable
symmetric monoidal co-categories and R-linear symmetric monoidal functors. We make the following
definition.

Definition 3.6.6. Let R be an E..-ring. A symmetric monoidal co-category is said to be a tensor
oo-category if it is stable and presentable. It is said to be an R-tensor oo-category if it is R-linear, stable
and presentable.

——p, L
We will denote the (00, 2)-category of tensor co-categories by Tens® := CMon(%io ) and the (oo, 2)-
category of R-tensor co-categories and R-linear symmetric monoidal functors by

— 1,
Tens% = CMOH(%OOP)MOdR /-

In the higher Tannaka duality theorem we will need to consider lax adjoints to R-linear symmetric
monoidal functors so we to consider a more general (oco,2)-category than Tens% where the functors
between R-tensor co-categories are R-linear lax symmetric monoidal. To do so, we introduce a notion of
lax comma category.

Notation 3.6.7. Let Tens'™ denote the following (0o, 2)-category:

e The objects of Tens'™ are tensor oo-categories.



HIGHER TANNAKA DUALITY 67

lax

e Given two objects p: C — T" and ¢ : D — T in Tens ™, the mapping space Mapsax (C, D) is
lax

given by the subcategory of RHom{"™(C, D) spanned by lax symmetric monoidal functors such that
the tensor product bifunctor preserves colimits in each variable.

Consider the strict 2-category I; consisting of three objects {0, 1,2}, non-identity 1-morphisms ¢ :
0—1,7:1—2and k:0— 2 and single 2-morphism h : ko j — i, ie.

0
Il = . /h 9

1 ! -2,
We have two natural projection maps I1 — [1] to i and k. We define I,, for all n > 1 by the pushout
I, := 11]_[11]_[ . .11]_[11
(1 [l (1]

where by convention Iy := [1]. Let C be an (oo, 2)-category and x an object of C. Let Hom,(Iy, C)
denote the full subset of Hom([1], C') spanned by objects sending 0 to the object = in C. Likewise, define
an (00, 2)-category Hom, (I, C) by the following homotopy pullback

{z} C

Hom, (I, C) — Hom(/y, C)

in €at(,2) Where evg : Hom(1,,,C) — C' is the evaluation map at the object 0 in I,,. We then define an
(00, 2)-category Hom’ (I,,, C') for n > 1 given by the homotopy pullback

Hom, (I,,,C) — Hom, (Iy,C)" !

Hom*(1,,,C) — Hom, (Iy,C)" .
Consider the following (oo, 2)-category C, /:
Cry: A% — Cato
[n] — &'Homy (1, C)
where we define 81 Hom* (I, C) := Hom, (I, C). This is indeed an (0o, 2)-category since the map
A'Hom’; (I, C) = &' Hom (I [] ... J] 1. €) — &'Hom; (11, C) x ... x &' Hom’; (I3, C).
(1] (1

is an equivalence for all n > 2 and so the Segal conditions are satisfied. Let ¢ : x — a and ¥ : z — b be
two objects in C, . Informally, a map f:a — bin C, is given by a diagram

x
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in the (00, 2)-category C.
Let R be an E-ring. In the theory of higher Tannaka duality we will think of our R-tensor oco-
categories as living in a subcategory of the large ambient (oo, 2)-category (Tens™)yioq,, /-

Degnition 3.6.8. We denote by Tenslj%LX the (non-full) subcategory of Tensy*, » » satisfying the following
conditions:

1. An object ¢ : Modgr — T is a (strict) symmetric monoidal functor.

2. Given two objects ¢ : Modg — T and ¥ : Modr — U and a map f : T — U, the natural
composition
V(M) ® f(z) = fO(M) @ f(x) — f(o(M) @ x)
is an equivalence in U for all M in Modg and z in T

X

Note that since Tens® is a (non-full) subcategory of Tens'™ and C, ; is a (non-full) subcategory of

C,y then the (oo, 2)-category of R-tensor co-categories and R-linear symmetric monoidal functors Tens%

is a (non-full) subcategory of Tens*.

Example 3.6.9. We now provide an extension of Example 3.6.5 where E again denotes the category of
complexes of k-modules or symmetric spectra. When (C, ®) is a symmetric monoidal E-enriched category
then there exists a unique monoidal structure ®, on Mod¢ such that the objects of Mod¢ are symmetric
monoidal functors C' — E and the monoidal structure on C' is weakly compatible with the E-enrichment.
This is given by the composition

®) : Mod¢e x Modg E MOdC®C 2, Mod¢e

where p is the left-Kan extension along p : C ® C — C. The tensor product ® endows Modc with
the structure of an E-enriched monoidal model category. The natural left Quillen functor E — Modg
between symmetric monoidal model categories sending an object F of E to 1 ® E extends to a symmetric

~0 —~—0

monoidal functor E- — Mod between co-categories (using the notation of Example 3.6.4). When C'is a
—~—0

symmetric monoidal dg-category, this makes Mod, into a Hk-tensor oo-category. When C' is a spectral

category, the oo-category 1\/467100 is then an S-tensor oo-category.

For any dg-category C, let H°(C') denote the category consisting of the same set of objects as C' and
whose morphism space H(C)(x,y) between two objects z and y is given by H°(C(x,y)). We obtain a
well defined functor

H°: Cat(C(k)) — Cat

from the category of dg-categories to the category of categories. A map F' : C — D in Cat(C(k)) is
said to be a quasi-equivalence if for all x,y € C, the map C(z,y) — D(Fz, Fy) is a quasi-isomorphism
of complexes and the induced functor H(F) : HY(C) — HY(D) is essentially surjective. By [Tb1], the
category Cat(C(k)) can be endowed with a model structure Cat(C'(k)) s where the weak equivalences are
the quasi-equivalences. There exists a Quillen equivalence between Cat(C(k)) and the model category
of Modyy(Sp)-enriched categories. Let Cat(C(k))% denote the symmetric monoidal model category of
dg-categories. We conjecture that the functor

Mod : LCat(C(k))% — Tens$,

between oco-categories is fully faithful. For any spectral category C, let [C] denote the category consisting
of the same set of objects and whose morphism space Hom|¢c)(z,y) between two objects x and y is given
by Homysp (S, C(z,y)). We obtain a well defined functor

[¢] : Cat(Sp) — Cat.

A map F : C — D in Cat(Sp) is said to be a quasi-equivalence if for all z,y € C, the map C(x,y) —
D(Fz, Fy) is a stable equivalence in Sp and the induced functor [F] : [C] — [D] is essentially surjective.
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By Theorem 5.10 of [Th2], the category Cat(Sp) can be endowed with a model structure where the weak
equivalences are the quasi-equivalences. If Cat(Sp)% denotes the model category of symmetric monoidal
spectral categories then we conjecture that there exists a full embedding

Mod LCat(Sp)% — Tensg
of co-categories

By Proposition 3.1.16, the (0o, 2)-category Cat="® has an initial object C' such that the unit map

1 — (Y is an equivalence in Catjo’p . Therefore, the co-category Sp of spectra admits an (O-monoidal

structure §1:/> which is the initial O-monoidal co-category in Catigp 'O This is the O-monoidal structure
characterised in Section 3.3. We have the following universal property: for two stable, presentable O-
monoidal co-categories C' and D with a bicontinous monoidal product, there exists an equivalence

RHom % (D, C) — RHom% " (Sp, C)

in the (oo, 2)-category Caté‘o’p"o. Here ]RHom%Ct denotes functors which are colimit preserving O-
monoidal functors. An important ingredient in the proof of the higher Tannaka duality theorems is the
following conjecture which identifies lax monoidal endomorphisms of Modp in Tenslj,?LX with R-algebras.

Conjecture 3.6.10. Let R be an E.-ring. Then there exists an equivalence
Endrpepgex (Modg) — CMon(Modg)
[ f(R)
of co-categories where the right adjoint takes a R-algebra A to the endomorphism A ® e.

Comments related to the proof. One way to construct the proof is as follows. It consists of two parts.
Let R be an E.-ring. In the first part, there should exists an equivalence

(*) EndTenslgx (MOdR) - EndTenslSax (MOdS) (e®R)/

of oco-categories. To demonstrate this, one proves that the unit and counit of an adjunction between
these two oo-categories are equivalences. Let pr := @ ® R and ip := Hom(R,e). The left adjoint takes
an endomorphism f € Endrens,(Modg) to the map pr — ig o f o pgr. The right adjoint takes a map
pr — g to the endomorphism pgr o g o ig. The second part begins as follows. By the universal property
of the symmetric monoidal co-category Sp, there exists an equivalence

RHom? (Sp, C') — RHom& (T, C)

of co-categories for any symmetric monoidal oo-category C. The difficult part of the conjecture states
that this can be lifted to an equivalence

(%) RHom;™(Sp, C') — RHom™(T, C)
of co-categories of lax symmetric monoidal functors. When C' = é\f) we obtain that the map
End'**(Sp) — CMon(Sp)

is an equivalence. Since Endre,gax(Mods) is nothing other than Endlax(ég), combining statement (*)
and statement (**) we obtain the the desired result. O

Remark 3.6.11. Taking comonoid objects of Conjecture 3.6.10 yields an equivalence
Comon(Endp,gax(Modg)) — Comon(CAlgg)
L+— L(R)

where the left hand side is the co-category of comonads on Modpg in Tensllgx.
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4 Stacks, gerbes and topologies

This chapter will be devoted to the group side of the correspondence. In Section 4.1 we discuss oo-topoi
and the most important example: the co-category of stacks on a site. More generally, we discuss the
notion of an X-valued stack for X an arbitrary co-category with limits. In Proposition 4.1.14 we prove
that the oco-category of X-valued stacks on a site is tensored and enriched over both itself and X. In
Proposition 4.1.15 we prove that the X-valued prestack of maps between two X-valued prestacks F' and
G is an X-valued stack when G is an X-valued stack. We will be particularly interested in the case where
X is the oo-category of co-categories. We provide in Proposition 4.1.19 sufficient conditions on a prestack
valued in oco-categories to be an co-category valued stack. We also introduce the notion of group object
in an oo-category and the important example of a group stack on a site.

Stacks on a site which are locally non-empty and locally connected are called gerbes. In Section 4.2
we discuss gerbes and provide in Proposition 4.2.4 the characterisation that gerbes are exactly those
stacks which are locally equivalent to the classifying stack of a group stack. In Section 4.3 we describe
three topologies on the co-category of R-algebras called the positive, flat and finite topologies. The flat
and finite topologies are shown in Proposition 4.3.6 to be subcanonical. The main tool in the proof is
the observation that the functor which takes an R-algebra, where R is an F-ring, to its co-category of
modules is a stack of co-categories on the site of R-algebras with respect to the flat and finite topologies
(Proposition 4.3.5).

4.1 Stacks

Definition 4.1.1. An oo-category is said to be an co-topos if it is a left exact Bousfield localisation of
Pr(C) for a small co-category C.

In other words, an oco-category T is an co-topos if there exists a small co-category C' and a fully
faithful functor T — Pr(C') which possesses a left exact left adjoint. There exist other more intrinsic
characterisations of an oco-topos in the literature. In particular there is a characterisation based on
oo-categorical analogues of Giraud’s axioms (see for example Theorem 6.1.0.6 of [Lu]). Let 7' and U
be oco-topoi. A geometric morphism from T to U is a functor f, : T — U which admits a left exact
left adjoint. Let RHom?™ (T, U) denote the full subcategory of RHom(7,U) spanned by the geometric
morphisms. The (00, 2)-category of co-topoi and geometric morphisms will be denoted by Tpoi .

The (00, 2)-category Tpoi,, of co-topoi admits all (small) limits and colimits. Furthermore, it is
tensored and cotensored over the (oo, 2)-category Cat., of co-categories, ie. for any T" € Tpoi,, and
C € Cat_ there exists an object T in Tpoi,, and an object T'® C in Tpoi,,, both well defined up to
equivalence, satisfying the property that for any U € Tpoi,, the pair of maps

RHom?™ (T, UC) — RHom(C, RHom?™ (T, U)) «— RHom™(T ® C,U)
are equivalences of co-categories.

Definition 4.1.2. Let T be an oco-topos and X an oo-category. An X-valued prestack F': T°P — X on
T is said to be an X -valued stack if it preserves limits.

Let Stx(T') denote the full subcategory of Prx(7") spanned by the X-valued stacks on T. We will
denote the oo-category Sti(T) of K-valued stacks by St(7T') and refer to objects therein as simply stacks.
Since a prestack on a presentable co-category is representable if and only if it preserves limits, stacks on
an oco-topos T correspond to representable prestacks on T. Thus there exists an equivalence T — St(T')
of co-categories from the Yoneda lemma of Proposition 2.2.11 and hence any co-topos can be identified
with its oo-category of stacks. Let T be an co-topos and X a presentable oco-category. Then the inclusion
functor Stx (T') — Prx(7T') admits a left adjoint

a:Prx(T)— Stx(T)
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by Proposition 4.1.5 of [L1]. This left adjoint is called the stackification functor or the associated stack
functor. It defines the following universal property: for any X-valued prestack P on T and any X-valued
stack F' on T', the map

Mapg; (1) (a(P), F') = Mapp, oy (P, F)

is an equivalence of (0o, 0)-categories.

Remark 4.1.3. Let X be a fixed co-category. One can consider a generalisation of the (oo, 2)-category
Tpoi,, by considering the (o0, 2)-category Tpoif0 of X -structured oo-topoi. An object of Tpoifo is a pair
(T, Or) where T is an (oo, n)-topos and O is an X-valued stack on T. A morphism (T, Or) — (U, Oy)
is a pair (f,¢) where f : T — U is a geometric morphism and ¢ : Oy — f.Or is a map of X-valued
stacks on U. For example, for an E.-ring R, one can consider the (oo, 2)-category TpoifO of CAlgr(Sp)-
structured co-topoi as a foundation for the theory of spectral schemes. See [TV4] and [LVII] for more
details.

We will now discuss in detail the main co-topos of interest: the co-topos of stacks on a site. Let C
be an oco-category. A sieve on an object x in C is a full subcategory R C C), such that if z — y is any
arrow in C/, and the object y belongs to R then the object z belongs to R. If f : x — y is an arrow in
C and R is a sieve on y, then we define a sieve f*R on x to be the unique sieve such that f*R and R
determine the same sieve on C/.

Definition 4.1.4. Let C' be an co-category. A topology is a function 7 which assigns to each object x of
C' a family 7(x) of sieves on x such that:

1. The sieve C/, is in 7(x).
2. If f:z — yisan arrow in C and R is a sieve in 7(y), then f*R is a sieve in 7(x).

3. Let R be a sieve in 7(x) and R’ an arbitrary sieve on z. If for any f :y — z in R we have f*R’ in
7(y), then R’ is also in 7(z).

A topology on an oco-category C' is equivalent to a Grothendieck topology on the homotopy category
h(C) (see Remark 6.2.2.3 of [Lu]). The pair (C,7) will be called a site. Let C' now be an co-category with
pullbacks. To prove the existence of a topology on C' it suffices to prove the existence of a pretopology on
C'. That is, a function cov, which assigns to each object x in C' a collection cov,(z) of subsets of objects
in C), called covering families of x satisfying:

o Stability: If f:y — x is an equivalence in C then the singleton {f : y — z} is in cov, ().

e Composition: If {f; : y; — x}ier is in cov.(x) and if for each i € I one has a family {g;; : z;; —
Yi}ies, in covr(y;) then the family {f; o gi; : 2i;j — x}ier jes, is in covr(z).

e Base change: If {f; : y; — x}ies is in cov,(z) then for any morphism g : z — x, the pullbacks
z X4 y; exist and the family {z X, y; — z}ier is in cov.(2).

A pretopology on C determines a topology on C: a sieve R on an object  in C' is in 7(x) if and only if
there exists a covering family J in cov,(x) such that J is a subset of R.

Example 4.1.5. Let C be an oco-category with pullbacks. For any x € C the covering families {y; —
x}ier in cov,(z) for which each y; — z is an equivalence and the set I is nonempty is called the trivial
topology on C.

Example 4.1.6. Let sRng be the category of simplicial commutative rings. Then sRng admits a cofi-
brantly generated simplicial model structure where a map is a weak equivalence (resp. a fibration) if the
map of underlying simplicial sets is one. A map f : A — B in sRng is said to be étale if m1gA — 7o B is an
étale map of ordinary commutative rings and if for each ¢ > 0 the induced map m;A @ 4 70 B — m; B is
an isomorphism of abelian groups. The co-category L(sRng) admits a topology, called the étale topology,
where the covering families {y; — 2};cr consist of étale maps for which there exists a finite subset J C I
such that [];. ;y; —  is faithfully flat.
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Example 4.1.7. The oco-category of simplicial commutative rings is one of the possible choices for the
base co-category to build the theory of derived algebraic geometry. Another choice, and the one we have
chosen to adopt, is the oco-category of commutative ring spectra of Section 3.4. In Definition 4.3.1 we
will introduce the notions of positive, flat and finite topologies on the co-category € of commutative ring
spectra.

Let (C,7) be a site and {u; — x};cr a covering family of x € C. Let u =[], u;. We will say that the
map u — x is a covering of x. A cover of x (associated to ) is the simplicial prestack u. € sPr(C)/,
given by

e : A — Pr(C)

[n] = ux ... xu.
x €T

Definition 4.1.8. Let C' be a site and X an oco-category with limits. An X-valued prestack F': CP — X
on C' is said to be an X -valued stack if for all 2 € C and all coverings u, in sPr(C)/, the map

F(z) = lim F(u.)

is an equivalence in X.

The full subcategory of Prx(C) spanned by the X-valued stacks on the site (C,7) will be denoted
St%(C). A K-valued stack will simply be called a stack and we will denote the co-category of stacks
Sti(C) by St™(C). The oo-category St”(C) is an oo-topos by Lemma 6.2.2.7 of [Lu]. A topology 7 on C
is said to be subcanonical if every representable functor on C' is a stack with respect to 7.

A map f: C — D between two sites (C,7) and (D, n) is said to be continuous if the induced map
f* : Pr(D) — Pr(C) of prestacks preserves the full subcategory of stacks. As a result we have an
adjunction

fi: StT(C) = St"(D) = f*.
A continuous map of sites is a geometric morphism of oco-topoi. Let & denote the (00, 2)-category of sites
together with continuous maps. We have a well defined functor

St : & — Tpoi,
(C, 1) — St7(C).
By Proposition 9.0.9 of [L1], the oco-category of stacks satisfies the following universal property: for any

oo-topos T, the map
RHom?™ (T, St™ (C)) — RHom?™ (T, Pr(C))

is fully faithful and its essential image consists of those geometric morphisms f : T — Pr(C) such that
for all z € C' and all covering sieves R < z, the induced map ], ., f*2’ — f*x is a surjection in T

Remark 4.1.9. Note that the adjunction []; : €at(a,0) & Cates : A% induces an adjunction
(ITy)+ = St (C) = StEap (C) = (RY)"
where ((8°)*F)(z) = R2F(x) for a stack F' in St (C).

Example 4.1.10. Let (C,7) be a site for a subcanonical topology 7 and h, the representable prestack
on an object z in C. Then there exists an equivalence St™(C)/,, — St™(C),) of co-categories.

Let C be a symmetric monoidal co-category. We give the opposite co-category of commutative monoid
objects in C the following special notation:

Affe := CMon(C)°?.

When C' is the symmetric monoidal co-category mR(D) of R-modules in a symmetric monoidal oco-

category D, we will write Affg := Afme(D). In other words, the oco-category Affy is the opposite of the

oo-category of commutative R-algebras in D. The Yoneda embedding Affc — (Aff¢)”" will be denoted
by Spec.
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Example 4.1.11. Let C' be a symmetric monoidal co-category and R a commutative monoid object
of C. Then we will denote by St™(R) := St” (Affr) the oco-category of stacks with respect to the site
(Affr,7) of R-algebras in C. By Example 4.1.10 we have an equivalence St™(R) ~ St” (Affc)/spec r Of
oo-categories.

The oco-category of stacks on a site can be obtained by localisation (in the sense of Definition 2.2.1)
of the oco-category of prestacks. The following proposition gives two possible choices for the set of maps
from which to localise.

Proposition 4.1.12. Let (C,7) be a site. The following classes of maps give the same localisation of
Pr(C):

1. The set of all covering sieves R — x.
2. The set of maps u, — x.

Proof reference. We note that Pr(C') is a presentable co-category. Thus the localisation is a Bousfield
localisation in the sense of Section 2.3. The result now follows from Proposition Al of [DHI]. O

Let S denote the equivalent set of maps of Proposition 4.1.12, ie. S = {us, — z}zec or S =
{R — z}ruec. Then St™(C) ~ Lg(Pr(C)). Note that we also have the following model categorical
interpretation of the co-category of stacks. Let §(C') be the strict simplicial category associated to C

and S,EC(C) the simplicial category of functors endowed with the projective model structure. Then there

exists an equivalence St”(C) ~ L(L?(Sﬁ(c))) of co-categories.
Proposition 4.1.13. Let (C,7) be a site and X an oo-category with limits. There exists an equivalence
Stx (St (C)) — St%(C)
of co-categories.
Proof. This follows from the chain of equivalences
RHom (St7 (C), X) ~ RHom (LsPr(C), X) ~ RHom(Pr(C), X) ~ RHom(C*7, X) := §t% (C)

where RHomg denotes the essential image of the fully faithful functor defining the universal property of
the localisation and the last equivalence follows from (the dual of) Proposition 2.3.10. O

Proposition 4.1.14. Let (C,7) be a site and X a presentable O-monoidal co-category whose tensor
product preserves colimits seperately in each variable. Then the oco-category St% (C) is tensored and
enriched over itself. Moreover, it is tensored and enriched over X.

Proof. We first observe that the co-category St’ (C) of X-valued stacks on C' is naturally an @-monoidal
oo-category with the pointwise @-monoidal structure of Example 3.1.10. Explicitly, Stx (C)n) = Stx,,, (C).
To show that it is enriched over itself it remains to show that e ® F' : St (C) — St (C') preserves colim-
its (Proposition 3.2.5). This follows by the assumption that the tensor product on X preserves colimits
seperately in each variable (colimits are calculated pointwise in functor categories).

To show that St (C) is tensored and enriched over X it suffices to show that there exists a col-
imit preserving O-monoidal functor X — Stx (C). First consider the co-category Pry (C) of X-valued
prestacks endowed with its pointwise ()-monoidal structure. The constant prestack functor induces an
O-monoidal functor X ~ Prx(x¥) — Prx(C). This functor preserves colimits seperately in each variable
owing to the assumption that they do in X . Finally, the stackification functor Lg preserves colimits (it
is a left adjoint) so the composition X — PNrX(C) — LSﬁX(C) ~ Stx (C) preserves colimits seperately
in each variable. O
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Related to Proposition 4.1.14 is the property that co-category St (C) is left tensored over X where

we regard St (C') as an X-module object in Mod x (%ﬁo) Explicitly, the left-tensored structure is given
by a functor F': S — X where an object of S}, is a sequence of objects (o, ..., Z,, f) where z; € X and
f € St%(C). Clearly the map F satisfies the conditions of Definition 3.2.1 where the inclusion n C [n]
induces the equivalence Sp,; = X, x St (C). The monoidal product ® : X x St%(C) — Stk (C) is
given by (z ® F)(¢) = 2 ® F(c) (well defined up to equivalence).

The internal Hom provided by Proposition 4.1.14, and more generally for X-valued prestacks, will be
denoted by Hom(F, G). We will now demonstrate that Hom(F, G) is an X-valued stack under the weaker
condition that F' is only an X-valued prestack when the conditions of Proposition 4.1.14 are satisfied.

Proposition 4.1.15. Let (C,7) be a site, X a presentable O-monoidal co-category whose tensor product
preserves colimits separately in each variable and F and G two X -valued prestacks on C. If G is an
X -valued stack then Hom(F, G) is an X -valued stack on C.

Proof. Let F be an X-valued prestack and G an X-valued stack. Then Hom(F,G) is an X-valued stack
if and only if the map
Mor(z, Hom(F, G)) — Mor(colim u,, Hom(F,G))

is an equivalence in X. This is equivalent to the condition that Mor(z®F, G) — Mor(colim,, (u.®F), G) is
an equivalence in X and subsequently to colim,, (u.® F) — x® F being an equivalence of X-valued stacks.
Let B be an object of X. Since G is an X-valued stack, the map Map(B, G(z)) — lim,, Map(B, G(u.))
is an equivalence and so Map(z ® B,G) — Map(colim, (u. ® B),G) is an equivalence for any B € X.
Now recall that any X-valued prestack can be written as a colimit given by colim, (v, ® By) for v,
a set of prestacks and B, a set of generators for the presentable oco-category X. Therefore, x ® F =~
x ® colimg, (vy ® By) ~ colim, (z ® v,) ® B, >~ colim, (colim,, (usx ® v,) @ By) ~ colim,, (u, ® colim,, (v, &
B,)) ~ colim,, (u. ® F') and the result follows. O

Let n > 0 be an integer. Recall that a (0o, 0)-category A is said to be n-truncated (resp. n-connective)
if for every i > n (resp. i < n)
mi(A,a) ~ *

for all objects a € A. An (o0, 0)-category which is 1-connective will be called connected. A map of
(00, 0)-categories f : A — B is said to be n-truncated (resp. m-connective) if the homotopy fibers of f
taken over any base point of B is n-truncated (resp. n-connective). A prestack F': C°P? — K is said to
be n-truncated (resp. n-connective) if F(x) is n-truncated (resp. m-connective) for all z € C. A map
of prestacks F' — G is said to be n-truncated (resp. m-connective) if F(z) — G(x) is n-truncated (resp.
n-connective) for all x € C'.

Definition 4.1.16. Let C' be an oo-category and n > 0 an integer. An object x in C is said to be
n-truncated if the representable prestack C(e,x) is n-truncated. An arrow f :z — y in C is said to be
n-truncated if the map of prestacks C(e, f) is n-truncated.

Let 7<,C denote the full subcategory of C' spanned by the n-truncated objects. There exists an
equivalence

T<0C — h(7<oC)
of oco-categories.

Example 4.1.17. Let (C, ) be a site. The co-category 7<oSt” (C) is equivalent to the ordinary co-topos
Stget (hC) of sheaves of sets on the homotopy category of C.

Note that objects in the oco-category 7<oC are objects x € C such that for all y € C, the (c0,0)-
category C(y,x) is homotopy equivalent to a discrete space, ie. C(y,z) — mC(y,z) is a homotopy
equivalence for all y € C. We can construct a left adjoint to the inclusion functor i : 7<,,C' — C given by

t, : C — 1<, C.
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Remark 4.1.18. An oo-category C' is said to be t-complete if for all © € C such that ¢,(z) ~ * for
all n implies that x ~ *. In other words, an co-category C is t-complete if truncated objects detect
isomorphisms in hC' in that an arrow v : * — y is an isomorphism in hC' if and only if v* : hC(y, z) —
hC(z, z) is bijective for any truncated object z in hC. The oo-category St”(C) of stacks is not a t-
complete oco-topos. However, there exists a stronger notion of a stack called a hyperstack which do form
a t-complete co-topos. For all n > 0, let A<,, denote the full subcategory of A spanned by objects [m)]
with m < n. Let C be a presentable co-category and sC' the oo-category of simplicial objects in C'. The
natural inclusion 4, : A<, — A induces a restriction functor i}, : sC — C*Z% which has a fully faithful
right adjoint (i), and left adjoint (i, )1 given by the right and left Kan extensions along the inclusion
in. The n''-skeleton functor, sk, : sC — sC, is defined as a. — (in)ii%,(as). The nt"-coskeleton functor,
cosky, : sC — sC, is defined as ay — (in)«ik(ay).

Let (C,7) be a site. A simplicial object u, in sPr(C) is said to be a hypercovering in Pr(C) if for each
n > 0 the map u,, — (coskn—1(u.))n is an effective epimorphism, ie. the induced map #J(F) — 7 (G) is
an epimorphism of sheaves. Equivalently, for every € C and any map h, — G in Pr(C) there exists a
covering sieve R of x such that for any map y — z in R, there is a map h, — G such that the diagram

h, ha

F G

commutes (up to equivalence) in Pr(C). Let X be an oo-category with limits. An X-valued prestack
F:C% — X on C is said to be an X -valued hyperstack on C if for all x € C' and all hypercoverings .
in C/w

F(z) — 71116% F(uy)

is an equivalence in X. If C' is a small co-category then there exists a bijective correspondence between
topologies on C' and (equivalence classes of) t-complete left exact localisations of Pr(C') given by the rule
7 +— St7(C). For a discussion on the relative merits between stacks and hyperstacks we refer the reader
to Section 6.5.4 of [Lu].

Proposition 4.1.19. Let (C,7) be a site and
F:C — Caty
a prestack of co-categories satisfying the following conditions:
1. For each object x in C, the co-category F(x) admits limits.

2. For each object x in C and for any covering {u; — x};cr in cov™ (x), the functor F(x) — F(u;)
preserves limits.

3. For each object x in C and for any covering {u; — x}icr in cov™ (), the functor F(x) — [, F(u;)
18 conservative.

4. For any map f : y — x in C, the functor f* := F(f) : F(z) — F(y) admits a right adjoint
f.: F(y) — Pl).

5. For each pullback square
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in C, the natural morphism g* f. = q.p* is an equivalence in the oo-category RHom(F(y), F(y')).
Then F is a stack of co-categories.
Proof. We need to show that for any covering v — x in cov” (z) the map

F(z) — lign F(uy)

is an equivalence of co-categories. Consider the pullback diagram

U T
p‘ ‘ f
v U
in C where f € cov™(x). Construct the section § : u — u X, u of the map ¢ where g o § = id,,. Taking

the nerve of the maps f and ¢ and using (1) we obtain a homotopy commutative diagram

f

_—

q
R ——

Flz) —5 lim F(u,)

Flu) —2 lipn F(v,)

in Catoe. Using (2), (4) and (5) we obtain an adjoint homotopy commutative diagram

Fz) 2

hin F(uy)

B’

F(u) < liin F(vy)

in Catgo. To complete the proof it will suffice to show that the unit and counit of the adjunction A 4 B
are equivalences. By (3) and the fact that both squares commute, we are able to check the corresponding
statement for the adjunction A’ 4 B’. This adjunction is an equivalence owing to the fact that for any
covering admitting a section, the prestack F' satisfies descent. O

Remark 4.1.20. There exists similar types of characterisations in the case of hyperstacks of co-categories.
See the appendix of [T4] for details.

We now define the notion of a group object in an oco-category. We start with the more general notion
of a groupoid object. Let C' be an oco-category with pullbacks. A category object in C is a functor
F : A°P — (C such that for all n > 0, the canonical map

F([n]) = F([1]) xp(op X - Xp(op F([1])

is an equivalence in C. Let Ct(C') denote the full subcategory of RHom(A°?, C) spanned by the category
objects of C. A category object F in C' is said to be a groupoid object in C' if it takes every partition
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2] ={SUS8|SNS" ={s},s € S} to a pullback square

F([2]) — F(5")

F(S) —— F({s})

in C. Let Gpd(C) denote the full subcategory of Ct(C') spanned by the groupoid objects of C. We have
an adjoint pair
i:Gpd(C) = Ct(C): j

where j(F) is the groupoid object of isomorphisms of a category object F' in C.

Definition 4.1.21. Let C be an co-category and G a groupoid object in C. Then G is said to be a group
object in C' if G([0]) is a terminal object in C.

Let Gp(C) denote the full subcategory of Gpd(C) spanned by the group objects of C. The oo-
category Gp(K) will play the analogue of the category of groups in the oo-categorical context. If C' is an
oo-category then there exists an equivalence

Gp(Pr(C)) — RHom(C?, Gp(K))

of oo-categories. This follows from the general fact that for an co-category D with limits, then Gp(RHom(C, D)) ~
RHom(C, Gp(D)) since limits in functor categories a computed pointwise. If (C, ) is a site then a Gp(K)-

valued stack will be called a group stack on C. The oo-category Gp(St™(C)) of group stacks on C will

be denoted Gp™ (C).

Example 4.1.22. If C is the site (Affg, 7) of commutative R-algebras, we will denote the co-category
Gp™ (Affg) by Gp" (R).

4.2 Gerbes

Let (C,7) be a site. A stack F' in St™(C) is said to be locally non-empty if for all x € C there exists
a 7-covering u — x such that F'(u) is non-empty. It is said to be locally connected if to(F) — * is an
isomorphism (of sheaves of sets). A morphism of prestacks ¢ : F' — G is said to be a local equivalence if
it is fully faithful, ie. ¢, : F(x) — G(x) is fully faithful for all € C, and locally essentially surjective, ie.
for all z € C and a € G(z) there exists a covering « : u — z such that a*(a) is equivalent to a* (¢, (b))
(ie. an isomorphism in hG(u)) for some b € F(z). If F and G are stacks then ¢ is a local equivalence if
and only if it is an equivalence of stacks.

Definition 4.2.1. Let (C,7) be a site and F a stack in St™(C'). Then F is said to be a gerbe in St™(C)
if it is locally non-empty and locally connected.

The full subcategory of St™ (C') spanned by gerbes will be denoted by Ger” (C). A gerbe G in Ger” (C)
is said to be neutral if there exists a morphism * — G in Ger” (C).

Example 4.2.2. Let C be an O-monoidal co-category and R an O-monoid object of C. Then we will
denote by Ger” (R) := Ger" (Affr) the co-category of stacks with respect to the site (Affg, 7) of R-algebras
in C.

We now provide a requisite characterisation of a gerbe. First we will need a small lemma.
Lemma 4.2.3. Let f : C — D be a map of (00,0)-categories. Then the following are equivalent.

1. The map f is fully faithful, ie. for allx,y € C, xxky = Mapq(z,y) — Mapp(fx, fy) = fo x? fy.
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2. The map § : C — C x" C is an equivalence.

3. The map 7o(C) — mo(D) is a monomorphism and for all x € C and i > 0, the map m;(C,z) —
(D, f(x)) is an equivalence.

Proof. (1) = (2). Since f is fully faithful, C(z,y) = C(z,v) x%(f%fy) C(z,y)s08:C — Cxh Cis fully

faithful. For essential surjectivity, we need to show that any object (z,y,a : fx = fy) in C — C x C
is equivalent to an object §(z) = (z, z,id,) for some z € C. Let z = x. Since f is fully faithful, we set
B:z = yand a = f(B). (2) = (3). Let d € D and (z,y) € C x% C such that d ~ f(x) ~ f(y).
Then §~!(z,y) is equivalent to the path space between z and y in f~1(d). Thus f~!(d) is empty or
contractible. Thus mo(C) — mo(D) is a monomorphism. (3) = (1). This statement is clear. O

Recall that the classifying space functor is given by

B:Gp(K) =K
G — BG : [n] — Gy n.

It admits a right adjoint  which sends an (oo, 0)-category A to Q(A) : [n] — A2+, Let (C,7) be a site.
We construct the following classifying prestack functor

B : Gp(Pr(C)) — Pr(C)
G — BG : z — B(G(x)).

together with its right adjoint Q, where Q(F) : 2 — Q(F(z)). Finally, the classifying stack functor

B:Gp"(C) — St7(C)
is the stackification of B and admits the right adjoint
Q: St™(C) — Gp™(O).

Proposition 4.2.4. Let (C,7) be a site and F a stack on C. The following are equivalent:
1. The stack F is a gerbe.
2. The stack F' is locally equivalent to BG for G a group stack in Gp™ (C).

Proof. Let Kang be the category of Kan complexes with a single 0-simplex. We have a natural string of
equivalences Gp(K) ~ L(Gp(Kan)) ~ L(Kang) ~ L(sGp) of oo-categories (see Corollary 6.4 of [GJ]). By
Section 4 and 5 of Chapter 5 of loc. cit there exists an adjunction

W :sGp & Kang : Q

where the construction WG is a model for BG where G € sGp. Thus for a pointed stack F' and a
Gp(K)-valued prestack G, we have an equivalence

Mapp, (. (BG, F) — Mapg,p,(cy) (G, QF)

of (00, 0)-categories where QF := Aut(s) for s € F(x). We claim that if F is a stack which is locally

non-empty and locally connected with F(x) # @ then F is locally equivalent to BG for G = Aut(s),

s € F(x). By the equivalence above, the identity map G — Aut(s) corresponds to a map of prestacks
¢:BG — F

* = S.
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But since I is a stack, the universal property of stackification implies that ¢ is actually a map of stacks
¢ : BG — F. It remains to show that ¢ is fully faithful and locally essentially surjective. By Lemma 4.2.3,
fully faithfulness is equivalent to the condition that BG — BG x g BG is an equivalence of stacks. By the
universal property if suffices to check it for a map of prestacks. By Lemma 4.2.3 again, it suffices to check
the two conditions of Lemma 4.2.3 part (3). The first condition of (3) is clear. The second condition follows
from the fact that for all z € C' we have m;(BG(x),*) ~ m;_1(G(x), *) := m;_1(QF (x), s) ~ m;(F(x), s).
Finally, since F' is locally non-empty and locally connected there always exists a 7-covering o : u —
such that for a € F(z) the map a*(a) — a*(¢,(*)) is an equivalence. O

4.3 The positive, flat and finite topologies

Recall that a module M over an ordinary ring R is said to be flat if the functor e ® g M : Modg(Ab) —
Modpg(Ab) is exact (ie. preserves finite limits and colimits).

Definition 4.3.1. Let R be an F-ring and A an R-algebra. An A-module M is said to be
1. Positive if the functor e ® 4 M : Mody — Mod 4 preserves anti-connective objects.

2. Flat if the abelian group mgM is flat as a module over the ordinary commutative algebra myA and
for each n € Z, the map m, A @ 4 moM — 7w, M is an isomorphism of abelian groups.

3. Finite if the functor e ® 4 M : Mod s — Mod 4 preserves all (small) limits.

A map A — B of R-algebras is said to be positive (resp. flat, finite) if B is positive (resp. flat,
finite) when considered as an A-module. If R is a connective E,-ring then every flat R-module is also
connective. If R is a discrete E-ring then every R-module M is flat if and only if M is discrete and
mo(M) is flat over mo(R) in the classical sense. A module M is finite over an Foo-ring if and only if it is
perfect (see Proposition 5.1.7).

Let £ be a commutative ring and M and N be k-modules. Recall the construction of the abelian
groups Tor® (M, N) (see for example [We]). Recall also that a k-module M is flat if and only if for any
k-module N, the group Tor¥(M, N) = 0. Let R be a discrete Fo-ring and M and N be two discrete
R-modules. Then the canonical map

Tn(M ®g N) — Tor™ (1o M, moN)

is an isomorphism. 4

Let Mod%0 (resp. Modg , Modlf%Z ") denote the full subcategory of Mod g spanned by the positive (resp.
flat, finite) R-modules. These full subcategories are closed under taking tensor products and contain the
unit object R of Modgr. Hence by Example 3.1.11, these oco-categories inherit a symmetric monoidal
structure. By Proposition 3.2.14 we deduce that the functor CMon(Mod%O) — €p is fully faithful and
its essential image consists of positive maps R — R’. Similarly statements hold for the flat and finite
examples.

Lemma 4.3.2. Let R be an E-ring.
1. Maps of positive, flat and finite R-algebras are stable under composition.

2. Let

c—2 D
be a pushout in €, of R-algebras. If f is positive (resp. flat, finite) then g is positive (resp. flat,
finite).
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Proof. For part (1), let A — B — C be two maps of R-algebras. For any A-module M, there exists a
natural equivalence
CRp(BRaM)~C®@s M

showing that the functor C' ®4 e is equivalent to the composition C ®p (B ®4 e) of functors. Since
the composition of two functors preserving connective objects is connective this proves the positive part.
Since the composition of two exact functors is exact and the above equivalence is an isomorphism on 7
objects, the flat case is satisfied. Finally, the composition of two functors preserving limits preserves limits
which proves the finite case. To prove (2), observe that there exists a natural equivalence D ~ B®4 C.
Thus for any C-module M, there exists an equivalence

D®CM2(B®AO)®CMZB®AM

of B-modules. Following the argument above, this shows that if f is positive (flat, finite) then g is
also. -

Let R be an F-ring and A — B a map of R-algebras. Consider the base change functor

B®je:Mody — Modp
M B®a M.

A map of R-algebras A — B is said to be conservative if the base change functor B ® 4 e is conservative,
ie. B®4 M ~ 0 if and only if M ~ 0.

Definition 4.3.3. Let R be an F-ring. A finite family of maps {A — B;};cs of R-algebras is said to
be a positive (resp. flat, finite) covering if A — B; is positive (resp. flat, finite) and conservative for each
1€l

Proposition 4.3.4. Let R be an Eo,-ring. The positive, flat and finite coverings define a topology on
the oco-category Affg.

Proof. The conservative property is clearly stable under composition and pushouts. Thus the three cases
can be deduced from Lemma 4.3.2. O

The positive, flat and finite topologies will be denoted by “> 07, “fl” and “fin” respectively. The most
important example of a stack with respect to these topologies in our context is the stack of modules. We
construct the following prestack with respect to a commutative ring spectrum R:

Mod : AffY — Cat3g
Al—>MOdA
(A-B)—~ B®Rae

Proposition 4.3.5. Let R be an E-ring. The functor Mod is a stack of oco-categories over the site
Affp with respect to the flat and finite topologies.

Proof. We begin with the finite topology. We will show that Mod : Affy — CatZ satisfies each of the
conditions of Proposition 4.1.19. For any A € CAlgp, the co-category Mod4 has limits since Mody4 is
presentable (and presentable co-categories admit all limits). Given any u : B — A in Affy the base change
functor u* : Mods — Modpg commutes with limits along A by virtue of the flat and finite topologies. Its
right adjoint u, is given by the conservative forgetful functor. For any pushout square

u

A B
c oD
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in CAlgp we have, for M € Modp,
(o) Ul (M) = (') (M @5 D) = () (M @4 C) = v.(M & A) = v, (M)

where the first equivalence follows from the natural equivalence B[[C ~ B ®4 C in CAlgy of Exam-
ple 3.1.12. The proof of the flat case can be extracted from Lemma 2.2.2.13 of [TVII] (the same arguments
hold here). O

Proposition 4.3.6. Let R be an Eo,-ring. The flat and finite topologies on Affgp are subcanonical.

Proof. This follows from the fact that if Mod is a stack on Affg for any topology 7 then 7 is subcanonical.
This can be seen as follows. Assume Mod is a stack. Then by definition we have an equivalence Mod 4 —
lima Modp, for any covering B — A of A. Thus for all M € Mod 4, the unit map M — lima (M ® 4 B,)
is an equivalence. Take M = A. Then A — lima B, is an equivalence and for all C € CAlgp the
composition

Map(C, A) — Map(C, lima B.) — lima Map(C, B.)

is an equivalence. Thus the representable prestack h¢ is a stack. The result now follows from 4.3.5. [

Let 7 € {fl, fin}. Since 7 is subcanonical, we have a fully faithful morphism
Affp — St™(R)

of co-categories given by the Yoneda embedding. We denote a stack in the essential image of this functor
by Spec A for an R-algebra A. A stack F' in St”(R) is said to be affine if F' — Spec A is an equivalence of
stacks for some R-algebra A. An affine stack is called an affine group stack if the affine stack is a group
stack.
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5 Tannaka duality for oco-categories

Tannaka duality for co-categories describes a correspondence between certain linear monoidal co-categories
and certain stacks with respect to the co-category of symmetric ring spectra. More precisely, one studies
the adjunction 4

Fib : Tens® & St™(R)°? : Perf

where for a symmetric ring spectrum R, the category on the left is the (oo, 2)-category of rigid R-tensor
oo-categories and the category on the right is the co-category of stacks on the site of R-algebras for various
topologies 7. The duality theorem describes conditions on these categories for which this adjunction is
an equivalence of co-categories.

In Section 5.1 we describe what it means for an oo-category to be rigid. This amounts to every object
being dualisable and is a strong condition which gives much of the Tannakian theory its flavour. The
notion of a dual object in an ordinary category has its origins in the example of the category of vector
spaces: a vector space admits a dual if and only if the vector space is finite dimensional. Thus the
rigidification of an oo-category, that is, discarding all objects that do not admit duals, can be thought
of as the implementation of a “finiteness condition” on its objects. Most of the oo-categories we work
with are ind-rigid. That is, they are equivalent to the oo-category of ind-objects of its full subcategory
of dualizable objects. For example the co-category of modules over an F..-ring is ind-rigid: any module
over an F.-ring is a given by a filtered colimit of rigid objects. In Proposition 5.1.6 we prove the very
useful projection formula for co-categories and in Proposition 5.1.12 show that under certain conditions,
the oco-category of endomorphisms of a functor valued in R-modules is an affine group stack.

On one side of the higher Tannaka duality will be affine group stacks which correspond algebraically
to Hopf algebras. In Section 5.2 we introduce the co-category of Hopf R-algebras for R a commutative
monoid object in a symmetric monoidal co-category. We of course are interested in the case where R is
an F.-ring and in Proposition 5.2.4 we prove that the Spec functor embeds fully the co-category of Hopf
R-algebras into the oo-category of group stacks with respect to a subcanonical topology. Informally, we
have a diagram

Spec

¢r) —2% St7(R)

Hopf, —2% Gp’ (R)
of co-categories where the horizontal arrows take an algebraic object to its corresponding affine geometric
object and the vertical arrows pass to the corresponding group objects.

In Section 5.3 we begin the main objective of this paper: to state and prove a Tannaka duality state-
ment for oo-categories. We state two duality theorems. One for the pointed (or neutralized) case and the
other for the non-pointed (or neutral) case. We must first describe the adjunction in which the equivalence
lives (Proposition 5.3.2). Restricting to pointed objects we obtain the corresponding pointed adjunction
in Lemma 5.3.8. We define the notion of 7-fiber functor for each of our three topologies, the positive,
flat and finite topologies, and define what it means for an co-category to be pointed R-Tannakian. The
pointed co-Tannaka duality theorem is stated in Theorem 5.3.13 and proven in Section 5.4. In Section 5.5
we define (non-pointed) R-Tannakian co-categories and the co-category of neutral R-Tannakian gerbes
with respect to our three topologies. The co-Tannaka duality theorem is stated in Theorem 5.5.3 and
proven at the end of the section.

In Section 5.6 we begin the comparison results with the classical theory. In Proposition 5.6.1 we show
that the category of stacks in the classical Tannaka theory, that is, stacks with respect to the ffqc topology,
fully embeds into the oco-category of stacks with respect to the flat topology. This proposition aids us
in proving Corollary 5.6.4 which states that when k is a field, the category of k-Tannakian categories
with respect to the ffqc topology is equivalent to the oo-category of Hk-Tannakian oo-categories with
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respect to the flat topology. The functor is given by taking a k-Tannakian category to the oco-category
given by the localisation of its category of bounded complexes. In Section 5.7 we discuss the relationship
between pointed schematic homotopy types introduced in [T2] and neutralized positive H k-Tannakian
oo-categories.

5.1 Rigid oco-categories

Recall that an object y in a symmetric monoidal category C' is said to be a dual of an object = in C' if
there exists maps ev, : t ® y — 1 and coev, : 1 — y ® x such that the compositions

id id
1dy @coevy z® y Q eV, Qidy
coev, Qid,y idy Qevy

Yy————yYQrQy ———y
coincide with the identity maps of x and y. Let C now be a symmetric monoidal co-category. An object

x in C is said to be dualizable if it admits a dual when considered as an object of the symmetric monoidal
category hC. We will denote the dual of an object = by zV.

Definition 5.1.1. A symmetric monoidal co-category is said to be rigid if all objects are dualizable.

See also Proposition 2.6 of [TV3] for more equivalent characterisations of rigidity. Note how closely
the definition of a rigid co-category resembles the definition of an oo-category with adjoints (see Defi-
nition 2.3.2). The dictionary is as follows. A symmetric monoidal co-category C' can be thought of as
an (00, 2)-category BC' with a single object x. We identify Map g (*, %) with an oco-category equivalent
to C' and with composition Map g (x,*) X Mappa(x,*) — Mapgq(*,*) given by the tensor product
in C' (higher coherences take into account the complete monoidal structure on C'). Then C' is a rigid
oo-category if and only if the homotopy 2-category ho BC' has adjoints.

Let C be a symmetric monoidal oo-category. Then the unit object 1 is dualizable. Moreover, the
dualizable objects are stable by isomorphism in hC' and stable by the tensor product. We denote the
full subcategory of C' consisting of dualizable objects by C'&. Let @fg denote the full subcategory of
%SOE/I spanned by the rigid co-categories. By Proposition 5.1.5 this is an oo-category. By Theorem 2.10
and Lemma 2.11 of [TV3] we deduce that there exist adjunctions

I,rig; . 4
(Cat2)™ 2= (Cat)™® = (Cat)™
i (o)®

of oco-categories where Frrig(C) is the free rigid oo-category generated by the symmetric monoidal oco-
category C. The right adjoint (e)'® will be called the rigidification functor and C™8 the rigidification of
C.

Example 5.1.2. Let R be an E.-ring. Then there exists an equivalence Mod‘}frf ~ Mod%i{g of oco-
categories.

Proposition 5.1.3. Let C be a symmetric monoidal co-category. Then C is rigid if and only if it satisfies
the following conditions:

1. The oco-category C' is enriched over itself.
2. The map Hom(z,1) ® y — Hom(z,y) is an equivalence in C for all x,y € C.

Proof. 1t is enough to prove this statement in hC. The classical statement can then be found for example
in Section 2 of [D2]. O

Let C be a rigid co-category. To any map f : x — y in C there corresponds a transpose map given
by the composition

v 1®f®1

1
yv®x®x —>yv®y®xvﬂ>xv.

¢ 1®coev,
f Y
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Similarly, to any f :y" — xV we associate a composition map

coevy ®1

y®y\/®x 1®f®1 y®$v®$ YyRevy y.

fiox

This induces an equivalence
Cla,y) — Cy’,z").

of (00, 0)-categories. The following Lemma follows straightforwardly from Proposition 5.1.3.
Lemma 5.1.4. Let C be a rigid co-category.

1. For all z,y,2',y € C, the map Hom(z,y) ® Hom(z',y") — Hom(z @ 2',y @ y') is an equivalence in
C.

2. For all z,y € C, the map v @ y — Hom(z",y) is an equivalence in C.
3. For all z,y € C, the map Hom(z,y)" — Hom(y, ) is an equivalence in C.

Proof. Set z¥ = Hom(z,1). For (1), we have a chain of equivalences Hom(z,y) ® Hom(z',y') ~ z¥ ®
(') Ry®y ~Hom(z®@x',y®y’) since ¥ ®y" is dual to z®y. For (2), we have a chain of equivalences
Clz,x®y) ~ Cx¥®yY,z") ~ C(x¥,Hom(y",2")) ~ C(x¥,Hom(z,y)) ~ C(z,Hom(z",y)) which is
functorial in z. Finally, for (3), we have a chain of equivalences Hom(z,y)" ~ Hom(Hom(z,y),1) ~
Hom(zV ®y,1) ~ y¥ ® x due to (2). Thus Hom(z,y)" ~ Hom(y, z). O

Proposition 5.1.5. Let C' and D be rigid co-categories and F,G : C — D be two symmetric monoidal
functors. Then any map « : F' — G is an equivalence.

Proof. As shown in [Sa], an explicit inverse to « is given by the map 8 : G — F making the following
diagram

[P

F(z") —— G(z")

F(z)Y % G(a)Y
commute for all z € C. O

Proposition 5.1.6. Let C' and A be co-categories and f: C = A : g an adjunction in Tensll"%x, Assume
C is ind-rigid. Then for any object x in C' and a in A, the map

g(a) @z — gla® f(z))
is an equivalence.

Proof. Let x be a dualizable object of C' and y be an arbitrary object of C. Then C(y,ga ® x) = C(y ®
¥, 90) = A(f(y@aV),a) = A(fy® faV,a) = A(fy® (f)",a) = A(fy,a® fr) = C(y, gla® fz)). Since
any object in C is given by a colimit of dualizable objects by assumption and the above demonstration
is functorial in z, the result follows. O

The equivalence in Proposition 5.1.6 is often called the projection formula. Setting a =1, f(z) = b
and applying f to the projection formula gives the equivalence fg(1) ® b ~ fg(b).

Proposition 5.1.7. Let R be an E-ring. If the functor e®@g M : Modr — Modg commutes with limits
then M is dualizable.



86 J. M. WALLBRIDGE

Proof. Let X and Y be R-modules. We can write any R-module as a colimit of perfect R-modules so
we set X = colimy,X,. Assume that the functor ¢ ® g M commutes with limits and recall that the
oo-category Modlp%Crf is equivalent to Mod*. We have that

Hom(X,Y) @ M ~ lim Hom(X,,,Y) © M
~ lim (Hom(X,,Y) ® M)
~ lim (XY ®Y @ M)
~ lim Hom(X,,Y ® M) ~ Hom(X,Y ® M).

Setting X = M and Y = R we see that MV ®@p M ~ Hom (M, M) so M is dualizable by Proposition 5.1.3.
O

Definition 5.1.8. Let C be a stable, presentable symmetric monoidal co-category. Then C' is said to be
ind-rigid if Ind(C"'®) — C is an equivalence of co-categories.

Example 5.1.9. Let R be an E-ring. Then the oo-category Modpg is ind-rigid. One can show that
Ind(ModpRerf) — Modg is an equivalence of co-categories so combining this with the equivalence between

Mod%erf and Mod's® we obtain the desired result. Let G = Foy : Mod'# — Modg denote the composition

of F: Ind(Mod%#) — Modg with the Yoneda embedding. Tt follows from Proposition 5.3.5.11 of [Lu]
that the set of objects {G(M)} v e generate Modpg under filtered colimits.

Lemma 5.1.10. Let C and D be presentable symmetric monoidal co-categories. Assume that C is
ind-rigid. Then there exists an equivalence

Hom®(C, D) — Hom®(C™8, D"¢)
of co-categories.

Proof. By the universal property of ind-objects, the map Hom®(C, D) — Hom®(C"8, D) is an equiva-
lence. The result now follows from the fact that symmetric monoidal functors preserve rigid objects. [

Let F : C — D be a functor between oco-categories. Then we denote by End(F') the mapping space
Map(F, F) taken in the oco-category RHom(C, D). If C' and D are symmetric monoidal co-categories
we let End®(F) denote the mapping space Map(F, F') in RHom{ (C, D). We will now show that if C is
ind-rigid then End(F) is representable. Let R be an E-ring. First recall that given two rigid R-modules
M and N, the mapping space Mapy;,q,, (M, N) as a functor on the oo-category CAlgr of R-algebras is
given by

Map(M, N)(A) := Map(M ®r A, N ®@g A).

This functor is representable by the chain of equivalences

Mapytod, (M@ rA, N®rA) =~ Mapyioq,(MOrA, N) = Mapyoq, (M@rNY, A) ~ Mapcyy,, (Fr(M@rNY), A)

where the second equivalence follows from Proposition 5.1.3 and the third follows from the equivalence
CAlgp(Fr(M), e) ~ Modg(M, e)

arising from the adjunction CAlgr 4 Modg (see Section 3.1).

Lemma 5.1.11. Let C' be a symmetric monoidal co-category and F : C — Modlj;;iig a symmetric monoidal
functor. Then End®(F) is representable.
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Proof. Any symmetric monoidal co-category is of the form hocolim,C, where C,, is the free symmetric
monoidal oo-category over an oo-graph G, defined through the following universal property: for any
symmetric monoidal co-category D, there exists an equivalence

RHom® (C,,, D) ~ RHom®"" (G, D)
where RHom®P" denotes the co-category of functors between co-graphs. Thus we have an equivalence
RHom® (C, Mod’s¢) — holim RHom®™" (G, Mod'€)
F— F,

where F,, sends an object = in G, to a rigid module M, and the mapping space G,(z,y) to the map-
ping space Modgg(Mx,My). When G, consists of a single object z, then End(F,) ~ End(M,) =
SpecFr(E, ®r (F;)Y). When G, consists of two objects z and y and the simplicial set A of arrows
between x and y then

End(F,) = End(My) Xggom(m, v,)a End(M,).

Since representable objects are stable under homotopy limits and any oo-graph is generated under ho-
motopy colimits by the above two simple graphs, the functor holim, End®(F,) ~ End®(F) is repre-
sentable. O

Proposition 5.1.12. Let R be an Ex-ring, C be a presentable ind-rigid symmetric monoidal co-category
and F : C — Modg a symmetric monoidal functor. Then End®(F) is a representable Gp(K)-valued
prestack. Hence it is an affine group stack with respect to any subcanonical topology.

Proof. Since the oco-category C is ind-rigid, the map RHom®(C,Modg) — RHom® (C"®, Modgg) is an
equivalence by Lemma 5.1.10. Thus we have an equivalence End®(F) ~ End®(F*¢). By Lemma 5.1.11,
End(F"#) is representable. Finally, End®(F) ~ RAut®(F) by Proposition 5.1.5 so End®(F) is in fact a
representable Gp(K)-valued prestack and hence an affine group stack for any subcanonical topology. [

5.2 Hopf algebras

Definition 5.2.1. Let C' be a symmetric monoidal co-category and R a commutative monoid object in

C. A Hopf R-algebra in C' is a cogroup object B in the symmetric monoidal oo-category C/HgR(C) of
commutative R-algebras in C'.

Let Hopfy(C) denote the full subcategory of Comon(C/Kl/gR(C)) spanned by the Hopf R-algebras in
C. We will call By := B([1]) the underlying R-algebra of B. We have a well defined functor

Hopf : CMon(C) — CatZ
R — Hopfyr(C).

When the co-category C' is clear from the context we will simply write Hopfy in place of Hopf,(C). By
Example 3.1.12 the relative tensor product monoidal structure on CAlg(C) coincides with the coproduct.
Therefore, by Proposition 1.4.14 of [LIII], we deduce that there exists an equivalence

CAlg(C) — CSeMon(Modg(C))

of co-categories. Thus a Hopf R-algebra in C may be described as a functor B : A — CSeMon(m r(C))
satisfying the following three conditions:

1. By = R.

2. B1 ®gr...®r B1 — B, is an equivalence.
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3. B ®gr By — Bs: (x,y) — (z,xy) is an equivalence.

Definition 5.2.2. Let C be a symmetric monoidal oo-category and (Affg,7) a site. A Hopf R-algebra
in C is said to be a 7-Hopf R-algebra if its underlying R-algebra is an element of 7(R).

We denote by Hopf} (C) the co-category of T-Hopf R-algebras in C. When R is an Fo.-ring, we will be
primarily interested in the oo-category of positive (resp. flat, finite) Hopf R-algebras in the oco-category
Sp of spectra. The Hopf R-algebras which arise in the higher Tannakian theory satisfy an additional
property which we define in general.

Example 5.2.3. Let R be a discrete E.-ring. Then by Proposition 3.5.14 and Proposition 3.5.15, we
have an equivalence HOpfle (Sp?) ~ Hopffri r(Ab) which is the classical definition of the category of Hopf
algebras.

Proposition 5.2.4. Let C be a symmetric monoidal co-category, R a commutative monoid object of C
and (Affg,T) the site of R-algebras with respect to a subcanonical topology T. Then the functor

Spec : Hopfyp — Gp™ (R)
1s fully faithful.

Proof. Since 7 is subcanonical, the Yoneda embedding Affr — Pr(Affr) factors through the subcategory
of stacks and hence Spec : Affg — St"(R) is fully faithful. The tensor product in CAlgy corresponds to
the coproduct by Example 3.1.12 and the Yoneda lemma preserves limits by Proposition 2.3.9 so we have
an induced fully faithful functor Spec : Comon(CAlgy) — Mon(St"™(R)) on monoid objects. Restricting
to group-like objects we find that Spec : Hopfp — Gp” (R) is fully faithful. O

Definition 5.2.5. Let R be an Eo.-ring. A group stack G in Gp” (R) is said to be affine if it is of the
form Spec B for B a Hopf R-algebra.

Let Gp” (R)*! denote the full subcategory of Gp” (R) spanned by the affine group stacks.

Definition 5.2.6. Let R be an E-ring. A gerbe F' in Ger” (R) is said to be algebraic if it is locally

equivalent to BG for G ~ Spec B where B is a Hopf R-algebra. It is said to be T-algebraic if it is algebraic
for B a 7-Hopf R-algebra.

Let Ger” (R)™® denote the full subcategory of Ger” (R) spanned by the 7-algebraic gerbes. Let C be
an oo-category with finite colimits and X a cosimplicial object in C'. For any cosimplicial set A, we define
a cosimplicial object in C' given by

XRA:A=C
An

Let hg, hq : X = Y be two arrows in ¢cC. A homotopy between hg and hy is amap h: X ® Al — Y such
that
ho(idx X i9) =ho (ig xidx) = ho

ho(idx X il) :ho(il Xidx) Zhl
where ig,4; : A — Al denote the inclusion maps. A diagram
f: X2Y:yg

in cC is said to be a homotopy equivalence if there exists a map k : X ® A! — X such that the two
conditions

k‘o(idxxio)ZK‘O(ioXidx):ko =1id kO(idxxil):k‘O(il Xidx):kl ::gof
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hold together with a map [ : Y ® A! — Y such that the two conditions
lO(idy Xio):lo(io Xidy):lo :=id ZO(ldY Xil):lo(il Xidy):ll Z:ng
are also satisfied.

Lemma 5.2.7. Let C be an oco-category with finite limits. Then the functor holim,, : ¢cC — C takes
homotopy equivalences in cC' to equivalences in C.

Proof. Let X be a cosimplicial object in C'and A a cosimplicial set. It will suffice to show that holim,, (X ®
A) ~ holim,,(X) ® A. Let X be a constant cosimplicial object in C'. We have that

holim,, (A ® X) =~ holim,,(4) ® X ~ A ® X ~ A ® holim,, (X).
Now let X = X ® B for B a simplicial set. We have that
holim,, (X ® B) ® A) ~ holim,, (X ® (B ® A)) ~ holim, (X) ® (B® A) ~ holim, (X ® B) ® A.

Finally, X ® A" generates the co-category cC by homotopy limits. Therefore, setting X ~ holim, (X, ®
A™) we have

holim,, (X ® A) ~ holim,, (holim, (X, ® A" ) ® A)
~ holim,, (holim,, (X, ® A™) @ A))
(X0 ®@A™) @ A)
(X

(
(

~ holim, (holim,,
( o ® A" )) @ A ~ holim, (X) ® A.

~ holim, (holim,,
O

Notation 5.2.8. Let A be the category of augmented simplicial sets (see Notation 1.1). We define a
categrory A_, given as follows:

e The set of objects is given by Ob(A_.) = Ob(A4).

e The set of maps Homa ___([n], [m]) is the set of order preserving maps f : {—oco}U[n] — {—oco}U[m)]
which preserve the base point {—oco} thought of as a least element of {—oco}U[p] for any [p] € A_.

We have the natural sequence of inclusions A C A, C A_, where A, is identified with the full
subcategory of A_,, with same set of objects and a where a map f in A_., belongs to A if and only if
f71(—00) = {—o00}. The forgetful functor + : A_,, — A admits a left adjoint which we denote by Dec.
Let C be an oco-category and let ¢_o,C denote the co-category RHom(A_ ., C'). We have an induced
adjunction

4+ :c_sC = cC : Dec

between oo-categories. Let X be a cosimplicial object in C. We let Dec (X) denote the cosimplicial
object given by the composition + o Dec(X).

Proposition 5.2.9. Let C be an oo-category and X a cosimplicial object in C'. Then there exists a
homotopy equivalence Xo — Decy (X) between cosimplicial objects in C.

Proof. See Proposition 1.4 of [I]. O

Proposition 5.2.10. Let C be a symmetric monoidal co-category and B a Hopf R-algebra in C. Then
there exists an equivalence
R — holim B®r(+D
neA

in the co-category CAlgp.
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Proof. This follows from Lemma 5.2.7, Proposition 5.2.9 and the equivalence Deci (B), = Bnp41 =~
B®r(n+1) O

Definition 5.2.11. Let C be an oco-category. An augmented cosimplicial object X : A} — C' is said to
be split if there exists a map X — Dec(X). A cosimplicial object is said to be split if it extends to a split
augmented cosimplicial object. Let F': C'— D be a functor. A (augmented) cosimplicial object X of C
is said to be F-split if F o X is split as a (augmented) cosimplicial object of D.

Proposition 5.2.12. Let C' be an co-category and X : Ay — C a split augmented cosimplicial object in
C. Then X 1is a limit diagram.

Proof. This is essentially (the dual of) Lemma 6.1.3.16 of [Lu]. O

We now state the co-categorical Beck Theorem of Lurie. This is needed in our proof of the co-Tannaka
duality theorems of Section 5.3 and Section 5.4. See Section 7.2.2 for an account of adjunction data in
an arbitrary (oo, 2)-category.

Proposition 5.2.13. Let C' and D be co-categories and a an adjunction datum in ADatc p(Cat,,). Let
f:C — D be the induced map, L the induced comonad on D and ADat, ~ C' the equivalence of Corollary
3.3.6 of [LII]. Then there exists an equivalence

¥ : C' — Comody, (D)
of co-categories if and only if:
1. The map [ preserves f-split limits along A.

2. The functor f is conservative.

Proof reference. See Theorem 3.5.1 of [LII]. O

5.3 Neutralized Tannaka duality for oco-categories

We now introduce the stack of fiber functors and state our duality theorems for neutralized higher Tannaka
duality. In the next section, we will describe the proofs. Let R be an E.-ring and 7 € {fI, fin}. The
stack Mod of modules of Proposition 4.3.5 can naturally be extended to act on the co-category of stacks
St"(R) as follows. The objects of St"(R) can be considered as stacks associated to the functors

F: CAlgp — Catgy

taking values in the co-category of co-categories using the inclusion of Remark 4.1.9. The action of Mod
on the oo-category of stacks St” (R) is then given by

Mod : St™(R)°? — Cat
F — Mor(F,Mod)

where Mor is the morphism object of Sty (R) given by Proposition 4.1.14.

The co-category Mor(F, Mod) is naturallo}or endowed with the structure of an R-tensor co-category. The
tensor oo-structure on Mor(F, Mod) is induced from that on Mod: it is presentable by Example 2.3.18
and stable by Example 3.3.3 and is given the pointwise symmetric monoidal structure

Mor(F, Mod) := Mor(F, Mod) Xyjer(ery T

of Example 3.1.10 where 1\/4871[”] (A) := (h//IB(/iA)[n] for an R-algebra A and I is the constant prestack. The
R-linear structure on Mor(F, Mod) is also induced from that on Mod through the composition

Modg 2, Mor(F,Modg) — Mor(F, Mod)
where Modg is the constant prestack and v is the natural constant map. Thus we obtain a functor

Mod : St”(R)°" — Tens'y.
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Notation 5.3.1. Let Tens"® denote the co-category Cat*Mri& of rigid, stable symmetric monoidal

oo-categories and exact symmetric monoidal functors. Note that Tens"® is indeed an oo-category by

Proposition 5.1.5. We let Tens® denote the oco-category (Tens"®), i /- We will call Tensy® the oo-
R

category of rigid R-tensor oo-categories.
Restricting the functor Mod to rigid objects we obtain a natural functor

Perf : St™(R)?P — Tens}y#
F +— Mor(F, Perf)

where the stack Perf: CAlgp — Tens];g on the right hand side sends a commutative R-algebra A to the
oo-category Mod',® of rigid A-modules.

Lemma 5.3.2. The functor Perf admits a left adjoint.

Proof. Let C be a rigid R-tensor oco-category. We have the following chain of equivalences
MapTenSgg (C, Perf(F)) ~ Mapg- (g (C' x F, Perf) ~ Mapg- g (F, Hom(C, Perf)).

Here Hom(C, Perf) is a stack by Proposition 4.1.15, since Perf is a stack, where we regard C' as a constant
prestack. O

The left adjoint to Perf of Lemma 5.3.2 will be denoted

Fib : Tens}® — St™(R)°?
C — Hom(C, Perf).

where Fib(C)(4) = MapTenS;g (C, Modig) for a commutative R-algebra A. We would now like to con-

sider conditions on rigid R-tensor co-categories and stacks on certain sites of R-algebras for which the
adjunction Fib - Perf is an equivalence. We begin with some preliminary definitions and results.

Definition 5.3.3. Let R be an E.-ring. The oo-category of Segal comodules over a Hopf R-algebra B
is given by the following limit
SeComodpg := lin& Modp,
ne

of co-categories.

We will often abuse terminology by calling a Segal comodule over a Hopf R-algebra simply a comodule
over a Hopf R-algebra. Restricting to rigid objects we have an identification SeComod’z® := lim,, Mod}® .
The forgetful functor SeComod — Modp, is given by the evaluation map evy : lim, Modg, — Modp, =
MOdR.

Example 5.3.4. The object Decy(B) is a B-comodule which is just B thought of as a comodule over
itself. More precisely, a B-comodule, by definition, consists of objects M, € Modp, for all [n] € A
and for every arrow [n] — [m] in A, an equivalence M,, ®p, B, — M,, in Modg, . We have that
Dec, (B), = Bni1 and B,y ®p, By ~ BPR"! @pe, BO™ ~ B®M+L where the first equivalence
follows from Segal maps of the Hopf R-algebra structure on B. Thus Decy (B) is a B-comodule.

Proposition 5.3.5. Let R be an E-ring and B a Hopf R-algebra. Then there exists an equivalence
SeComodz ~ Mod(BG)

of co-categories for an affine group stack G = Spec B.
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Proof. Firstly, BG = |[BG,| where BG, : A% — St"(C) takes [n] to G,, so BSpec B = colim,ea Spec B,,.
We thus have an equivalence

Mod(EG) = Mor(ﬁ Spec B,Mod) = Mor(colimpea Spec By, Mod) ~ lim,ca Modp, =: SeComodp
given by the Yoneda Lemma. O

Let R be an F-ring and B a rigid Hopf R-algebra. A corollary of Proposition 5.3.5 is that there
exists an equivalence

SeComod"i# ~ Perf(BG)
of co-categories for an affine group stack G = Spec B.

Remark 5.3.6. Recall that we defined the oo-category of comodules Comodg(C) over an R-coalgebra
B in a symmetric monoidal co-category C' as Modg(C°P)°P in Section 3.2. One can show, with the aid
of Proposition 2.6.2 of [LII], that there exists an equivalence

Comodp(C) — SeComodp(C)

of oco-categories. In this paper, we would like to consider our co-category of comodules as living in the
(00, 2)-category Tensa* of R-tensor co-categories. However, endowing Comod(C) with the structure of
an R-tensor oco-category and proving Proposition 5.3.5 is much more difficult than that of the co-category
of Segal comodules. This is the reason why we have chosen to adopt Definition 5.3.3.

We call Perf(BG) the oo-category of representations of G and denote it by
Rep(G) := Perf(BQ).
for G = Spec B where B is a Hopf R-algebra in the oco-category Sp of spectra.

Notation 5.3.7. Let (Tensgg)* denote the overcategory (Tens%g)/MOdr;g. The objects of (Tensgg)* will
R

be described as pairs (T,w) where T is a rigid R-tensor oo-category and w : T — Mod%g is an R-tensor
functor. They will be called pointed rigid R-tensor co-categories. Let Fib, : (Tensgg)* — Gp" (R)°? be
the functor defined by Fib, (T,w) := End®(w). Let Perf, : Gp™ (R)°? — (Tens%g)* be the functor defined
by Perf, (G) := (Perf(BG),v) where v := f* : Perf(BG) — Mod}iig is the functor induced by the natural
map f % — BG.

Lemma 5.3.8. The maps of Notation 5.3.7 induce an adjunction
Fib, : (Tensi?), = Gp™(R)°? : Perf,
of co-categories.
Proof. Consider the homotopy pullback diagram
Map, (BG, Fib(T)) — Mapg;- () (BG, Fib(T))

w
*

Mapg;- (g (x, Fib(T))
and its corresponding adjoint diagram

Map, (T, Perf(BG)) — Mappegris (T, Perf(B@))

w
*

MapTenSEg (T, Mod%g) .
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using Lemma 5.3.2. Since the two diagrams are equivalent, the homotopy pullbacks are equivalent and
we have a chain of equivalences Map(G, Fib,(T')) ~ Map, (BG,Fib(T)) ~ Map, (T, Perf(BG)) using the
adjunction B 4 €Q,. O

We now state the main results of the paper. They will be proven in the next section. We will begin
with the pointed case, otherwise known as neutralized Tannaka duality for co-categories. We would like
to study conditions on pointed rigid R-tensor oco-categories and group stacks for which the adjunction of
Lemma 5.3.8 is an equivalence of co-categories. We make use of the positive, flat and finite topologies
introduced in Definition 4.3.1. We begin by defining the appropriate subcategory of pointed rigid R-tensor
oo-categories which we call Tannakian.

Definition 5.3.9. Let R be an E-ring, C a rigid R-linear symmetric monoidal oo-category and w :
C — Mody# an R-linear symmetric monoidal functor. Denote Ind(w) by @. Then w is said to be:

1. A finite fiber functor if & is conservative and preserves (small) limits.

Let R be a connective F-ring. Then w is said to be:

2. A flat fiber functor if @ is conservative, creates a t-structure on C, is exact and whose right adjoint
is t-exact.

Let R be a connective bounded E.-ring. Then w is said to be:
3. A positive fiber functor if & is conservative, creates a t-structure on C and is exact.

Note that a fiber functor is a functor in the (0o, 2)-category Tens%. Since @ is a presentable symmetric
monoidal functor it commutes with colimits and hence by the adjoint functor theorem admits a right
adjoint p which is a lax symmetric monoidal functor. Thus the adjunction @ = p lives in the (oo, 2)-
category Tenslgx. Also, we remark that since positive and flat fiber functors are conservative, t-exact and
defined over a connective bounded base E-ring, the t-structures created are non-degenerate.

Definition 5.3.10. Let R be an E,-ring. A pointed R-Tannakian oo-category with respect to 7 is a
pair (T,w) where T is a rigid R-tensor co-category and w : T — Mody is a 7-fiber functor.

Let (TanF). denote the full subcategory of (Tens%g )« spanned by pointed 7- R-Tannakian oco-categories.
We will often abuse terminology by referring to a pointed R-Tannakian oo-category (T, w) as simply T
A notion of rigidity manifests itself on the opposite side of the duality in the following sense. Let
wa : Mod(BG) — Modg be the forgetful functor.

Definition 5.3.11. Let R be an E.-ring. An affine group stack G = Spec B in Gp” (R) is said to be
1. Weakly rigid if End®(wg) — End® (whe) is an equivalence.
2. Rigid if the map Comodg — Ind(Comod’gg) is an equivalence of co-categories.

Clearly an affine group stack being rigid implies that it is weakly rigid. We will now define the objects
on the group side of the correspondence.

Definition 5.3.12. Let R be an E-ring and 7 a subcanonical topology. A group stack G in Gp” (R) is
said to be R-Tannakian if it is of the form Spec B for B a Hopf R-algebra and is weakly rigid. It is said
to be A-R-Tannakian for a topology A if it is R-Tannakian where B is a A-Hopf R-algebra.

Let TGp” (R) denote the full subcategory of Gp” (R) spanned by the R-Tannakian group stacks.
Theorem 5.3.13 (Neutralized co-Tannaka duality). Let T be a subcanonical topology. Then the map
Perf, : TGp™(R)*? — (Tensy?).

1s fully faithful. Moreover, the adjunction Fib, - Perf, induces the following:
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1. Let R be an Ey-ring. Then (T,w) is a pointed finite R-Tannakian co-category if and only if it is
of the form Perf,(G) for G a finite R-Tannakian group stack.

2. Let R be a connective Eo-ring. Then (T,w) is a pointed flat R-Tannakian co-category if it is of
the form Perf,(GQ) for G a flat R-Tannakian group stack.

3. Let R is a bounded connective Eo-ring. Then (T,w) is a pointed positive R-Tannakian co-category
if it is of the form Perf,(G) for G a positive R-Tannakian group stack.

5.4 Proof of the neutralized theorem

We will now embark on the proof of the higher Tannaka duality statement described at the end of the
last section. For an R-linear tensor functor f : C' — Modg, we will denote by f4 the composition

¢ L Mod R 294 Mod A
given by composing f with the base change functor.

Proposition 5.4.1. Let R be an Eo-ring, B a R-bialgebra and & : SeComodp — Modg the forgetful
functor. Then the map
¢ : Spec B — End® (@)

s an equivalence.

Proof. We need to show there exists an equivalence Mapcyy,, (B, A) — End®(@a) for all A € CAlgp.
Let G = Spec B and consider the homotopy pullback diagram

u

* = Spec R BG
G * = Spec R.

Let
Uy : Modg — Mod(EG) u* Mod(]gG) — Modpg v* : Modr — Modpg Vs : Modg — Modg

be the induced functors between combinatorial, stable, Mod g (Sp)-enriched, symmetric monoidal model
categories. We have the usual projection formula u*u, ~ v,v*. By Section 9.1 of [Pr], the composition
v, 0" is given by v, v*(M) = B®g M. Let p be the right adjoint to &. Taking the localisation of the
adjunction u* - wu, corresponds to the adjunction & - p of co-categories so Wp is of the form B Qg e.
Consider the commutative diagram (again choosing strict models)

SeComodpg — Modg
p

)

oRQrA

R R
v

MOdA

We have a chain of equivalences End® () ~ End™ (p4) ~ Mappepgiax (WaPa, id) of (00, 0)-categories.
Applying Conjecture 3.6.10 we obtain an equivalence

:[\/*[a'I:)Tensljtx (aA;b\A7 ld) =% MapCAlgA (B ®R A7 A) = MapCAlgR (B7 A)

given by evaluation on the unit A. Thus ¢ is an equivalence. O
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Corollary 5.4.2. Let R be an FE-ring. Then the counit map
G — Fib,(Pert,(G))
is an equivalence in Gp' (R) when G is of the form Spec B for B a Hopf R-algebra and is weakly rigid.

Proof. We need to show that Spec B — End®(w) is an equivalence where w : Perf(EG) — Mod%i,lg for G
weakly rigid. We have a diagram

G = Spec B =5 End(@) = End(&"®)

where the first equivalence follows from Proposition 5.4.1 and the second equivalence follows from the
assumption that G is weakly rigid. Thus Spec B is equivalent to End® (w). O

Corollary 5.4.2 states that we have a full embedding of the co-category of R-Tannakian group stacks
into the oco-category of pointed rigid R-tensor co-categories given by the rule G — Perf,(BG). This is the
first statement of Theorem 5.3.13. We now prove the remainder of the neutralized oo-Tannaka duality
theorem.

Proof of Theorem 5.3.13. Let A € {> 0, fl, fin} be a topology. We will first show that if w is a A-fiber
functor then the R-algebra B := &0p(R) is a 7-R-algebra where @ - p is an adjunction in Tenslax For all
three cases we consider the projection formula @p(M) ~ B ® g M of Proposition 5.1.6 for an R—module
M. For the positive case, the functor & is t-exact by definition so by Lemma 3.5.7, the right adjoint p is
left t-exact and so B is positive. For the flat case, R is connective and the functors @ and p are t-exact
so B = Wp(R) is a connective R-module. Also, the functor @p ~ B ®g e is left t-exact by Lemma 3.5.7.
It then follows from Theorem 4.6.19 of [LII] that B is flat over the connective Es-ring R. The finite
case follows simply since & preserves limits by definition and p preserves limits since it is a right adjoint.
Thus the composition @Wp preserves limits and by the projection formula we are done.

Let (T,w) be a \-R-Tannakian oo-category. We will now show that the unit (T,w) — Perf, (Fib, (T, w))
of the adJunctlon Fib, 4 Perf, is an equivalence when restricted to the subcategory (Tan)., ie. (T,w)
is equivalent to (Perf(BG),v) for G = End®(w) and v : Perf(BG) — Mod’# the forgetful functor. Note
that G is affine by Proposition 5.1.12 and so Spec B := End®(w) ~ End® (@) ~ Map pepgiax (WP, id) ~
Spec(wp(R)) where the last equivalence follows from Conjecture 3.6.10. We consider the correbpondlng
map on ind-objects (;5 T— Mod(BG) We have the commutativity @ ~ wg o (;5 where wg : Mod(BG)
Modg, is the forgetful functor and we consider the following diagram

. 3 N
T3 > Mod(BG)

)

&

o4
N
y\

&O

MOdR

in Tanlf%‘x where ¢ is the right adjoint to (}5 owing to the fact that (}5 commutes with colimits (it is a map

1 i . . ~ . .
). Now observe that ¢ is conservative since & is conservative

between presentable oo-categories in Tan
(by definition of a 7-fiber functor), w¢g is the conservative forgetful functor and @ ~ wg o ¢. Therefore,

we have the following:
(*) The map $ is an equivalence if and only if ¢7 o ¢ — id is an equivalence.

We treat the three different topology cases separately.

(1) Finite case: In other words, we assume that & is conservative and preserves limits. We begin by
proving that bo q(E) — E is an equivalence when F is of the form «(M) for M € Modgr. We have that
a(M) ~ B®pr M by Section 9.1 of [Pr]. Furthermore, by the commutativity of the diagram we have

wGquOZj(E)2@o§oa(M)2@0ﬁ(M).
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By the projection formula of Proposition 5.1.6, we have the equivalence @ o p(M) ~ M ®pr Wp(R).
Therefore we o ¢ o q(E) ~ wg(B®r M) ~ wg(F) and the result follows from the conservativity of wg.
We now prove that (/5 o q(F) — E is an equivalence for a general B-comodule E. The functor wg is
conservative and preserves wg-split limits by the Beck theorem of Proposition 5.2.13. Thus by the dual
of Proposition 3.5.5 of [LII] we have that for all F € SeComodp, there exists an augmented cosimplicial
object Es : Ay — Comodp given by E, ~ (a o wg)" ' E which is wg-split. It follows that there exists
an equivalence
E — holim ((Eo ®r B®r") 9k B)

where Fy = wg(FE). Hence we can consider E to be of the form holim,«(M,,) for M,, = (Eqg @ g B®r™) €
Modpg. We have a diagram

E

¢ 0 q(E)

holim ¢ o qla(M,)) — holim a(M,)).

The lower horizontal arrow is an equivalence from the above case of E = a(M). Also, the left vertical
arrow is an equivalence from the fact that g/b\ o ¢ commutes with limits: since ¢ is a right adjoint functor it
preserves limits and ¢ preserves limits since @ preserves limits (being a finite fiber functor), W preserves
limits (because its the forgetful functor from Mod(BG) where G is finite) and & ~ wg o ¢. Thus the
upper horizontal arrow is an equivalence. Finally, the equivalence T — Mod(BG) induces an equivalence
T — Perf(BG) on rigid objects since monoidal functors preserve rigid objects. Combining this result
with Proposition 5.4.1 we find that G is rigid and hence weakly rigid.

(2) Positive case: In other words, we assume that @ is conservative, creates a non-degenerate t-
structure and is t-exact. We also assume that the base E-ring R is bounded and connective. Let
E € Mod(BG)<,, where Mod(BG)<,, denotes the full subcategory of Mod(BG) spanned by objects
which get mapped to (Modg)<, under wg. Let R be a bounded connective E-ring. We have that
E = holim,, ((Ey © g B®R™) @ B) is an equivalence in Mod(BG)<,, as above with Ey = waE € Mod<,,.
Let M,, = (Ey ®g B®®") € (Modg)<,. Now consider the diagram

woq(E) >~ wa(E)

holim @ o ¢(M,, ® g B) — holim wg(M,, @ B).

The bottom horizontal arrow is an equivalence since
Wo E]\(Mn Or B) ~Wo fjo a<Mn) ~ 0 Oﬁ(Mn) = WG(Mn R B)

The right vertical arrow is an equivalence since wg preserves wg-split limits by Beck’s theorem of
Proposition 5.2.13. The left vertical arrow is also an equivalence by the following. Note firstly that
q(M,, ®r B) ~ qo a(My,) ~ p(M,) and so g(M,, ®r B) is in T<,, since p is left t-exact. Therefore, the
cosimplicial object

K] > G0,  B)

in T satisfies the property that 7! (g(Mp®grB) = 0 for all i > n and all k. We can then apply Lemma 3.5.16
to the t-exact fiber functor @ : T' — Modg to deduce that & commutes with limits. Secondly, the functor
q preserves limits (it is a right adjoint) so the composition & o p preserves limits and we are done. We
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then have that the map wg o ¢ o q(F) ~©oq(F) — wg(F) is an equivalence. Thus by the conservativity
of wg, we obtain the equivalence R _
Tgn — MOd(BG)Sn

We deduce that the map Unfgn — Un Mod(EG)Sn between the unions over all n is an equivalence. Rigid
modules over a bounded E..-ring R are bounded and so T is contained in Unfgn (in fact T = Unfgn
since T is left t-complete owing to its endowed non-degenerate t-structure) and Perf(BG) is contained in
Un Mod(EG)Sn. Since (E is a symmetric monoidal functor it preserves rigid objects and so we obtain an
induced fully faithful functor ¢ : T — Perf(BG). However, for any E, F € Perf(BG), we have a diagram

L@AE) @ q(F) — we(E) @ wa(F)

GoQE®F) —— wg(E®F)

using the symmetric monoidal structures on & and wg so the left vertical arrow of the diagram is an
equivalence. Consegently, the map ¢ : Perf(BG) — T is symmetric monoidal and thus preserves rigid
objects leading to the equivalence B

T = Perf(BG)

of co-categories. Finally, G is weakly rigid by combining this equivalence with Proposition 5.4.1.

(3) Flat case: In other words, we assume that @ is conservative, creates a non-degenerate t-structure,
is t-exact and whose right adjoint is t-exact. The first part of the proof can be deduced directly from the
positive case: it follows that T<,, — Mod(BG)<, is an equivalence. However, here the base E.-ring R
is merely connective. In the flat case though, we actually have an equivalence

T ~ holim T<,, — holim Mod(BG)<, ~ Mod(BG)

of co-categories where the identification on the left hand side follows from the left t-exactness of T and
the identification on the right hand side follows from the fact that a non-degenerate t-structure is created
on Mod(BG). Since monoidal functors preserve rigid objects we have an equivalence T — Perf(BG) of
oo-categories. Combining this equivalence with Proposition 5.4.1 we find that G is rigid and hence weakly
rigid. O

5.5 Neutral Tannaka duality for co-categories

We now consider the case where there simply exists a 7-fiber functor. This is the non-pointed case,
otherwise known as neutral Tannaka duality for co-categories.

Definition 5.5.1. Let R be an E-ring and 7 € {fin, fl,> 0} a topology. A rigid R-tensor co-category T’
is said to be a R-Tannakian co-category with respect to 7 if there exists a 7-fiber functor w : T — Mod'z%.

We denote the co-category of R-Tannakian oo-categories with respect to 7 by Tanp. The objects on
the other side of the correspondence are described as follows.

Definition 5.5.2. Let R be an Eo-ring. A stack F' in St” (R) is said to be a 7-R-Tannakian gerbe if it

is locally equivalent to BG for G a 7-R-Tannakian group stack. It is said to be a neutral 7- R-Tannakian
gerbe if there exists a morphism of stacks * — F.

Let TGer" (R) denote the oco-category of neutral 7-R-Tannakian gerbe’s. We have natural inclusions
TGer™(R) C Ger” (R)*8 C Ger” (R). We now state the Tannaka duality theorem for co-categories in the
neutral setting. Note that we have a weaker statement in positive case owing to the fact that the positive
topology is not subcanonical.
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Theorem 5.5.3 (Neutral co-Tannaka duality). The adjunction Fib 4 Perf induces the following:

1. Let R be an E-ring. Then T is a finite R-Tannakian oo-category if and only if it is of the form
Perf(G) for G a neutral finite R-Tannakian gerbe.

2. Let R be a connective Ex-ring. Then T is a flat R-Tannakian co-category if it is of the form
Perf(G) for G a neutral flat R-Tannakian gerbe.

3. Let R be a bounded connective Eoy-ring. If (T,w1) and (T,ws) are two pointed positive R-Tannakian
oo-categories then there exists a positive cover R — Q) such that

w1 ®r Q — w2 QR Q
s an equivalence.

To prove the neutral co-Tannaka duality statement of Theorem 5.5.3 it suffices to combine the neu-
tralized statement of Theorem 5.3.13 with the demonstration that two fiber functors are equivalent after
base change.

Proposition 5.5.4. Let R be an E-ring and T € {> 0, fl, fin}. Given two 7-fiber functors w and v
over R, there exists a T-cover R — @ in € such that w and v are equivalent over Q).

Proof. Let (T,w) and (T,v) be two pointed R-Tannakian oo-categories with respect to 7. By Proposi-
tion 5.1.5 this amounts to showing that there exists a 7-cover R — @ such that Map-,, iz (w",2V)(Q) # 0.
R

It suffices to prove that Map e, (@Y, 7)(Q) # 0. We have equivalences

1\/[a'pTenslI§}”x (a\/7 I//\v) = 1v[apTensl§x (/V\’ a}) = 1\/Ia’pTenslI%x (1/)@ ld) = Spec(ﬁﬁ(R))
where the last equivalence follows from Conjecture 3.6.10. Therefore, Hom® (&Y, 7V)(Q) ~ Homgy,,, (V(B), Q)
and we set @ := U(B) to consider the identity map. It remains to show that there exists a T-cover
R — D(B). Since v is R-linear, V(B) @ e ~ V(B®gre) so R — U(B) is a T-R-algebra since B is a 7-Hopf
R-algebra and v is a 7-fiber functor.

We will now show that R — D(B) is conservative, ie. given M € Modg such that 7(B) g M ~ 0
then M ~ 0. Let B’ = B®g R’. By the projection formula, we have the following statement:

(*) For all R — R/, the map U(B’) — 7(B) ®g R’ is an equivalence.

By Proposition 5.2.10, the map R’ — holim,ca ((B")®2(™*1) is an equivalence and since v is a 7-fiber
functor we have the following statement:

(**) The map R’ — holim,ca (D(B')®#("+1) is an equivalence.

Set R = Symp(M) := [[,5, M®"?/%, and assume that D(B) ®g M ~ 0. Therefore

!~ . -~ Qrn+1
R’ = holim(v(B) ® Symp(M))

<ol [T g areee/s)
p=

~ R.

The first line is an equivalence in CAlgy and follows from (**) and (*). The second line is an equivalence
in Modg and follows from the fact that the tensor product commutes with coproducts and the forgetful
functor CAlgy — Modpg is conservative and commutes with limits (it is a right adjoint). The third line
is a result of the only non-zero term being p = 0 by assumption followed by (xx) applied to R. Thus
M ~ 0. O

Proof of Theorem 5.5.3. This follows directly from Theorem 5.3.13 and Proposition 5.5.4. O
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5.6 Comparison with the classical theory

The following series of comparison results shows that the Tannaka duality theorem for co-categories of
Section 5.4 naturally generalises the classical theory. Let k be a field. In [Sa], Saavedra defined the notion
of a neutral Tannakian category over k. That is, a rigid abelian k-linear symmetric monoidal category T'
for which there exists an exact k-linear symmetric monoidal functor T' — Vecty, (the fiber functor) taking
values in the category of finite rank projective k-modules.

The collection of ordinary fiber functors form a stack Fib(T') over k in the faithfully flat quasi-compact
topology, denoted f fgc. Recall that a finite family {A; — A};cr of arrows in Affy, is an f fqc cover if the
morphism [[,.; A; — A is faithfully flat (ie. exact and conservative). Let St/ /%¢(k) denote the oo-topos
of stacks on the classical site (Affy, f fqc).

Proposition 5.6.1. Let k be a commutative ring and Hk its corresponding FEilenberg-Mac Lane ring
spectrum. The inclusion
i: StI19e(k) — Stf(HE)

of co-categories is fully faithful.
Proof. We will show that there exists a composition of fully faithful maps
St/fee (k) — StI'(Hk) — St (HE)

where StZl(H k) is the oo-category of stacks on the site of connective Hk-algebras. Firstly, there exist
adjunctions

CAlg, T— CAlgS, % CAlgy,

T<0

by Section 3.5 and Section 3.4 respectively. We then left Kan extend these adjunctions to obtain the
adjunctions

RHom(CAlg,, K) == RHom(CAlgS;;,, K) 3= RHom(CAlgy,, K)

T<o (O

This chain of adjunctions induces adjunctions on the subcategories of stacks such that ¢, and j; are fully
faithful by Section 2.2.4 and 2.3.5.1 of [TVII]. O

The right adjoint to the functor ¢ of Proposition 5.6.1
<o : St (HE) — St/79(k)

is explicitly given by 7<o(F)(k') := F(HFK') for a stack F € St/'(HE). If F is a neutral affine gerbe in
the sense of [D2] then i(F) € St/'(Hk) is a neutral flat Hk-Tannakian gerbe. Thus neutral affine gerbes
as defined in the classical Tannakian theory form a full subcategory of neutral flat Hk-Tannakian gerbes
in our sense.

For the following comparison results, we will need to introduce a finite condition on some of our
categories in order for the statements to make sense. The notion is that of finite cohomological dimension
of an arbitrary abelian category.

Definition 5.6.2. Let C be an abelian category. Then C'is said to be of finite cohomological dimension
if there exists n such that for every object  in C, the group Ext'(y,2) =0 for all i > n and y € C.

Let T be an abelian category and C(T') (resp. C®(T)) be the category of unbounded (resp. bounded)
complexes in T. We denote by LC®(T) the oo-category given by localising C*(T) at the set of quasi-
isomorphisms. If T is a Tannakian co-category (resp. Tannakian category) we will denote Fib (T) the
group stack (resp. group scheme) of fiber functors on C' with respect to the topology .
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Proposition 5.6.3. Let k be a field and T a k-Tannakian category. Assume that T is of finite cohomo-
logical dimension. Then the oo-category LC®(T) is a flat Hk-Tannakian co-category and there exists an
equivalence

i(Fibf79¢(T)) — Fibf!(LC*(T))
of stacks in St''(HE).

Proof. Since T is a k-Tannakian category there exists a natural k-tensor functor Mod2ig — T defined by
M — M ® 1p. This exists since for any x,y € T, the k-linear structure on 7" induces an equivalence

HOmMOdrkig(M7 Homyp(z,y)) ~ Homp(M ® z,y).

Using the equivalence LO?(Mod}®(Ab)) ~ Mod}& (Sp) we obtain a map
Mod%& — LC*(T)

of symmetric monoidal oco-categories. This map commutes with colimits and induces the Hk-linear
structure. Furthermore, the co-category LC(T) is stable by Example 3.3.8 which makes LC®(T) a rigid
Hk-tensor oco-category. The fiber functor w : LO*(T) — Modggk induced from the fiber functor on T is
clearly flat: the forgetful functor & : LC(T') — C(k) is conservative and creates a t-structure for which ©
and its right adjoint are t-exact.

By the classical Tannaka duality theorem there exists an equivalence T'— Rep(H) for an affine group
scheme H. Thus Fib//%(T) is naturally equivalent to BH. We also have that i(BH) ~ B(iH) is an
equivalence using the fully faithful functor i of Proposition 5.6.1. It follows from Proposition 5.4.1 that
Fib!!(LCY(T)) = G for G = End®(w) a flat affine group stack is also naturally equivalent to B(iH). [

Corollary 5.6.4. Let k be a field and T a k-Tannakian category. The functor
LCt . Tanf;ch — Tanf{lk
is an equivalence of co-categories.

Proof. This follows directly from Proposition 5.6.3, Proposition 5.6.1 and the flat co-Tannaka duality
Theorem 5.3.13. O

The simplification of the theory when working with Tannakian oo-categories over fields is exemplified
in the following proposition which states that any positive Hk-Tannakian oco-category can be realised as
the oco-category of modules in the localisation of complexes in an ordinary k-Tannakian category. We first
observe that when k is a field and T is a positive Hk-Tannakian oo-category then H(T') is a k-Tannakian
category. The category H(T) is clearly rigid, it is abelian by Theorem 1.3.6 of [BBD] and symmetric
monoidal by Proposition 3.5.12. Furthermore, the heart of a positive fiber functor over Hk is also exact
where H(Mod}f,) = Vecty,.

Proposition 5.6.5. Let k be a field and T a positive Hk-Tannakian co-category. Then there exists a
commutative monoid R in LC(Ind(H(T))) such that there exists an equivalence

T — Modg(LC(Ind(H(T))))

of co-categories.

5.7 Tannakian oo-categories over fields

We will fix a field k throughout this section. In [T2], Toén introduced the notion of a schematic homotopy
type. Given two pointed stacks F and G, let Map, (F,G) denote the (oo, 0)-category of pointed maps
between them.
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Definition 5.7.1. Let I and G be two pointed stacks in Stfch(k)*. A map F — @ is said to be a
P-equivalence if the induced map
Perf(F) — Perf(G)

is an equivalence of co-categories. A pointed stack F in St// (k) is said to be P-local if for any
P-equivalence H; — H,, the induced map

Map*(H27F) - Map*(HlaF)
is an equivalence.

Lemma 5.7.2. Let 7 € {> 0, fl, fin} and T be a pointed k-Tannakian oco-category with respect to .
Then BFib,(T) is P-local.

Proof. Let Hy — Hs be a P-equivalence. From the pointed adjunction of Lemma 5.3.8 we have a chain
of equivalences

Map, (Hy, BFib, (T))) ~ Map, (T, Perf(Hs)) ~ Map, (T, Perf(H;)) ~ Map, (H;, BFib, (T))
of (00, 0)-categories. O

Let A € cCAlg,;, be a cosimplicial k-algebra in the category Ab of abelian groups. We define the
following prestack

Spec A : CAlg, — K
B Map(4, B)
where Map(A, B),, := Hom(A,,, B). This prestack can be shown to be a stack for the ffgc-topology and

thus defines a natural functor
Spec : cCAlg, — St//9¢(k)

between oo-categories. We are interested in objects which lie in the essential image of the Spec functor.

Definition 5.7.3. Let k be a commutative ring. An affine stack over k is a stack in St//%(k) which is
equivalent to an object of the form Spec A for A a cosimplicial k-algebra.

Let s : * — F be a pointed stack in St//9°(k). We define the prestack Q,F of loops at s by the
formula

Q. F:CAlg, — K
z = Qg0 F(2)

where Q) F () is the subsimplicial set of Map(A®, F(z)) which sends the endpoints {0, 1} of A to s(x).

Definition 5.7.4. Let k be a field. A pointed stack F on the site (Affy, ffqc) is said to be a pointed
schematic homotopy type over k if it is P-local, connected and . F is an affine stack over k.

Let (SHT}). denote the full subcategory of st/f 9¢(k) spanned by the schematic homotopy types.
Every pointed connected affine stack is naturally a pointed schematic homotopy type. Furthermore, a
stack F' is a pointed schematic homotopy type if and only if F is a pointed connected stack in St/79¢(k)
such that the sheaf 7 (F,x) is represented by an affine group scheme and for any ¢ > 1, the sheaf 7;(F, x)
is represented by a unipotent affine group scheme (see Section 3.2 of [T2]).

Let k£ be a field and F' a pointed schematic homotopy type over k. We will say that F is of finite
cohomological dimension if the abelian category H(Perf(i(F'))) is of finite cohomological dimension.

Proposition 5.7.5. Let k be a field and F a pointed schematic homotopy type over k. Assume that F
is of finite cohomological dimension. Then Perf,(i(F)) is a pointed positive Hk-Tannakian co-category.

Proof. The stack iF is clearly a positive Hk-Tannakian group stack in Tpr Z(R)EO. The result then
follows from the positive co-Tannaka duality Theorem 5.3.13. O
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6 Applications

Tannakian oo-categories arise in a number of mathematical applications. We have seen in Section 5.6 that
the Tannaka duality statement for co-categories with the flat topology subsumes the classical statement.
It furthermore extends the 1-categorical duality by allowing arbitrary commutative rings as opposed
to just fields. We will discuss how two applications in the classical theory can be generalised to the
oo-categorical context.

In Section 6.1 we will discuss the oo-category of perfect complexes on a topological space X. The
oo-category of perfect complexes on X is a k-Tannakian oco-category with respect to the positive topology
for k a field. When £ is a field of characteristic zero, then the Tannakian dual of the co-category of perfect
complexes on X is precisely the schematization of X introduced by Toén in [T2].

In Section 6.2 will briefly discuss motives and non-commutative motives from a higher Tannakian
point of view. We will introduce the stable A co-category (Definition 6.2.3) and the oo-category of
non-commutative motives (Definition 6.2.9).

6.1 Perfect complexes and schematization

In this section we will discuss an important schematic homotopy type which we define through the
following universal property.

Definition 6.1.1. Let £ be a field and X a fibrant simplicial set considered as a constant prestack.
Then the schematization of X over k is a schematic homotopy type X  over k together with a map
[+ X — X} satisfying the following universal property: for any stack £ in st// 9¢(k), composition with
f induces an equivalence

Mapgysrae (o) (Xi, ) — Mapggsrae iy (X, F)

of (00, 0)-categories.

The main result in the theory of schematizations is Theorem 3.3.4 of [T2] which states that for a
pointed, connected simplicial set (X, x), a schematization always exists. The schematization of a pointed
space admits a number of fundamental properties which follow from Definition 6.1.1 together with this
existence result. Firstly, the affine group scheme 71 (X, z) is naturally isomorphic to the pro-algebraic
completion of the discrete group m1 (X, k) (thought of as a constant group scheme over k). When X
is finite and simply connected, then for ¢ > 1, the group scheme 7;(X;’, x) is naturally isomorphic to
the pro-unipotent completion of the discrete group m;(X,x). Finally, if V' is a local system of finite
dimensional k-vector spaces on X, then V corresponds to a linear representation of the affine group
scheme 7 (X}, ). This induces a local system V on the schematization X} (a sheaf of abelian groups
V on (Affy, ffqc) together with an action of 71 (X;’) on V) such that the map X — X’ furnishes an
isomorphism

HY (X7, V) — HY (X, V)

in cohomology with local coefficients. See [T2] for further discussion.

Let k be a commutative ring. The category C(k) of (unbounded) complexes of k-modules admits a
cofibrantly generated model structure where the fibrations are degree-wise surjective morphisms and the
equivalences are the quasi-isomorphisms (those maps inducing isomorphisms on homology groups) (see
Theorem 2.3.11 of [Ho|). Then for a topological space X, the category C(X, k) of complexes of sheaves
of k-modules on X is a C(k)-enriched model category. Here C(k) is endowed with its usual monoidal
structure and C(X, k) is naturally tensored over C(k) since the category of sheaves of k-modules is
naturally tensored over the category of k-modules (if F' is a sheaf of k-modules on X and M is a k-
module then M ® F is defined to be the sheaf associated to the presheaf U — M ® F(U)). The model
category structure on C(X, k) arises from a more general result of a model structure on the category
C(A) of complexes in any Grothendieck category A (see [H2]).

We define Perf(X, k) := (L®C(X,k))"®. The objects of Perf(X,k) are complexes of presheaves of
k-modules which are, locally on X, quasi-isomorphic to a constant complex of presheaves associated with
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a bounded complex of projective k-modules of finite type. Let = : ¥+ — X be a point of X and define
Perf(k) := Perf(x, k). There exists a k-linear structure on the symmetric monoidal co-category Perf(X, k)
from the symmetric monoidal functor Perf(k) — Perf(X, k) and a k-linear symmetric monoidal functor

wy : Perf(X, k) — Perf(k)
induced by the point x.

Proposition 6.1.2. Let k be a field and X a finite CW complex. Then (Perf(X,k),w,) is a pointed
k-Tannakian oco-category with respect to the positive topology.

By the pointed oo-Tannaka duality of Theorem 5.3.13, there exists a positive affine group stack dual
to the positive Tannakian oo-category Perf(X, k) of Proposition 6.1.2. This dual is the schematization of
X when £k is a field of characteristic zero.

6.2 Motives and non-commutative motives

One of the most important open questions in the theory of algebraic varieties is the construction of a
universal cohomology theory: this is the theory of motives envisioned by Grothendieck in the 1960’s
[Gr]. Such a theory was thought to arise following the observation that not only were an unexpected
number of cohomology theories found to exist but that in many cases they encoded the same information.
Although this field of study has seen immense progress over the past two decades, much of the theory still
remains conjectural. Let S be a Noetherian scheme and Smg the category of smooth proper S-schemes.
Ultimately, and informally, we would like to produce a bijection

Hom™” (MM&#, Vect i) =~ Hom” (Smyg, Vect k)

where MM’fSig is the conjectural K-Tannakian category of (mixed) motives, Hom? denotes the set of
realisation functors and Hom”™ is the set of (mixed) Weil cohomology functors taking values in the
category Vectg of finite dimensional K-vector spaces over a coefficient field K. Thus every well behaved
cohomology theory should factor through the category of motives. Although the Tannakian category
MMjg has not been constructed, a candidate for the derived category DMg = Ind(DMZ™) of mixed
motives has, where DMZ™ is the triangulated category of geometric motives [V1].

Let k be a field. The problematic passage from the rigid monoidal triangulated category DM;™ to

the abelian category MM}?g rests on the following conjecture:

Conjecture 6.2.1. A t-structure exists on the category DM{"™ with Q-coefficients satisfying the following
conditions:

1. The functor H : DM{™ — MM}® := H(DMJ™) is conservative.

2. The t-structure is compatible with the tensor product and realisation functors R : DM]™ —
D?(Vectg).
Assuming this conjecture, Beilinson proved the following:

Proposition 6.2.2 ([Be]). Assume conjecture 6.2.1. Then (MMSg,R) 1s a Q-Tannakian category with
the restriction R : MM, '® — Vectq the corresponding fiber functor.

We would now like to prove a similar statement in the oco-categorical context using our results in
higher Tannaka duality. We begin by constructing the stable A! co-category. Let X be a Noetherian
scheme and Smyx the category of smooth and proper X-schemes. Consider the natural sequence

Smyx — Prg(Smx) — Prg(Smx ). — LnisPrs(Smx ). — Lyjs a1 Prs(Smx).

where L ;s a1Prg(Smx ). is the oo-category given by the localisation of the simplicial model category of
pointed simplicial presheaves on Smy with respect to the Nisnevich topology and A!-equivalences. We
denote this oco-category by Sx.
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Definition 6.2.3. Let X be a Noetherian scheme. The stable A' co-category is given by
SMx = Sp]P’l (Sx)
where P! ~ S} A SL.

Remark 6.2.4. One can invert an arbitrary object in an oo-category through the following universal
construction: let p: C' — T" be a symmetric monoidal co-category and x an object of C. Letid : I" = T
denote the symmetric monoidal structure on * and id : T' — T its group object. Then the symmetric
monoidal co-category p : C[z~1] — T given by inverting the object z in C is given by the homotopy
pushout of the diagram

r ——T

C Clz™ Y.

There exists an equivalence
SMy — Sx[(P1)™]

of co-categories.
The natural map Prg(Smc) — Prg(*) = S induces a natural map & : SM¢ — Sp.

Proposition 6.2.5. Assume that © : SM¢ — Sp is conservative and creates a t-structure. Then (SMc,w)
s a positive Tannakian oco-category over the sphere spectrum S.

Therefore there exists an equivalence
SMLE — Perf(BG)
of co-categories where G = End® (w) is a positive affine group stack. We also have a well defined functor
h(SM¢) — DM¢

of triangulated categories.

We will now describe a higher Tannakian result in the context of the theory of non-commutative
motives [Ko][CT]. Let C be a small dg-category and C(k) be endowed with its natural C'(k)-enrichment.
Let Mode be the C'(k)-enriched model category of C-modules of Example 3.6.5. We denote by D(C) :=
hMod¢ the derived category of C. In Example 3.6.9 we also briefly described a model structure on the
category Cat(C(k)) of dg-categories denoted by Cat(C(k))s where the weak equivalences were given by
the quasi-equivalences. There exists another cofibrantly generated model structure on the category of dg-
categories called the Morita model structure where for two dg-categories C and D, the weak equivalences
are given by C(k)-enriched functors f : C' — D such that f* : D(D) — D(C) is an equivalence of
triangulated categories [Tb3]. This model category will be denoted Cat(C(k)).n. We consider the
associated oo-category LCat(C(k)).4 and its corresponding rigidification (LCat(C(k))_z)". The objects
in this oco-category will be called dualizable dg-categories.

Remark 6.2.6. Let C be a small dg-category. Then the fully faithful C'(k)-enriched yoneda embedding
y : C'— Modger reduces to a quasi-fully faithful dg-functor y : C' — (Mod¢er ) since y(z) is both a fibrant
and cofibrant C°P-module for all z in C. An object in the essential image of the fully faithful functor
y : HY(C) — D(C°P) (induced by passage to the homotopy category) will be called quasi-representable.
A dg-category C is said to be triangulated if every compact object in D(C°P) is quasi-representable. The
full subcategory of the homotopy category of Cat(C(k))s spanned by the triangulated dg-categories is
equivalent to the homotopy category of Cat(C(k)). 4.
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The natural closed symmetric monoidal structure on Cat(C(k)) does not endow Cat(C(k)) » with the
structure of a symmetric monoidal model category and hence the oco-category of dualizable dg-categories
does not inherit the structure of a symmetric monoidal co-category (see Section 4 of [T3]). The problem
is that the tensor product bifunctor is not left Quillen since it does not preserve cofibrant objects. As a
result, there does not exist internal Hom objects in hCat(C(k)).». A remedy for this is to consider the
following derived tensor product

e @l e: Cat(C(k)).. x Cat(C(k)).x — Cat(C(k)).x
(C,D)— Q(C)® D

where @ is the cofibrant replacement functor in Cat(C(k)). 4.

It follows from Theorem 4.8 of [CT] that dualizable dg-categories can be characterized as follows.
Let C be a small dg-category. A C-module is said to be perfect if it is a compact object of the derived
category D(C). A small dg-category C is said to be smooth if the dg-module

C(e,0) : C Q" CP — C(k)

is perfect. It is called proper if for any two objects  and y in C, the complex C(x,y) is perfect. Let
Cat(C(k))*% denote the full subcategory of Cat(C(k)).» spanned by the smooth and proper dg-categories
(called saturated dg-categories in the literature). Then there exists an equivalence

LCat(C(k))"2 — LCat(C(k))*%

of co-categories.

We denote by Modg., the full subcategory of Modeer spanned by the C°P-modules which are cofibrant
and compact (in D(C°P)). Then Modg., is an exact complicial category in the sense of [Sch]: the
cofibrations are the cofibrations for the projective model structure on Modger and the equivalences
are the quasi-isomorphisms. Therefore, one can define a (non-connective) spectrum K(C) using the
construction of Schlichting in Chapter 3 of loc. cit..

Definition 6.2.7. Let C be a dg-category. Then the K-theory spectrum K(C') of C is the spectrum
K(Modgop)-

Notation 6.2.8. Let KPM; denote the following spectral category:
e The objects are dualizable dg-categories.
e Let C and D be two dualizable dg-categories. Then Mapgpyy, (C, D) := K(C°? @“ D).
e Composition is given by the derived tensor product of bimodules.

Let C be a spectral category. Then we have at our disposal the Sp-enriched yoneda embedding
C — Modcer which induces a fully faithful morphism y : [C] — D(C°?). An object in the essential
image of this functor, called quasi-representable, is always compact. A spectral category C' is said to be
triangulated if every compact object in D(C°P) is quasi-representable, ie. there exists an equivalence

[C] — D(cr)>

of categories. We denote the full subcategory of hCat(Sp) spanned by the triangulated spectral categories
by hCat(Sp)'™. By Theorem 5.1.4 of [Tb4] there exists a left adjoint

(8)" : hCat(Sp) — hCat(Sp)'™

to the inclusion hCat(Sp)'™ — hCat(Sp) called the triangulated hull. We donote by KMMj, the spec-
tral category obtained from KPM;}" formed by formally adding direct summands for projectors. By
Proposition 8.5 of [CT], the spectral category KMMj, is endowed with a compatible symmetric monoidal
structure.
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Definition 6.2.9. The oo-category of non-commutative motives is given by L¥KMM;,.

We will denote this symmetric monoidal co-category by Mot;°. Let BU be the topological K-theory
spectrum (see [Ka] for further discussion).

Proposition 6.2.10. Assume that w : Mot¢® — Modpy is conservative and creates a t-structure. Then
(Motg®, w) is a positive S-Tannakian co-category.
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7 Appendix

In Section 7.1 we state without proof some results in the theory of model categories, in particular,
to enriched model category theory. Particularly important is the (enriched) projective model structure
(Proposition 7.1.17). Section 7.2 begins by describing the notion of adjunction data in an (oo, 2)-category.
This is motivated by the fact that an adjunction in an (oo, 2)-category does not determine a monad like
in the 2-categorical case. An adjunction datum between two objects in an (oo, 2)-category is a structure
which determines an adjunction between the two objects but also the natural monad provided by the
data making up the adjunction. We sketch a proof in Proposition 7.2.6 stating that any functor between
two objects in an (oo, 2)-category admitting a right adjoint can be promoted in an essentially unique way
to an adjunction datum.

7.1 Enriched monoidal model categories

In this appendix we gather together some results in the theory of model categories referred to in the text.
We refer the reader to [Hol, [Hi] and the appendix of [Lu] for further details.

Definition 7.1.1. Let .#, A4 and & be model categories. A functor F': 4 x A — & is said to be a
left Quillen bifunctor if it satisfies the following;:

1. Let i : X — X’ and j : Y — Y be cofibrations in .# and .4, respectively. Then the induced map
ing:F(X,Y) J] F(X,Y')— F(X',Y)
F(X,Y)
is a cofibration in &2. Moreover, if either i or j is a trivial cofibration, then i A j is also.
2. The functor F' preserves small colimits seperately in each variable.

Definition 7.1.2. Let .# be a monoidal category. Then . is said to be a (symmetric) monoidal model
category if it is equipped with a model structure such that

1. The tensor product functor ® : # x .# — A is a left Quillen bifunctor.
2. The (symmetric) monoidal structure on .# is closed.
3. The unit object 1_4 of .# is cofibrant.

Example 7.1.3. A model category is said to be cartesian if it is a symmetric monoidal model category
with respect to the cartesian product.

Definition 7.1.4. Let (A, ®) be a monoidal category. An A-enriched category C consists of the following
data:

1. A set of objects Ob(C).
2. For each pair of objects x,y € C, a mapping object Map(x,y) of A.

3. For every triple of objects z,y,z € C, a composition map Map~(y, z) ® Maps(z,y) — Mapq(z, z)
which is associative.

4. For every object € C, a unit map j, : 14 — Map(z, z) such that the following compositions
4@,
Mape(w,y) @ 14~ Map(,y) ® Mape(w, #) = Mapg (z, y)

Jy®id o
14 ® Mapg(z,y) =—— Mapc(y,y) @ Maps(z,y) — Mape(z,y)

coincide with the left and right unit maps of the monoidal structure on A.
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Definition 7.1.5. Let (A,®) be a monoidal category and C' and D be A-enriched categories. An A-
enriched functor F : C' — D consists of the following data:

1. A map F : Ob(C) — Ob(D).

2. For each pair of objects z,y € C, a map F, , : Map(z,y) — Mapp(Fz, Fy) such that for every
z € C, the diagram

Map¢ (y, 2) ® Mapg(z,y) Map (7, 2)

Fy,2@Fzy Fy .

Map,(Fy, Fz) ® Mapp (Fx, Fy) —> Mapp,(Fx, Fz)

commutes and for every x € C, the composition
j Fzx
14 2 Mape (¢, 2) 2% Mapp (Fa, Fa)

coincides with the unit map jp, p, for F(x) € D.

Definition 7.1.6. Let .# be a monoidal model category. An .#-enriched category &7 is said to be a
M -enriched model category if it is equipped with a model structure such that

1. The category .« is tensored and cotensored over . .
2. The tensor product functor ® : # x &/ — 4/ is a left Quillen bifunctor.

Example 7.1.7. A simplicial model category is an S-enriched model category where S is endowed with
the cartesian monoidal structure and the Kan model structure.

Example 7.1.8. Let k be a commutative ring. The category C(k) of (unbounded) complexes of k-
modules admits a cofibrantly generated model structure where the fibrations are degree-wise surjective
morphisms and the equivalences are the quasi-isomorphisms (those maps inducing isomorphisms on ho-
mology groups) (see Theorem 2.3.11 of [Ho]).

Definition 7.1.9. Let A be a monoidal category and C' an A-enriched category. A (symmetric) monoidal
structure on C' is said to be weakly compatible with the A-enriched structure on C' if the bifunctor
® : CxC — C admits the structure of an A-enriched functor which is compatible with the (commutativity
and) associativity and unit constraints of (C, ®).

Definition 7.1.10. Let .# be a monoidal model category. A (symmetric) monoidal category < is said
to be a (symmetric) monoidal .# -enriched model category if o is an .#-enriched model category with a
weakly compatible monoidal structure and such that the natural maps

Map,(y,%z) — Map,(x ® y, z) «— Map ,(x, 2¥)
are bijections in h./ for all x,y,z € &7.

Definition 7.1.11. Let .# be a model category. Then .# is said to be left proper if for any cofibration
[z — z and weak equivalence g : z — y in .#, the map z — z [[, y is a weak equivalence. Similarly,
M is said to be right proper if for any fibration f : z — z and weak equivalence g : y — z in ., the map
T X,y — x is a weak equivalence.

Example 7.1.12. The category of simplicial sets with the Kan model structure S is left and right
proper. However, the category of simplicial sets with the Joyal model structure S 5 is only left proper.

Definition 7.1.13. A model category .# is said to be combinatorial if
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1. The category .# is presentable.

2. There exists a set I, called the set of generating cofibrations, such that the collection of all cofibra-
tions in .Z is the smallest weakly saturated class of morphisms containing 1.

3. There exists a set J, called the set of generating trivial cofibrations, such that the collection of all
trivial cofibrations in . is the smallest weakly saturated class of morphisms containing J.

Condition (3) pertaining to Definition 7.1.13 can be replaced by the following often more useful
condition: there exists a regular cardinal x such that the collection W of weak equivalences in .#
determines a full subcategory of .#!) which is stable under s-filtered colimits and for which there exists
a (small) set of objects of W which generates W under s-filtered colimits.

Example 7.1.14. An important example of combinatorial, S-enriched monoidal model category is the
category Sp of symmetric spectra with the smash product monoidal structure and S-model structure
[HSS][Sh]. Let M be the class of monomorphisms in the category of symmetric sequences. The cofibrations
in the S-model structure are the maps with the left lifting property with respect to those maps with the
right lifting property with respect to the maps in S® M. The weak equivalences are the stable equivalences:
those maps f : X — Y such that

MapSp (Y7 A) - MapSp(X7 A)

is a weak equivalence for every fibrant Q-spectrum A with respect to the injective model structure on Sp.
Using the S-model structure, one can construct a model structure on the category of commutative R-
algebras for R a commutative symmetric ring spectrum. This is called the R-model structure. A fibration
is a map with the right lifting property with respect to those maps which are stable equivalences, having
the left lifting property with respect to those maps of R-modules with the right lifting property with
respect to the maps in R ® M and which are isomorphisms in level zero.

Definition 7.1.15. A model category .# is said to be excellent if it is endowed with a symmetric
monoidal structure and satisfies the following conditions:

1. The model category .# is combinatorial.

2. Every monomorphism in .# is a cofibration and the collection of cofibrations is stable under prod-
ucts.

3. The tensor product bifunctor ® : # X .# — # is a left Quillen bifunctor.
4. The collection of weak equivalences in .# is stable under filtered colimits.

5. For every .#-enriched category C containing an equivalence f, the map C — C[f~1] is a weak
equivalence of .Z-enriched categories.

Example 7.1.16. The model categories S» and S ; are excellent model categories. The model cate-
gories C'(k) and Sp are not.

Proposition 7.1.17. Let .# be an excellent model category, </ a combinatorial M -enriched model
category and C a M -enriched category. Then there exists a combinatorial model structure on the category
' of M -enriched functors from C to o/ consisting of

(F) The fibrations are the maps F — G such that F(x) — G(x) is a fibration in &/ for every x € C.

(#') The weak equivalences are the maps F' — G such that F(x) — G(z) is a weak equivalence in </ for
every x € C.

Proof reference. See Proposition A.3.3.2. of [Lu]. O



112 J. M. WALLBRIDGE

This is called the projective model structure on «7¢.

Remark 7.1.18. There also exists an analogous .#-enriched combinatorial model structure on .&7¢
called the injective model structure where the cofibrations and weak equivalences are defined objectwise.

Proposition 7.1.19. Let .# be an excellent model category, </ a combinatorial M -enriched model
category and C a M -enriched category. Then /€ is an . -enriched model category with respect to the
projective model structure.

Proof reference. See Proposition A.3.3.2 and Remark A.3.3.4 of [Lu]. O

Proposition 7.1.20. Let .# be an excellent model category, C an # -enriched category and F : of =
B . G a Quillen equivalence between M -enriched model categories. Then composition with F and G

determines a Quillen equivalence
FC: o =3 G°

between M -enriched model categories with respect to the projective model structure.
Proof reference. See Proposition A.3.3.6 of [Lu]. O

Proposition 7.1.21. Let .# be an excellent model category, </ an M -enriched model category and
F :C — D an equivalence between . -enriched categories. Let F* : o/P — a7 be given by composition
with F' and Fy its left adjoint. Then there exists a Quillen equivalence

F:o%=aP . F
between M -enriched model categories with respect to the projective model structure.
Proof reference. See Proposition A.3.3.8 of [Lu]. O
Remark 7.1.22. Analogous results can be formed with respect to the injective model structure.

The theory of localisations presented in Section 2.1 has an analogue in the setting of model categories.
Let .# be a simplicial model category and S a set of arrows in h.#. An object z in h.# is said to be
S-local if, for every arrow f : x — y in S, the induced map

Mapy, 4 (y, 2) — Mapy, 4 (z, 2)

is a homotopy equivalence. An object 2z’ in .# is said to be S-local if its image in h.# is S-local. An
arrow f :x — y in h.Z is said to be an S-equivalence if, for every S-local object z in h.#, the induced
map

Mapy, 4 (y,2) — Mapy,_4 (2, 2)

is a homotopy equivalence. An arrow f’ in .# is said to be an S-equivalence if its image in h.# is an
S-equivalence.

Proposition 7.1.23. Let .# be a left-proper combinatorial simplicial model category and S a (small)
set of cofibrations in M . Then there exists another left-proper combinatorial simplicial model structure
on the underlying category of M where:

(€¢) A cofibration is a map which is a cofibration when regarded as a morphism of A .

(W) The weak equivalences are the S-equivalences.

The fibrant objects coincide with objects of M which are both S-local and fibrant in A .

Proof reference. See Proposition A.3.7.3 of [Lu]. O

The model structure is called the Bousfield localisation of .# with respect to S and will be denoted
LEa.
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Proposition 7.1.24. Let .# and AN be left proper combinatorial simplicial model categories and S a
(small) set of cofibrations in M. If F : M = N : G is a Quillen equivalence then the induced Quillen
adjunction

F:L§M = Lips)(N): G
is a Quillen equivalence.

Proof. This follows from Theorem 3.3.20 of [Hi]. O

Remark 7.1.25. By a result of Dugger [Du], every combinatorial model category is Quillen equivalent
to a simplicial model category which is left proper and in which every object is cofibrant. This simplicial
model category is given by the Bousfield localisation of the model category of simplicial presheaves on a
small category.

7.2 Adjunction data in an (oo, 2)-category

A monad in an ordinary category C' is simply a monoid in the category Hom(C, C) of endofunctors on
C provided with the composition monoidal structure. Every adjunction (o, ) : F 4 G in a 2-category
determines a monad: the composite M = GoF is the underlying endofunctor, the unit « of the adjunction
is the unit map for the monoid and the monoid product is given by Go fo F : M? — M. The most
common example is the monad determined by the adjunction in the 2-category Cat of categories.

Our aim in this section is to formulate an (oo, 2)-categorical analogue of this construction. However,
an adjunction in an (0o, 2)-category in the sense of Definition 2.3.2 does not determine a monad as
in the 2-categorical case. To do so we need to construct another equivalent notion of an adjunction
in an (0o, 2)-category where we specify (non-identity) 2-morphisms (8 ® idr) o (idp ® o) = idp and
(idg ® B) o (@ ® idg) = idg together with all their higher dimensional homotopies. All this data is
contained in an object which is called the adjunction datum of an (oo, 2)-category.

Definition 7.2.1. Let S = {z,y} where z and y are two objects in an arbitrary (oo, 2)-category. An
arrow u : ([n],¢) — ([m],d) in Ag is said to be z-inert if, whenever k € [m] satisfies d(k) = z and
u(i) < k < (i) for suitably chosen i,i’ € [n], there exists a unique j € [n] such that u(j) = k.

Let (T,C) be an (o0,2)-category and S := {z,y} C T. The full subcategory of C spanned by the
objects S will be denoted by Cg, ie. Cg is a Fatoo-precategory Cg : AY — Fats, satisfying the Segal
condition. We denote by p : [,o» Cs — AY its corresponding integral. Note that [, o, % = A

S S

Definition 7.2.2. Let C be an (oo, 2)-category and S = {z,y} two objects of C. The oo-category of
adjunction data between x and y is the full subcategory of RHom o (AY, [yor Cs) which carries every
S

z-inert arrow in Ag to a p-cocartesian arrow in f AeP Cs.
S

The oo-category of adjunction data between x and y in the set S = {z,y} in C will be denoted
ADatg(C) or simply ADatg if the (oo,2)-category C is clear from the context. Observe that there
exists a natural restriction map A, v — Ay} where Ag,y is the full subcategory of Ay, ,y spanned
by the objects ([n],c) such that ¢ : [n] — {x} C {z,y} only takes values in the object z. Applying this
restriction map to the functors * and C's determines a map ADat, ,(C') — ADat,(C) where ADat,(C)
is canonically isomorphic to the co-category Mon(End(z)). Thus every adjunction datum determines in
this way a monad on x (see Example 3.1.14 and note that A, ~ A).

Each adjunction datum a in ADatg(C) determines (as a small subset) the following data:

e A functor f: x — y determined by a(z,y).

e A functor g : y — x determined by a(y, ).
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e A functor T : © — x together with a natural transformation id, — T determined by the pair
(a(z,x),a(u)) where u : (x,2) — (x). By the preceding discussion, this is the unit map for a monad
T on z (note that the product T o T — T for the monad is induced from the three inclusions
(z,z) — (z,z,z) two of which are z-inert). Moreover, the map a acting on the z-inert inclusions
of (x,y), (y,z) and (z,z) into (z,y,x) determine equivalences f' — f, ¢ - gand g’ o f' — T
respectively. Hence we obtain a natural transformation id, — g o f (well defined up to homotopy)
for a monad T of the form go f.

e A functor U : y — y together with a natural equivalence id, — U determined by the pair
(a(y,y),a(v)) for the x-convex map v : (y,y) — (y). Moreover, the map a acting on the z-inert
inclusions of (z,y) and (y,x) into (y,x,y) determine equivalences f” — f and ¢g"” — g respectively.
Combining this result with the map f” o ¢ — U determined by the action of the map a on the
inclusion of (y,y) into (y,x,y) determines a natural transformation f o g — U. Hence we obtain a
natural transformation f o g — id, (well defined up to homotopy).

We will show that this subset determines an adjunction between x and y in the (oo, 2)-category C. The
proof is similar to the special case of C' = Cat,, exposed in Lemma 3.2.9 of [LII].

Lemma 7.2.3. Let C be an (00, 2)-category and x and y two objects of C. Let
frx—uy a:idy —gof B:fog—idy g:y—x

denote the maps obtained from an adjunction datum a in ADat, ,(C). Then (o, ) : f - g is an adjunction
between f and g.

Proof. We need to show that the adjunction identities
(Boidy)(idf o) =idy (idg o B)(a0idy) =idy
hold in hy(C). For the first identity, consider the following commutative diagram in Ay, ,y:

(x,y) - (ivxay) - (x,y)

(IE,y) D (xvyvy) - (Sf,y,x,y)

where the maps preserve both the first and last object. Applying a we obtain a diagram in the 2-category
ha(C') equivalent to

fe—2 fo(gof) 2

id id

id Bof
f—— ] (fog)of.
Since the square commutes (up to homotopy) and yo (idf o) is (homotopic to) the identity, this diagram
gives the first identity. The second identity follows from exchanging x and y in the diagrams above. Thus
f admits a right adjoint which can be identified (up to homotopy) with g. O

Let Cat(s, 5y = (Cat(co,2))x11+, denote the category of (oo,2)-categories with a fixed set of two
objects. We have a well defined functor

F o Cat(g, o) — Cateo
(S,C) — ADats(C)
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between oo-categories. Let Set™™ denote the set of isomorphism classes of objects of Cat‘(fo,g) with two
objects. We define ADat(C) to be the pullback

ADat(C) := (/C » F) Xser {C}

(00,2)

in CatZ.. In other words, ADat(C') is the cofibered co-category f**c Fe — *xo where #*¢ is the category
whose objects are pairs S of objects of C' and whose arrows between two objects S and S’ is a map [ in
C such that fS =5, and F¢ is the functor Fo : xx¢ — % ats which sends S — ADatg(C). Note that
we have an equivalence

ADatg(C) =~ ADat(C) xcxc {S}

of co-categories. We obtain a well defined functor
A Cat(s, ) — K
C — R'(ADat(C))

between oco-categories. Note that we only consider the largest sub-(oco, 0)-category contained in the oo-
category ADat(C) since we are not interested in non-invertible maps between adjunctions.

Proposition 7.2.4. The functor A is corepresentable.

Proof. It suffices to prove that A is accessible and preserves (small) limits. We first prove the acces-
sibility of A. Since Cat(3, o) := L(%at(w2)) is the localisation of a model category, it follows from
Proposition 2.3.20 that Catfgog) is presentable. It remains to show that A preserves filtered colimits. Let

I be a filtered (o0, 2)-category and set C' := colim;e;C;. Then A(C) := [ Fo ~ Fc. We evaluate on an
object § in #x¢ to find Fo(S) = ADats(C) = RHomor (AZ, [xor Cs). Since AY is countable we have
S

an equivalence

RHom or (AZ, o Cs) ~ C(Z)éilm RHomAgp(Agp, /Aop (Ci)s)
S S

since I in v-filtered for v > w. Adding the inert conditions preserves this equivalence and so A(C) ~
colim;er A(C;). Tt is left to prove that A preserves limits. O

The next main result shows that every functor between objects in an (oo, 2)-category which admits
a right adjoint can be extended (uniquely up to a contractible space of choices) to an adjunction datum.
First we will need a small lemma. Let C and D be (0o, n)-categories. A functor f: C — D is said to be
conservative if given an arrow u in C such that f(u) is an equivalence in D then u is an equivalence in

C.
Lemma 7.2.5. Let C and D be (00, n)-categories and f : C — D a functor. Consider the induced map
f« : RHom(A, C) — RHom(A, D)
of (00, m)-categories for any (oo, n)-precategory A.
1. If the functor f is fully faithful then the induced map f. is fully faithful.

2. If the functor f is conservative then the induced map f. is conservative.

Proof. For (1) we factor f: C — D as C — C" — D where C’ is the essential image of f in D. Since f
is fully faithful we have a cartesian square

Map([1] x A,C") — Map([1] x A, D)

Map(9[1] x A,C") — Map(9[1] x A, D).
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Since the right vertical map is a fibration, this cartesian square is equivalent to the homotopy cartesian
square

Map([1], C*) Map([1], D)

€vo,1 €vo,1

Map(*, C4 x C*) — Map(*, DA x D4).

The result now follows from the fact that the fibers of a homotopy cartesian square are equivalent. Now
let f: C — D be conservative. Then (2) follows simply from the following commutative diagram

RHom(A,C) — RHom(A, D)

{@Ua}aeA {E'Ua}aEA

F

C D

where the evaluation maps {ev,} form a conservative family and a(h)(a) = f(h(a)). O

Let C be an (oo, 2)-category. Denote by &'C(x,y)4 the subcategory of the oo-category C(z,)
spanned by those objects f : © — y which admit right adjoints and whose morphisms are equivalences of
these maps.

Proposition 7.2.6. Let C be an (00, 2)-category, S = {x,y} two objects in C and ev : ADatgs(C) —
C(xz,y) be the evaluation map at (z,y) € Ag. Then ev induces an equivalence

ADats(C) — R'C(z,y)+
of co-categories.

Sketch of the proof. Let Map([1],C)4 denote the oco-category of maps in C' which admit right adjoints.
We first prove that ADat(C”) — Map([1],C")4 is an equivalence where C” is the (oo, 2)-category of
prestacks on C. From Proposition 7.2.4, we have an equivalence ADat(C") ~ Map(A, C"). We denote
by j,%: [1] — A the inclusion and consider the natural diagram

Map(A, C) === Map([1],C")

n

{oevs}zec {oevs}zec

-~
Map(A, Cat,) == Map([1], Cat.,)
1l
where the adjunction ¢* - 4, is made up of the restriction map ¢* and 4, : f — Lan;f is the left Kan
extension functor. The same follows for the adjunction j* - j;. These adjunctions exists owing to the fact
that the category [1] is small and Cat. and C" are cocomplete. By Lemma 7.2.5, the vertical evaluation
maps are conservative. Furthermore, both squares commute since clearly ev,, o i*(f) ~ ¢* o ev,(f) and

evg o (11g)(a) = ev, o (colim ¢(j)) =~ colim (ev; o g(j)) = 4 o (evyg)(a)

i(z)—a i(j)—a

for all z € C,a € A and z € [1] since ev, : C* — Cat., is cocontinous. By Proposition 3.2.10 of
[LIT], the map ADat(Cat, ) — Map([1],Cat. )~ is an equivalence (a map is an equivalence if it induces
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an equivalence on all fibers). Thus it follows that ADat(C”) — Map([1],C")4 is an equivalence if the
following property is satisfied: a map f — ¢ in C” admits an adjoint if and only if f(z) — g(x) admits
an adjoint for all € C. Let us assume this statement. Now consider the following diagram:

E*
Map(4, ) == Map([1].C)-
oh oh

Map(A, C") = Map([1],C")-

Ji

where h is the (00, 2)-yoneda embedding of Proposition 2.2.11. The map k* is fully faithful so it remains
to prove that it is essentially surjective which can be shown using the commutativity of the diagram. [

Thus by Proposition 7.2.6, if an arrow f : z — y in an (oo, 2)-category C' admits a right adjoint then
it can be extended to an adjoint pair together with a monad on x through the following diagram:

C(z,y)+ < ADat,, — Mon(End(z))

of co-categories.






HIGHER TANNAKA DUALITY 119

References

[BBD] Beilenson, A., Bernstein, J. and Deligne, P., Faisceauz pervers, Asterisque, 100, Volume 1 (1982).

[Be]
[CD]
[CT]

[D1]

[D2]

[DK]

[Du]

[DHI]

[DR1]

[DR2]

[F]

[Gr]
[GJ]

[Hi]

[HS]
[Ho]

[H1]

[H2]

[HSS]

[

[Jo]
[Kal
[Ke]

Beilinson, A., Remarks on Grothendieck’s standard conjectures, preprint arXiv:1006.1116.
Cisinski, D-C. and Déglise, F., Triangulated categories of mized motives, preprint arXiv:0912.2110.

Cisinski, D-C. and Tabuada, G., Symmetric monoidal structure on non-commutative motives, preprint
arXiv:1001.0228.

Deligne, P., Le groupe fondamental de la droite projective moins trois points, Galois groups over QQ, Math.
Sci. Res. Inst. Publ., 16, Springer (1989).

Deligne, P., Catégories Tannakiennes, Grothendieck Festschrift II, Boston (1990), 111-195.

Dwyer, W. and Kan, D., Simplicial localization of categories, J. Pure and Applied Algebra, 17 (1980),
267-284.

Dugger, D., Combinatorial model categories have presentations, Adv. Math. 164 (2001), 177-201.

Dugger, D., Hollander, S. and Isaksen, D., Hypercovers and simplicial presheaves, Math. Proc. Camb.
Phil. Soc., 136 (2004), 9-51.

Doplicher, S. and Roberts, J., Endomorphisms of C™*-algebras, cross products and duality for compact
groups, Ann. of Math. (2) 130 (1989), 75-119.

Doplicher, S. and Roberts, J., A new duality theorem for compact groups, Invent. Math., 98 (1989),
175-218.

Fukuyama, H. and Iwanari, 1., Monoidal infinity category of complezes from Tannakian viewpoint, preprint
arXiv:1004.3087.

Grothendieck, A., Pursuing stacks, unpublished manuscript.

Goerss, P. and Jardine, J., Simplicial homotopy theory, Progress in Mathematics, Birkhauser, Boston
(1999).

Hirschhorn, P., Model Categories and their localizations, Math. Surveys and Monographs, 99, Amer. Math.
Soc., (2003).

Hirschowitz, A., and C. Simpson, Descente pour les n-champs, preprint arXiv math.AG/9807049.
Hovey, M., Model categories, Math. Surveys and Monographs, 63, Amer. Math. Soc., (1998).

Hovey, M., Spectra and symmetric spectra in general model categories, Journal of Pure and Applied
Algebra, 165 (2001), 63-127.

Hovey, M., Model category structures on chain complexes of sheaves, Trans. of the American Math. Society,
353 (2001), 2441-2457.

Hovey, M., Shipley, B. and J. Smith., Symmetric spectra, Journal of the American Mathematical Society
13, (2000), no. 1, 149-208.

Hllusie, L., Complexe cotangent et déformations II, Lecture Notes in Mathematics 283, Springer-Verlag,
(1972).

Joyal, A., Theory of quasicategories I, in preperation.
Kaledin, D., Motivic structures in non-commutative geometry, preprint arXiv:1003.3210v1.

Kelly, G. M., Basic concepts of enriched category theory, London Mathematical Society Lecture Note
Series, 64, Cambridge University Press, (1982).



120

[Ko]

[Kr]

[KPT)]

[Le]
L]
[L1]
L]
[LII1]
[LVTI]
[LVIII]

[L1]
[L2]
[MaC]

[Ne]

(Pr]
[Re]
[Sa]
[Sch]
[SGA]
[Sh]

[S1]
[52]
[S3]

[SS1]

[$S2]

[Ta]

[Tb1]

J. M. WALLBRIDGE

Kontsevich, M., Notes on motives in finite characteristic, preprint arXiv:0702206, to appear in Manins
Festschrift. Editors Yu. Zarkhin and Yu. Tschinkel.

Krein, M., A principle of duality for a bicompact group and square block algebra, Dokl. Akad. Nauk. SSSR,
69 (1949), 725-728.

Katzarkov, L., Pantev, T. and Toén, B., Schematic homotopy types and non-abelian Hodge theory, Compos.
Math. 144 (2008), no. 3, 582-632.

Leinster, T., A survey of definitions of n-category, Theory and Appl. of Categories, 10 (2002), 170.
Lurie, J., Higher topos theory, Ann. of Math. Studies, 170 (2009).

Lurie, J., Derived algebraic geometry I: Stable co-categories, preprint arXiv math/0608228.

Lurie, J., Derived algebraic geometry II: Noncommutative algebra, preprint arXiv math/0702299.

Lurie, J., Derived algebraic geometry III: Commutative algebra, preprint arXiv math/0703204.

Lurie, J., Derived algebraic geometry VII: Spectral schemes, preprint available from the authors webpage.

Lurie, J., Derived algebraic geometry VIII: Quasi-coherent sheaves and Tannaka duality theorems, preprint
available from the authors webpage.

Lurie, J., Derived algebraic geometry, MIT thesis.
Lurie, J., (00, 2)-categories and the Goodwillie calculus I, preprint arXiv:0905.0462v2.

MacLane, S., Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer-
Verlag (1998).

Neeman, A., Triangulated categories, Annals of Mathematics Studies 148, Princeton University Press
(2001).

Pridham, J., Presenting higher stacks as simplicial schemes, preprint arXiv:0905.4044.

Rezk, C., A cartesian presentation of weak n-categories, preprint arXiv:0901.3602.

Saavedra, N., Catégories tannakiennes, Lecture Notes in Math., 265, Springer (1972).

Schlitchting, M., Higher algebraic K-theory, Lecture Notes in Math., 2008, Springer (2011).
Grothendieck, A., Revétements étales et groupe fondamental, Lecture Notes in Math., 224, Springer (1971).

Shipley, B., A Convenient model category for commutative ring spectra, Contemp. Math., 346 (2004)
473-483.

Simpson, C., Higgs bundles and local systems, Publ. Math. de 'ITHES, 75, (1992), 5-95.
Simpson, C., Homotopy theory of higher categories, preprint arXiv:1001.4071.

Simpson, C., A Giraud-type characterization of the simplicial categories associated to closed model cate-
gories as co-pretopot, preprint arXiv math/9903167.

Schwede, S. and Shipley, B., Stable model categories are categories of modules, Topology, 42, No.1, (2003)
103-153.

Schwede, S. and Shipley, B., Algebras and modules in monoidal model categories, Proc. London Math.
Soc. (3) 80 (2000), 491-511.

Tannaka, T., Ueber den Dualitdtssatz der nichtkommutativen topologischen Gruppen, Tohoku Math. J.,
45 (1939), 1-12.

Tabuada, G., Une structure de catégorie de modéles de Quillen sur la catégorie des dg-catégories, C. R.
Math. Acad. Sci. Paris 340 (2005), no. 1, 1519.



[Th2]
[Th3]
[Th4]

[Ts1]

[Ts2]

[T1]

[T2]

[T3]

[T4]

[T5]
[T6]

[TVI]

[TVII]

[TV3]

[TVA4]

[TV5]

(V1]

[We]

HIGHER TANNAKA DUALITY 121

Tabuada, G., Homotopy theory of spectral categories, Adv. Math. 221 (2009), no. 4, 11221143.
Tabuada, G., Invariants additifs de dg-catégories, Int. Math. Res. Not. 53 (2005), 33093339.
Tabuada, G., Matriz invariants of spectral categories, Int. Math. Res. Not. 13 (2010), 2459-2511.

Tamsamani, Z., On non-strict notions of n-category and n-groupoid via multisimplicial sets, preprint
arXiv:9512006.

Tamasamani, Z., Equivalence de la théorie homotopique des n-groupoides et celle des espaces topologiques
n-tronqués, preprint arXiv:9607010.

Toén, B., Dualité de Tannaka supérieure I: Structures monoidales, preprint available at the authors
webpage.

Toén, B., Champs affines, Selecta Math. (N.S.) 12 (2006), no. 1, 39-135.

Toén, B., The homotopy theory of dg-categories and derived Morita theory, Invent. Math. 167 (2007), no.
3, 615-667.

Toén, B., Derived Azumaya’s algebras and generators for twisted derived categories, preprint
arXiv:1002.2599.

Toén, B., Lectures on DG-categories, Lecture Notes in Math., 2008, Springer (2011).
Toén, B., Homotopical and higher categorical structures in algebraic geometry, hablilitation thesis (2003).

Toén, B. and Vezzosi, G., Homotopical Algebraic Geometry I: Topos theory, Adv. in Math. 193 (2005),
257-372.

Toén, B. and Vezzosi, G., Homotopical Algebraic Geometry II: Geometric stacks and applications, Mem.
Amer. Math. Soc. 193 (2008), no. 902.

Toén, B. and Vezzosi, G., oco-catégories monoidales rigides, traces et caractere de Chern, preprint
arXiv:0903.3292v1.

Toén, B. and Vezzosi, G., Brave new algebraic geometry and global derived moduli spaces of ring spectra,
preprint arXiv math/0309145.

Toén, B. and Vezzosi, G., Segal topoi and stacks over Segal categories, preprint arXiv math/0212330.

Voevodsky, V., Triangulated categories of motives over a field, in Cycles, transfers and motivic homology
theories, Annals of mathematics studies, 143, Princeton Univ. Press (2000).

Weibel, C., An Introduction to Homological Algebra, Cambridge University Press, (1995).






Notation index

B, 79
CAlogoR(O), 54
Cat(oom‘), 32
%at(oom), 25
Cat,, 55
Cat oo 'n.)’ 32
Catooja;), 46
Cat 43

(co,m)?
Dec, 89
Ag, 22

¢, 59
€, 59

Fib, 91
Fib,, 92

Ger (C), 78
Ger" (R), 78
Gp”(R), 78

H, 62
Hopf, 87

Ind, 37

K, 32
A", 26

Ls, 29

Mod®(C), 52

Mod(C), 52

MOdR(C
on®(C

)
)
)
), 4
N, 28

Q, 79
PC(), 22
Perf, 91
Perf,, 92
wt, 63
Prx, 33
Rep, 92

S 7,29

S, 22

SeMon® (), 42
SeComodpg, 91
Sp, b7

Sp, 56

St"(R), 74

Stx, 71

St%, 73

Tanp, 97
(Tanp)«, 93
T>n, 62

T<n, 62
Tenslax 68
TensR? 66
(Tensp®)., 92
TGer" (R), 97
TGp"(R), 93
Top, 22
Tpoi, 71

123



	TITLE: HIGHER TANNAKA DUALITY
	Abstract
	Resume
	Acknowledgements
	Declaration
	Contents

	1 Introduction
	2 Higher category theory
	3 Monoidal structures
	4 Stacks, gerbes and topologies
	5 Tannaka duality for 1-categories
	6 Applications
	7 Appendix
	7.1 Enriched monoidal model categories
	7.2 Adjunction data in an (∞, 2)-category

	References
	Notation index

