HISTOMORPHOMETRIC ANALYSIS OF THE
TEMPOROMANDIBULAR JOINT CONDYLE
IN YOUNG AND MATURE SHEEP

THE UNIVERSITY
OF ADELAIDE
AUSTRALIA

Ryan James Cornish
B.D.S.(Adel.), B.Health Sc.(Hons.), B.Sc.

Thesis submitted in partial fulfilment of the requirements for the degree of
Master of Science in Dentistry

Department of Oral Pathology
School of Dentistry
Faculty of Health Sciences
The University of Adelaide
South Australia

August 2005
TABLE OF CONTENTS

TABLE OF CONTENTS...i
DECLARATION..v
ACKNOWLEDGMENTS..vi
PUBLICATIONS RELATED TO THESIS..viii
SCHOLARSHIPS AND AWARDS RELATED TO THESIS......................ix
LIST OF ABBREVIATIONS..x
LIST OF FIGURES...xi
LIST OF TABLES...xiii
LIST OF GRAPHS..xiv

ABSTRACT..1

CHAPTER 1: INTRODUCTION...3
1.1 Anatomy of the TMJ...4
 1.1.1 Gross anatomy...4
 1.1.2 Microanatomy of the condyle..7
 (a) Tissue and cellular components of cartilage......................7
 (b) Tissue and cellular components of bone............................9
1.2 Biology of growth of the condyle..13
 1.2.1 Intramembranous ossification..15
 1.2.2 Endochondral ossification..16
1.3 Age related changes of the condyle.....................................18
 1.3.1 Function of the TMJ..18
 1.3.2 The mechanical effects of load......................................18
 1.3.3 Architectural changes causing TMJ pathology.................22
1.4 Histomorphometry of tissues...27
 1.4.1 General principles..27
1.4.2 Quantitative image analysis...27
1.4.3 Histological stains for cartilage and bone quantitation...........31
 (a) Routine and specific stains..31
 (b) Masson's trichrome..32

1.5 Animal models in TMJ research..34
 1.5.1 Animal models in general..34
 1.5.2 The sheep model..36
 1.5.3 Histomorphometry of the TMJ condyle..........................38

1.6 The present study...45
 1.6.1 Investigative rationale..45
 1.6.2 Objectives to be fulfilled......................................45
 1.6.3 Hypotheses to be tested..46

CHAPTER 2: MATERIALS AND METHODS.......................................48

2.1 Selection of material..49
 2.1.1 Animals..49
 2.1.2 Habitat..49
 2.1.3 Diet..49
 2.1.4 Age determination...49

2.2 Tissue preparation..51
 2.2.1 Tissue sampling and fixation....................................51
 2.2.2 Demineralisation and radiological analysis....................52
 2.2.3 Dissection of the condyle.......................................52
 2.2.4 Tissue processing and embedding................................56
 2.2.5 Sectioning...56

2.3 Staining methods...57
 2.3.1 Routine histological staining..................................57
 2.3.2 Masson's trichrome staining techniques........................57

2.4 Tissue examination...58
 2.4.1 Initial examination..58
 2.4.2 Qualitative histology and tissue parameters....................58
 2.4.3 Quantitative histomorphometry..................................65
(a) Cartilage thickness...67
(b) Cartilage matrix and cellularity.......................................68
(c) Trabecular bone indices..70

2.5 Statistical analysis...72
 2.5.1 Tissue data analysis...72
 2.5.2 Variability of the measurements.....................................73

CHAPTER 3: RESULTS...74
 3.1 Qualitative histomorphology...75
 3.1.1 Cartilage...75
 3.1.2 Trabecular bone..76
 3.2 Cartilage thickness...83
 3.2.1 Fibrous zone (FZ)..83
 3.2.2 Hypertrophic zone (HZ)...83
 3.2.3 Total thickness (TT)...84
 3.3 Cartilage matrix and cellularity...89
 3.3.1 Matrix component...89
 3.3.2 Cellular component..89
 3.4 Trabecular bone indices...93
 3.4.1 Bone Volume/Tissue Volume (BV/TV).............................93
 3.4.2 Bone Surface/Tissue Volume (BS/TV).............................93
 3.4.3 Bone Surface/Bone Volume (BS/BV)...............................93
 3.4.4 Trabecular Thickness (TbTh)...94
 3.4.5 Trabecular Separation (TbSp)...94
 3.4.6 Trabecular Number (TbN)...94

CHAPTER 4: DISCUSSION...100
 4.1 Introduction..101
 4.2 Findings of the study...102
 4.2.1 Qualitative regional and ageing morphological patterns........102
 4.2.2 The thickness of condylar cartilage and the role of cartilage
 in load transfer..164
4.2.3 The quantity of cellular and matrix components in condylar cartilage and its growth potential……………………………………107
4.2.4 Regional and age differences of trabecular bone in the condyle and its role in load resistance and load dispersion………………109

4.3 Validity of the study………113
 4.3.1 Animals and specimens……113
 4.3.2 Tissue sampling……115
 4.3.3 Staining techniques……116
 4.3.4 Histological parameters and definitions……117
 4.3.5 Image analysis and histomorphometry……118

4.4 Epilogue and future directions………120

SUMMARY……122

APPENDICIES……124

Appendix I: Notes on dyes commonly used in Masson’s trichrome stains……………125
Appendix II: Fixative solution………128
Appendix III: Tissue processing protocol……129
Appendix IV: Slide subbing protocol……130
Appendix V: Histological staining protocols……131
 a) Haematoxylin and Eosin-Phloxine……131
 b) Masson’s trichrome (red/green with nuclear stain)……………………………………………………………………………………………………134
c) Masson’s trichrome (red/blue without nuclear stain)……………………………………………………………………………………………………136
Appendix VI: Statistical Analysis: Measurement Error……………………………………138
 Variability of linear measurements………138
Appendix VII: Statistical Analysis: Student’s t-tests (two sample)…………………………139
 Statistically significant results for bone and cartilage……………………………………………………………………………………………………139
Appendix VIII: Statistical Analysis: Student’s t-tests (two sample)…………………………141
 Intra/Inter-observer variability for bone and cartilage……………………………………………………………………………………………………141

REFERENCES……143
ABSTRACT

Much of the literature regarding arthritis changes in the Temporomandibular Joint (TMJ) is based on the assumption, rather than the demonstration, that joint degeneration is pathologically and biochemically similar to that which has been described for other arthrodial joints. Understanding such changes is axiomatic of an understanding of the specific histomorphometric structure of the normal TMJ, in particular the condyle. Unfortunately, very little has been established about the trabecular bone and cartilage morphological patterns in the mandibular condyle as it develops during growth. As a consequence of the obvious practical difficulties in investigations of the human TMJ, the sheep has been variously used as an animal model. In order to augment a fuller characterisation of this animal model, this study focuses on the qualitative and quantitative histomorphometries of the trabecular bone and cartilage in the mandibular condyles of young and mature sheep.

Histomorphometric analyses of cartilage and trabeculae from mature and young sheep condyles were performed on histological sections stained with a modified blue Mason's trichrome and fast green Mason's trichrome respectively. Digital photomicrographs of lateral, central & medial sagittal sections, and anterior & posterior coronal sections of the condyle were taken and then analysed using a public domain software programme (ImageJ 1.33u) to measure cartilage thickness as well as a Quantimet 500MC image analysis system programmed to measure 1) cartilage matrix and cellularity of the condyle and 2) structural index values of trabecular bone volume, surface, thickness, separation and number.
The results from this project found that there were strong variations in the range of qualitative morphology seen of both cartilage thickness and cellularity as well as trabecular bone morphology. Analysis of histomorphometric data revealed: 1) a significant decrease in the thickness of the Fibrous Zone, Hypertrophic Zone and Total Thickness of the central region as compared to the lateral and medial regions in the mature sheep, 2) a trend toward a higher cellular component (decreased matrix) in the young sheep as compared with the mature sheep condylar cartilage, and 3) a significant concordance in bone structural index values between lateral, central and medial regions in young and mature sheep as well as anterior and posterior regions in young sheep.

This study provides the first comparative histomorphometric analysis of cartilage and trabecular bone in the mandibular condyle of both young and mature sheep. The findings from this study reinforce the notion that there is constant remodelling of both the condylar cartilage and trabecular architecture throughout growth and development in the postnatal sheep, as well supporting the role of the sheep as a model in studies of the TMJ. Although there is a trend to a reduction in the cellularity of the condylar cartilage with age, a high cellular state still exists in the mature sheep indicative of such continuing growth and regeneration potential. As the thickness of condylar cartilage did not change with increasing age, this is indicative of the importance of cartilage as a method of transferring load to the bone. Nevertheless, the results do suggest that the central region, compared to the polet of the TMJ, has the greatest loads placed upon it over time resulting in increased wear. Finally, in regards to the bone as an effective mechanism of distributing load, although qualitative morphological differences with trabecular aligning perpendicular to the articular surface are seen, quantitatively our results insinuate that it is the distribution of bone, rather than an increase in the quantity of bone that changes with age.