THE ROLE OF THE OSTEOCYTE IN
ORTHODONTIC TOOTH MOVEMENT IN
THE RAT DENTO-ALVEOLAR COMPLEX

Doctor of Clinical Dentistry (Orthodontics)
Thesis
Dinesh Sanmuganathan
B.D.S. (USyd)
Orthodontic Unit
School of Dentistry
Faculty of Health Sciences
The University of Adelaide
South Australia
AUSTRALIA
2011
Table of Contents

Table of Contents ... 2
Figures and Tables ... 5
Glossary of Abbreviated Terms ... 7
Declaration ... 10
Acknowledgements .. 11

SECTION 1 ... 12
Introduction ... 13

LITERATURE REVIEW ... 14
Overview of Alveolar Bone Structure .. 15
Osteoclast ... 16
Osteoblast .. 17
ti) Osteoblast differentiation .. 19
Osteocyte .. 20
ti) Size of the cells .. 22
ii) Distribution .. 22
iii) Formation of the cells—lineage transitions .. 23
iv) Osteocyte Receptors .. 24
v) Functional Role of Osteocytes in Bone ... 24

Osteoblastic and Osteocytic Responses to Mechanical Stimuli ... 25
Orthodontic Tooth Movement .. 28
ti) Mineralised tissue response to applied mechanical load .. 32
ii) Non-mineralised tissue response to applied mechanical load 33

Sclerostin ... 35
Apoptosis ... 41
 i) Pathways of apoptosis .. 41
 ii) Osteoblast and osteocyte apoptosis ... 42
 iii) Regulation of osteoblast and osteocyte apoptosis .. 43
 iv) Osteocyte Apoptosis and its Role in Targeted Bone Removal 43
References ... 45

SECTION 2 ... 54
Statement of Purpose ... 55

ARTICLE ONE .. 56
Abstract ... 57
Introduction ... 58
Materials and Methods ... 60
ARTICLE TWO

Abstract ... 79

Introduction .. 80

Materials and methods ... 81
 i) Animals, Appliances and Animal Manipulations 81
 ii) Tooth movement measurements ... 82
 iii) Harvesting of tissue .. 82
 iv) Section preparation ... 83
 v) Immunohistochemistry ... 84
 vi) Histoquantification .. 84

Results .. 87
 i) Application of orthodontic force to rat molars 89
 ii) Sclerostin-immunoreactivity ... 91

Discussion .. 89
 i) Application of orthodontic force to rat molars 89

Conclusion ... 92

Acknowledgments ... 93

References ... 94

SUMMARY .. 97
APENDICES ... 101

Appendix 1.. 102
 The Application of Orthodontic Force on the Rat Molars... 102
Appendix 2.. 104
 Measurement of tooth movement.. 104
Appendix 3.. 106
 Tooth measurement results.. 106
Appendix 4.. 109
 Harvesting of Tissue.. 109
Appendix 5.. 113
 Avidin-Biotin Peroxidase Complex immunolabelling protocol..................................... 113
Appendix 6.. 114
 AEC and counter-staining protocol... 114
Figures and Tables

Literature Review

Figure 1: A light micrograph of a osteoclasts resorbing an old osteon..........................17
Figure 2: An example of a functional syncytium...21
Figure 3: Alveolar bone metabolism showing “tension” and “compression”......................29
Figure 4: Cell sequence in mechanosensing, transduction and response........................31
Figure 5: The sequence of bone remodelling stages during orthodontic treatment.............33
Figure 6: Effects of sclerostin on osteoblasts..36
Figure 7: Proposed regulation of osteon remodelling by osteocytic sclerostin expression.....39
Figure 8: Classical apoptosis signaling pathways..42

Article 1

Figure 1: Rat model with closed coil spring..61
Table 1: Sample sizes...61
Figure 2: Schematic representation of section through maxillary molars.........................62
Figure 3: Arrangement of specimen sections on slides..63
Figure 4: An example of the AEC staining and histoquantification method used............64
Table 2: Error study for total osteocyte count ..66
Table 3: Adjusted means of proportion of positively stained osteocytes.........................67
Table 4: Type 3 Tests of Fixed Effects ...67
Table 5: Adjusted means of the treated group at day 7 and day 14.................................68
Table 6: Type 3 test, treated group at day 7 and day 14..68
Table 7: Sclerostin staining differential between the treated and control groups.............69
Table 8: Type 3 test, sclerostin staining differential, treated versus control groups69
Table 9: Sclerostin staining differential between left and right sides in the treated group....70
Table 10: Type 3 test, sclerostin staining differential, left and right sides in the treated group...70

Article 2

Figure 1: Schematic representation of a section cut through the maxillary molars...........83
Figure 2: Arrangement of specimen sections on slides...83
Figure 3: Sclerostin positive osteocytes and sclerostin-negative osteocytes..................85
Figure 4: An example of the AEC staining and histoquantification method used............86
Table 1: Tooth movement and differential sclerostin measurements over day 0 – day 7.....87
Figure 5: Scatter plot, differential +ve Sclr percentage and distance from day 0 to day 7....87
Table 2: Tooth movement and differential sclerostin measurements over day 0 – day 14....88
Figure 6: Scatter plot, differential +ve Sclr percentage and distance from day 0 to day 7....88
Appendix 1
Figure 1: Animal was placed onto a purpose-built holding rack.................................103
Figure 2: Photograph of experimental spring setup with wire ligature............................103

Appendix 2
Figure 1: Impression taken with special tray..104
Figure 2: Impression landmarks...105
Figure 3: Illustration of centroid determination..105

Appendix 3
Table 1: Tooth movement measurements of Day 0..106
Table 2: Tooth movement measurements of Day 7...107
Table 3: Tooth movement measurements of Day 14..108

Appendix 4
Figure 1: Perfusion apparatus...109
Figure 2: Animal at completion of perfusion..110
Glossary of Abbreviated Terms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ab</td>
<td>Antibody</td>
</tr>
<tr>
<td>ABC</td>
<td>Avidin-biotin complex</td>
</tr>
<tr>
<td>AEC</td>
<td>3-Amino-9-ethylcarbazole</td>
</tr>
<tr>
<td>Ag</td>
<td>Antigen</td>
</tr>
<tr>
<td>ALP</td>
<td>Alkaline phosphatase</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine-5′-triphosphate</td>
</tr>
<tr>
<td>BMP</td>
<td>Bone morphogenetic protein</td>
</tr>
<tr>
<td>BMU</td>
<td>Basic metabolic unit</td>
</tr>
<tr>
<td>Ca2+</td>
<td>Calcium ions</td>
</tr>
<tr>
<td>cAMP</td>
<td>Cyclic adenosine monophosphate</td>
</tr>
<tr>
<td>CGRP</td>
<td>Calcitonin gene related peptide</td>
</tr>
<tr>
<td>CSF</td>
<td>Colony stimulating factor</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylenediaminetetra-acetic acid</td>
</tr>
<tr>
<td>ER</td>
<td>Oestrogen receptor</td>
</tr>
<tr>
<td>hMSC</td>
<td>Human mesenchymal stem cells</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunoglobulin</td>
</tr>
<tr>
<td>IGF</td>
<td>Insulin-like growth factor</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IMVS</td>
<td>Institute of Medical and Veterinary Science</td>
</tr>
<tr>
<td>IP3</td>
<td>Inositol triphosphate</td>
</tr>
<tr>
<td>IR</td>
<td>Immunoreactive</td>
</tr>
<tr>
<td>IU</td>
<td>International units</td>
</tr>
<tr>
<td>K</td>
<td>Potassium</td>
</tr>
<tr>
<td>LRP 5/6</td>
<td>Lipoprotein receptor related protein 5/6</td>
</tr>
<tr>
<td>M</td>
<td>Molar (molarity)</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>M¹</td>
<td>Maxillary first molar</td>
</tr>
<tr>
<td>M²</td>
<td>Maxillary second molar</td>
</tr>
<tr>
<td>M-Csf</td>
<td>Macrophage colony-stimulating factor</td>
</tr>
<tr>
<td>MEPE</td>
<td>Matrix extracellular</td>
</tr>
<tr>
<td>MMP</td>
<td>Matrix metalloproteinases</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>MSC</td>
<td>Mesenchymal stem cells</td>
</tr>
<tr>
<td>NGS</td>
<td>Normal goat serum</td>
</tr>
<tr>
<td>NHS</td>
<td>Normal horse serum</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NT</td>
<td>Neurotrophin</td>
</tr>
<tr>
<td>O.C.T.</td>
<td>Optimal cutting temperature</td>
</tr>
<tr>
<td>OTM</td>
<td>Orthodontic tooth movement</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered solution</td>
</tr>
<tr>
<td>PDL</td>
<td>Periodontal ligament</td>
</tr>
<tr>
<td>PTH</td>
<td>Parathyroid hormone</td>
</tr>
<tr>
<td>PTHrP</td>
<td>Parathyroid hormone-related protein</td>
</tr>
<tr>
<td>RANKL</td>
<td>Receptor activator of nuclear factor kappa-β ligand</td>
</tr>
<tr>
<td>RER</td>
<td>Rough endoplasmic reticulum</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>TBS</td>
<td>Tris Buffered Solution</td>
</tr>
<tr>
<td>TGF</td>
<td>Transforming growth factor</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>TRAP</td>
<td>Tartrate-resistant acid phosphatase</td>
</tr>
<tr>
<td>Trk</td>
<td>Tyrosine receptor kinase</td>
</tr>
</tbody>
</table>
Abbreviations of length

mm Millimetre
µm Micron
nm Nanometre

Abbreviations of time

d Day
h Hour
min Minute
s Second
wk Week
y Year

Abbreviations of volume

l Litre
ml Millilitre
µl Microlitre

Abbreviations of weight

g Gram
kg Kilogram
mg Milligram
ng Nanogram
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent for this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Dr Dinesh Sanmuganathan

Dated:
Acknowledgements

I express my appreciation and gratitude to the following people for their invaluable assistance in the completion of this thesis.

Professor Wayne J. Sampson, P.R. Begg Chair in Orthodontics, University of Adelaide.

Associate Professor Craig W. Dreyer, Orthodontics Unit, School of Dentistry, University of Adelaide.

Dr. Angela Pierce, School of Dentistry, University of Adelaide.

Dr Kencana Dharmapati, Anatomical Sciences, School of Medicine, University of Adelaide.

Dr. Henry S.H. Ho, Specialist Orthodontist, Sydney, New South Wales.

Dr. James Moses, Specialist Orthodontist, Adelaide, South Australia.

Mrs Nadia Gagliardi and Ms. Gail Hermanis, Technical Officers, Anatomical Sciences, School of Medicine, University of Adelaide.

Mr Thomas Sullivan, Statistician, Data Management and Analysis Centre, University of Adelaide.

Ms. Sandie Hughes, Laboratory Officer, Oral Pathology, University of Adelaide.

Professor P. Mark Bartold, Director, Colgate Dental Research Centre, Adelaide Dental Hospital, Adelaide.

Australian Society of Orthodontists Foundation for Research and Education for their funding.

My parents, Lilani and Rudran, brother Rumesh and sister Shanya for their support.