CALIBRATING NMR RESPONSE TO CAPILLARY PRESSURE CURVES IN FINE GRAINED LITHOLOGIES: PRETTY HILL FORMATION, OTWAY BASIN

Thesis submitted for the degree of Master of Science
(Petroleum Geology & Geophysics)

ALI AL-GHAMDI

Australian School of Petroleum, The University of Adelaide

August 2006
ABSTRACT

Nuclear magnetic resonance (NMR) tools are commonly used in formation evaluation. NMR T2 distribution data have been used by previous authors to build down-hole pseudo capillary pressure curves in reservoir quality rocks. The objective of this study is to generate NMR-derived down-hole pseudo capillary pressure curves in very fine grained lithologies in order to determine whether it is possible to estimate capillary displacement pressures and thereby sealing capacity.

NMR T2 relaxation time distributions of flood plain facies at Redman-1 well in Otway Basin, SE of South Australia, were converted to pseudo capillary pressure curves. The generated curves were compared to mercury injection capillary pressure (MICP) curves. The petrophysical properties and mineralogy of 11 flood plain samples were analyzed using the following measurement techniques: MICP, Scanning Electron Microscopy (SEM), core porosity and permeability, X-Ray Diffraction (XRD), optical microscopy of thin section and X-Ray Fluorescence XRF.

Displacement pressures were calculated from pseudo capillary pressure curves and compared with actual MICP curves at different saturations percentages of non-wetting phase. The best percentage in displacement pressure estimation is the 20% saturation with correlation coefficient of 0.59. Statistically, the correlation coefficient of the 20% saturation is too low for meaningful calibration.

The reason for the lack of robust calibration is related to the actual properties of the rock: the Redman-1 flood plain samples have high iron contents (Fe2O3 content ranges between 5.21-7.16 wt%) with correspondingly increased magnetic susceptibility and elevated internal field gradients. The iron is mainly associated with chlorite and biotite in the sample studied. The NMR T2 response is affected significantly by the internal magnetic field gradient which depends on the magnitude of the
magnetic susceptibility. Surface relaxivity changes and high pore to throat size ratio also contribute to the difference between the two measurements.

Study conclusions are that T2 response in high iron content rock is affected by many factors such as magnetic susceptibility, surface relaxivity and aspect ratio. Therefore, using the NMR response to estimate capillary displacement pressures in iron-rich, fine grained rocks is not recommended. However, further studies in rocks of low magnetic susceptibility might yield more significant correlations.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement of Authenticity</td>
<td>i</td>
</tr>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>vii</td>
</tr>
</tbody>
</table>

CHAPTER ONE: INTRODUCTION

1.1 Background 1

1.2 Project Aims 3

1.3 Structure of the Thesis 4

CHAPTER TWO: NMR, CAPILLARITY AND GEOLOGICAL REVIEW

2.1 NMR Principles 5

2.1.1 Physics of Nuclear Magnetic Resonance 6

2.1.2 NMR T2 Distribution 7

2.1.3 Relaxation Mechanisms 9

2.1.3.1 Grain Surface Relaxation 11

2.1.3.2 Bulk Fluid Relaxation 13

2.1.3.3 Molecular Diffusion Relaxation 13

2.1.4 Multi-Exponential Decay 13

2.2 NMR Application in Formation Evaluation 15

2.3 NMR Pore Size Distribution 16

2.4 Capillary Pressure (Pc) 18

2.4.1 Mercury Porosimetry and Pore Size Distribution 18

2.4.2 Seal Capacity Determination 21

2.5 NMR and Displacement Pressure Estimation 22

2.6 Geological Overview of Penola Trough 25
CHAPTER THREE: PETROPHYSICAL AND MINERALOGICAL MEASUREMENTS

3.1 Introduction 29
3.2 Sample Selection and Preparation 29
3.3 Pore Measurement Techniques
 3.3.1 Mercury Injection Capillary Pressure (MICP) 31
 3.3.2 Scanning Electronic Microscopy (SEM) 35
 3.3.3 Porosity and Permeability Measurements 36
 3.3.4 Porecast Analysis 38
3.4 Mineralogical Determination Techniques 39
 3.4.1 X-Ray Diffraction Analysis (XRD) 39
 3.4.2 X-Ray Fluorescence (XRF) 40
 3.4.3 Thin Section Petrology 41
 3.4.4 Point Counting 42

CHAPTER FOUR: PETROLOGY

4.1 Core Description 43
4.2 Detrital Mineralogy 44
 4.2.1 Quartz 47
 4.2.2 Feldspars 47
 4.2.3 Mica 52
 4.2.4 Clays 54
 4.2.5 Lithic Grains 55
 4.2.6 Accessory Minerals 55
4.3 Authigenic Minerals 58
 4.3.1 Chlorite 58
 4.3.2 Laumontite 58
 4.3.3 Diagenetic Accessory Minerals 59
CHAPTER FIVE: PETROPHYSICAL PROPERTIES DETERMINATION

5.1 Introduction 61
5.2 Porosity and Permeability Estimation (NMR & Lab) 61
5.3 Capillary Pressure and Pore Throat Size Determination 65
5.4 T2 Distribution Processing 68
5.5 T2 Pseudo Capillary Pressure Curve 70
 5.5.1 Corrected Cumulative T2 Distribution 70
 5.5.2 Creating Pseudo Capillary Pressure Curves 74
5.6 Pseudo Pc and MiCP Curves Calibration 76
5.7 Estimation of NMR Displacement Pressure 77

CHAPTER SIX: DISCUSSION

6.1 Introduction 88
6.2 Discussion 88

CHAPTER SEVEN: CONCLUSIONS & RECOMMENDATIONS

7.1 Conclusions 98
7.2 Recommendations 100

REFERENCES 102

APPENDIX – A Mercury Injection Capillary Pressure Data Results 107
APPENDIX – B NMR Data Results 130
APPENDIX – C XRD Analysis Results 142
APPENDIX – D XRF Analysis, Point Counting & Porosity and Permeability Results 150