Random Access Schemes for Multichannel Communication and Multipacket Reception in Wireless Networks

by

Hyukjin LEE

B.E., Hongik University Grad. Dip., University of New South Wales

Thesis submitted for the degree of

Doctor of Philosophy

in

School of Electrical and Electronic Engineering Faculty of Engineering, Computer, and Mathematical Sciences

The University of Adelaide, Australia April 2011

©Copyright 2011 Hyukjin LEE All Rights Reserved

Typeset in $\mathbb{E}_{E} X 2_{\varepsilon}$ Hyukjin LEE

Abstract

Random access schemes have used advanced capabilities of the physical layer to achieve reliable data transmissions over wireless communication channels. These capabilities include *multichannel communication* and *multipacket reception*. Incorporating the advanced capabilities into the access schemes, as a cross-layer design, is a challenging task because a more sophisticated approach is required to interface the physical layer and the medium access control (MAC) layer.

This thesis presents development of research into the efficient random access schemes that provide a better set of cross-layer design approaches by taking into account the capabilities of multichannel communication and multipacket reception. The consideration is to propose multichannel random access schemes that use a channel outage concept of fading and interference. The system performance of the proposed schemes is then analysed. By considering imperfect channel information, a random backoff access scheme that operates with a channel sensing policy is developed. The sensing and access problem is formulated as a partially observable Markov decision process, and is solved with simple and efficient heuristic approaches. A new joint random access scheme that resolves packet collisions in the time and frequency domains is then proposed to enable effective uplink access. The joint scheme cooperates with a sensing method in which users are partially aware of channel conditions. With multipacket reception (MPR) capability, a new MAC protocol is developed by adopting a distributed access mechanism to support a wireless network in which MPR capable nodes coexist with non-MPR nodes.

Statement of Originality

This work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of the thesis, when deposited in the University Library, being available for loan, photocopying, and dissemination through the library digital thesis collection, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Thesis Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed

Date

Acknowledgements

I would like to express my deepest thanks and gratitude to my principal supervisor, Assoc. Prof. Cheng-Chew Lim, and my external supervisor, Prof. Jinho Choi. I am indebted to them for all their care and support given to me throughout my doctoral candidature, including various opportunities to gain the financial support. As my thesis advisors, they have provided me constant encouragement, insightful comments, invaluable guidance and motivation which benefited not only the completion of this thesis, but also my career in a long time to come. Their valuable feedback and suggestions on this thesis are enormous. They critically read drafts of all chapters and the appendices, and gave me the benefit of their insight to improve the technical contents as well as the quality of this thesis.

This research was supported by an Australian APA scholarship and a faculty scholarship. I gratefully acknowledge this support and thank to Prof. Jinho Choi and Assoc. Prof. Cheng-Chew Lim. In addition, I am grateful to those who helped me with various aspects of conducting research and the writing of this thesis. In particular, thank to the friendly staff at the main office of the School of Electrical and Electronics Engineering for their help in regard to various matters.

I would like to thank to my parents, my grandmother, and my brother and sister for their love, support, and patience. I am very lucky to have such a supportive family and this research would not have been possible without their support and understanding. Finally, I would like to thank to my love, Rui. During my Ph.D. period, she has kept me happy and stable with her never-ending encouragement and all her sacrifice. Without her dedicated support, I would never be able to accomplish my work on target.

> Hyukjin LEE April 2011

Contents

	Abs	tract			iii
	Sta	tement	of Originality		v
	Ack	nowled	gements		vii
	List	t of Abb	previations		xxi
	List	t of Syn	nbols	X	xiii
	List	t of Pub	lications	2	XXV
1	Intr	oductio	n		1
	1.1	Resear	rch Challenges in Random Access		2
		1.1.1	Time-varying multiple channels		2
		1.1.2	Coexistence of MPR and non-MPR capabilities		3
	1.2	Contri	bution of the Thesis		4
	1.3	Thesis	Organisation	•	5
2	Bac	kgroun	d and Related Work		7
	2.1	Multic	channel Communication	•	8
		2.1.1	Orthogonal frequency division multiplexing		8
		2.1.2	Multichannel systems of OFDM	•	10
	2.2	Multip	packet Reception	•	12
		2.2.1	The multipacket reception principles		14
		2.2.2	Multipacket reception capable systems		15

	2.3	Rando	m Access Schemes	16
		2.3.1	Conventional random access schemes	17
		2.3.2	Recent random access schemes	18
	2.4	Summ	ary	23
3	Mul	tichann	el Outage-aware Access Schemes for Wireless Networks	25
	3.1	Introdu	uction	26
	3.2	Systen	n Model and Aloha-type Access Schemes	27
		3.2.1	Slotted Aloha scheme	27
		3.2.2	Persistence slotted Aloha scheme	28
	3.3	Throug	ghput Analysis	28
		3.3.1	Throughput of the slotted Aloha scheme	28
		3.3.2	Throughput of the persistence slotted Aloha scheme	29
		3.3.3	Throughput results	33
	3.4	The Pr	roposed Outage-aware Access Schemes	37
		3.4.1	Outage-aware frequency-domain backoff	37
		3.4.2	Outage-aware time-domain backoff	38
	3.5	Persist	ence Slotted Aloha Game	42
		3.5.1	A noncooperative game model	42
		3.5.2	Game-theoretic update strategies	43
		3.5.3	The convergence of the update strategies	44
	3.6	Simula	ation Results	44
		3.6.1	Parameters	45
		3.6.2	Throughput comparisons of the outage-aware schemes	45
		3.6.3	Throughput comparisons of the game-theoretic updates	47
	3.7	Conclu	asion	51
4	Mul	tichann	el Sensing and Access for Wireless Networks	53
	4.1	Introdu	uction	54
	4.2	Proble	m Formulation	55
		4.2.1	System model	55
		4.2.2	Network state, user action and reward function	55

		4.2.3	POMDP formulation	56
	4.3	Multic	channel Sensing and Access Policies	57
		4.3.1	Optimal sensing and access policies	57
		4.3.2	Sensing policies	58
		4.3.3	Access policies	59
	4.4	Simul	ation Results	61
		4.4.1	Parameters for networks and policies	61
		4.4.2	Simulation study	62
	4.5	Concl	usion	64
5	Join	t Back	off in Time and Frequency for Multichannel Wireless Networks	5
			rkov Model for Analysis	67
	5.1	Introd	uction	68
	5.2		n Description	69
	5.3	Joint I	Random Access and Myopic Sensing	70
		5.3.1	Joint random access for transmission control	70
		5.3.2	Myopic sensing for channel selection	73
	5.4	Perfor	mance Analysis	75
		5.4.1	Throughput of the joint random access scheme	75
		5.4.2	Impact of the myopic sensing on the system throughput	83
	5.5	Nume	rical and Simulation Results	85
		5.5.1	Parameters	86
		5.5.2	Throughput comparison under perfect channel conditions	86
		5.5.3	Throughput performance with access parameters	86
		5.5.4	The impact of sensing methods on throughput performance	89
	5.6	Concl	usion	91
6	A R	efined I	MAC Protocol with Multipacket Reception	93
	6.1	Introd	uction	94
	6.2	Netwo	ork Model and Medium Access Mechanisms	95
		6.2.1	Network model	95
		6.2.2	The conventional RTS/CTS mechanism for the direct-links	96

		6.2.3	The extended RTS/CTS mechanism for the up-links	97
		6.2.4	An example of the extended RTS/CTS mechanism for the up-link	
			MPR nodes.	100
	6.3	Throug	ghput Analysis	100
		6.3.1	Throughput	100
		6.3.2	Throughput of up-link and direct-link transmissions	101
		6.3.3	Throughput calculation with contention window sizes	103
		6.3.4	Throughput optimisation	105
	6.4	Numer	ical and Simulation Results	106
		6.4.1	Impacts of different MPR capabilities	107
		6.4.2	Impacts of different network sizes	110
		6.4.3	Impacts of different contention window sizes.	111
		6.4.4	Optimal throughput performance	113
	6.5	Conclu	sion	116
7	Con	clusion	and Future Work	119
	7.1	Summa	ary	119
	7.2	Future	Research	120
		7.2.1	Cross-layer probabilistic models	121
		7.2.2	Stochastic network utility maximisation	122
		7.2.3	Remark	123
				105
	Арр	endix		125
A	Kna	psack P	Problems	125
B	A M	arkov N	Model Analysis for the Backoff Scheme in IEEE 802.11 DCF	127
С	Unic	que Solu	ition and Optimisation	131
	C.1	Exister	nce of the unique solution	131
	C.2	Optima	al transmission probabilities for the maximum throughput	132
D	Netv	vork Ut	ility Maximisation	135

Bibliography

137

List of Figures

1.1	The research problems and solutions for random access with the multi-	
	channel communication and multipacket reception capabilities	5
2.1	The channel allocation of FDM.	9
2.2	The channel allocation of OFDM showing the overlapping of sub-carriers.	9
2.3	Orthogonality of subcarriers in OFDM.	11
2.4	A general model for multiuser communications and receiver multipacket	
	reception.	15
2.5	A typical multipacket reception system configuration with K users and	
	an access point in a WLAN.	16
2.6	A classification of random access schemes.	17
2.7	The frame structure model in the IEEE 802.16 OFDMA standard	20
3.1	The multichannel uplink system with N channels and K users	27
3.2	The Markov chain model for the backoff stages	30
3.3	Throughput curves with an ideal single channel	34
3.4	Throughput curves with ideal multiple channels	35
3.5	Throughput curves with various channel outage probabilities when $N = 2$.	36
3.6	The refined channel sets of K users for random channel selection when	
	$N = 10 \text{ and } h = 3. \dots $	38
3.7	The outage-aware fast retrial with the slotted Aloha scheme	39
3.8	The outage-aware fast retrial with the persistence slotted Aloha scheme.	40
3.9	Throughput curves of the proposed outage-aware access schemes com-	
	pared with the conventional access schemes when $N = 10$ and $q = 0.4$.	46

3.10	Throughput curves of the proposed outage-aware access schemes when	
	$N \in \{4, 10\}$ and $q = 0.4$.	48
3.11	The persistence probabilities and throughput curves of the gradient update	
	and the best response update when $p^{max}=0.25, \beta=0.5, q=0.2,$ and	
	${\cal N}=6$ (the solid line and the dotted line indicate the results of the gradient	
	update and the best response update, respectively).	49
3.12	Throughput curves of the slotted Aloha scheme, the persistence(P)-slotted	
	Aloha scheme, the gradient update, and the best response update accord-	
	ing to different user numbers with two channel outage probabilities when	
	$p^{max} = 0.25, \beta = 0.5, \text{ and } N = 6. \dots \dots \dots \dots \dots \dots \dots \dots \dots$	50
4.1	A Markov channel model.	58
4.2	Throughput performance of three sensing policies when $K = 2, N = 3$,	
	and $p = 1$	63
4.3	Throughput performance of different sensing policies when $K = 10$, $N =$	
	3, and $p = 1$	63
4.4	Throughput performance of different sensing policies when $N = 3$ and	
	$p = 1. \ldots $	64
4.5	Throughput of different access policies using the myopic sensing policy	
	with $N = 3$ and $\gamma = 0.5$	65
5.1	The multichannel uplink system with N channels and K users	69
5.2	The slot structure for the transmission of a packet	70
5.3	The joint random access procedure when two packets collide	72
5.4	The Markov channel model with two channel states: bad (0) and good (1).	74
5.5	The joint access Markov model showing the state transition diagram: M	
	backoff stages and H hopping stages.	76
5.6	Throughput comparison of the proposed scheme with the fast retrial scheme	
	and the truncated backoff scheme under perfect channel conditions. The	
	simulation results are represented by symbols, while the analytical results	
	are represented by solid, dashed, and dash-dotted lines for the proposed	
	scheme, the fast retrial scheme, and the truncated backoff scheme	87

5.7	Throughput performance of the proposed scheme with respect to trans-
	mission probabilities and hopping numbers under perfect channel condi-
	tions
5.8	Throughput comparison of the three access schemes when using the my-
	opic sensing and the random sensing with imperfect channel conditions 90
6.1	Co-existence of direct-link (non-MPR) nodes and up-link (MPR) nodes
	in a wireless network when the base station is equipped with α antennas $~~95$
6.2	The conventional RTS/CTS access mechanism for the direct-links 96
6.3	The extended RTS/CTS access mechanism for up-links with the MPR
	capability, α
6.4	An example of the extended RTS/CTS mechanism when coexisting up-
	link nodes and direct-link nodes in a wireless network. The base station
	(BS) has the MPR capability of receiving two simultaneous packets while
	each node does not
6.5	Transmission probabilities of the direct-links and the up-links with differ-
	ent MPR capabilities, α
6.6	Throughput with different α
6.7	Throughput comparison of the proposed and the existing MPR mecha-
	nisms with different α
6.8	Throughput with different N when $M = 5$
6.9	Throughput with different M when $N = 20$
6.10	Throughput in terms of W^u
6.11	Throughput in terms of W^d
6.12	Throughput with various W^d and W^u (solid lines represent analytical re-
	sults, while bars with dots represent simulation results)
6.13	Throughput performances of direct-links and up-links and their through-
	put fairness
B .1	A Markov chain model for the backoff window size

List of Tables

2.1	Comparison of the IEEE MAC standards for the multichannel systems	13
3.1	System parameters.	44
3.2	Optimal schemes according to the user numbers when $p = p^{max} = 0.25$	
	and $\beta=0.5$	52
4.1	System parameters	62
5.1	System parameters.	85
6.1	System parameters in IEEE 802.11g MAC specification.	107
6.2	The values of W^d and W^u for the maximum throughput (S_{max}) and the	
	optimal throughput (S_{opt})	116

List of Abbreviations

PHY	Physical Layer
MAC	Medium Access Control
MPR	Multipacket Reception
FDM	Frequency Division Multiplexing
OFDM	Orthogonal Frequency Division Multiplexing
SIMO	Single Input Multiple Output
MIMO	Multiple Input Multiple Output
RTS/CTS	Request-To-Send/Clear-To-Send
LOS	Line of Sight
TDMA	Time Division Multiple Access
CDMA	Code Division Multiple Access
FDMA	Frequency Division Multiple Access
OFDMA	Orthogonal Frequency Division Multiple Access
UL-MAP	Uplink Map
PRMA	Packet Reservation Multiple Access
CSMA/CA	Carrier Sense Multiple Access with Collision Avoidance
QoS	Quality of Service
SNR	Signal to Noise Ratio
WLAN	Wireless Local Area Network
CSI	Channel State Information

LTE	Long Term Evolution
GSM	Global System for Mobile Communications Protocol
Wi-Fi	Wireless Fidelity
WiMAX	Worldwide Interoperability for Microwave Access
POMDP	Partially Observable Markov Decision Process
NAV	Network Allocation Vector
SIFS	Short Interframe Space
DIFS	Distributed Interframe Space
ACK	Acknowledge
NUM	Network Utility Maximisation
BPSK	Binary Phase Shift Key
QPSK	Quadrature Phase Shift Key

QAM Quadrature Amplitude Modulation

List of Symbols

K	Number of users
N	Number of channels
$q_{n,i}$	Channel outage probability of user i over channel n
$p_{n,i}$	transmission probability of user i over channel n
p^{max}	Maximum transmission probability
p_c	Conditional collision probability
β	A reducing factor
S	System throughput
G	Offered channel traffic
τ	Stationary transmission probability
$P_{i,j}$	One-step transition probability from state i to state j
P(i, j m, h)	One-step transition probability from state $\{m,h\}$ to state $\{i,j\}$
π	Stationary probability of staying at state <i>i</i>
$\pi_{i,j}$	Stationary probability of staying at state $\{i, j\}$
S(t)	Network state at slot t
A(t)	Action state at slot t
r(S(t), A(t))	Reward function of $S(t)$ and $A(t)$ at slot t
$\Lambda(t)$	A belief vector at slot t
$V_t(\Lambda(t))$	Maximum expected remaining reward at slot t
$\Omega_i(t)$	Probability distribution of user i 's channel conditions at slot t

- p_t^d Packet transmission probability of direct-links
- p_t^u Packet transmission probability of up-links
- P_{tr} Probability that there is at least one packet transmission among all users
- P_s^u Conditional probability that multiple up-links are successfully established
- P_s^d Conditional probability that multiple direct-links are successfully established
- *P_{idle}* Probability of an idle transmission
- *P_{coll}* Probability of a collision
- P_{succ} Probability of a successful transmission
- T_s Time duration for a successful transmission
- T_c Time duration for a collision
- *W^d* Contention window size for direct-links
- W^u Contention window size for up-links
- *S_{opt}* Optimal throughput
- S_{max} Maximum throughput

List of Publications

- H. Lee, I. Oh, and J. Choi, "An energy and traffic aware clustering (ETC) algorithm for wireless sensor networks," in *Proc. Performance Control in Wireless Sensor Networks (A Workshop at the 2006 IFIP Networking Conference)*, Coimbra, Portugal, May 15-19, 2006, vol. 1, pp. 46-53.
- I. Oh, H. Lee, and J. Choi, "QoS routing in 2-hop wireless networks," in *Proc. Performance Control in Wireless Sensor Networks (A Workshop at the 2006 IFIP Networking Conference)*, Coimbra, Portugal, May 15-19, 2006, vol. 1, pp.14-21.
- H. Lee, C.C. Lim, and J. Choi, "Cluster-based multi-channel scheduling algorithms for ad hoc networks," in *Proc. the fourth IEEE and IFIP international conference on wireless and optical communications networks (WOCN 2007)*, Singapore, 4 July, 2007, pp. 1-5.
- H. Lee, C.C. Lim, and J. Choi, "Multichannel outage-aware MAC protocols for wireless networks," in *Proc. the 4th IEEE Conference on Industrial Electronics* and Applications (ICIEA 2009), Xian, China, May 2009, pp.1345-50.
- H. Lee, C.C. Lim, and J. Choi, "A refined MAC protocol with multipacket reception for wireless networks," *Wireless Comm. and Mobile Computing*, published online in Wiley InterScience, DOI: 10.1002/wcm.926, February 2010.
- H. Lee, C.C. Lim, and J. Choi, "Multichannel sensing and access for wireless networks," in *Proc. the 10th International Conference on Optimization and Control* (*ICOCO2010*), Guiyang, China, July 18-23 2010, pp. 393-411.
- H. Lee, C.C. Lim, and J. Choi, "Joint backoff control in time and frequency for multichannel wireless networks and its Markov model for analysis," accepted, Discrete and Continuous Dynamical Systems - Series B, 6 May 2011.