Peritoneal Adhesion Formation and Modulation

Chris Lauder

Department of Surgery
School of Medicine
Faculty of Health Sciences
University of Adelaide
December 2010
Index

Abstract

Author Statement

Chapter 1: Introduction

Chapter 2: Literature Review

Statement of authorship

Article; Abdominal Adhesion Prevention: Still a Sticky Subject?

Chapter 3: Challenge to Current Practice

Statement of authorship

Article; Abdominal adhesion prevention, time to change our everyday practice?

Chapter 4a: Experimental Work

Rat Model of adhesion formation

Statement of authorship

Article; Use of a modified chitosan – dextran gel to prevent peritoneal adhesions in a rat model.

Chapter 4b: Experimental Work

Porcine Model of adhesion formation

Statement of authorship

Article; Use of a Modified Chitosan – Dextran Gel to Prevent Peritoneal Adhesions in a Porcine Hemicolecotomy Model

Chapter 5: Conclusions

Chapter 6: Discussion

Acknowledgements
Abstract

This thesis examines the subject of peritoneal adhesion formation following surgery in the format of a Master of Surgery by publication. A comprehensive literature review examines all aspects of peritoneal adhesions from the basic science to the evidence supporting products aimed at adhesion reduction.

Subsequent experimental work utilises two animal models to form adhesions and test the ability of a novel gel product to reduce adhesion formation. The gel is a hybrid hydrogel consisting of modified chitosan and dextran. These two components are combined by a chemical cross linking reaction to form an inert gel that can be applied to the site of surgery. The gel confers several beneficial properties when used to prevent adhesions. Firstly it provides a physical separation of the injured peritoneal surfaces whilst also inhibiting the ingress of fibroblasts to the area. Secondary characteristics which promote haemostasis and inhibit bacterial growth enhance the gels adhesion reducing potential.

Initially the gel was trialled in a small animal model to test varying compositions and volumes of the gel. Two different surgical models of adhesion formation were utilised to provide a range of stimuli in the post operative period. Results from these experiments were encouraging, showing a statistically significant reduction in adhesion formation.
Following on from this initial study a large animal study was conceived to further evaluate the effectiveness of the gel in differing environments. The porcine model also allowed for a true bowel resection with anastomosis to test the safety of the gel when used in this scenario. Allied to this the gel was also trialled following adhesiolysis at the mid point of the study, while monitoring for sensitisation or toxicity to the gel. Infective complications and abscess formation proved to be a difficult hurdle to overcome in this model. As such, no significant reduction in adhesion reformation following adhesiolysis was observed. There were however some promising results with a reduction in adhesions to the wound noted with treatment at the time of laparoscopy, as well as a reduction in adhesions involving the bowel at the study end point.

The experimental work highlights the difficulties associated with peritoneal adhesion reduction. Overcoming the numerous stimuli to adhesion formation is not an easy task, and there remains no currently available treatment for the prevention of adhesions without certain caveats to its use. An effective product that could be used safely in practically all environments would certainly be a step forward in this branch of surgical research. It is plausible that a product such as the gel may be improved upon to show further benefit. However, long term studies will still be required to show a beneficial effect in long term outcome measures such as the incidence of small bowel obstruction.
Author declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Chris Lauder and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published work contained within this thesis (as listed below) resides with the copyright holders of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.
Published work contained within the thesis;

Abdominal adhesion prevention: still a sticky subject?
Lauder CI, Garcea G, Strickland A, Maddern GJ.

Abdominal adhesion prevention, time to change our everyday practice?
Lauder CI, Strickland A, Maddern GJ.

Use of a Modified Chitosan-Dextran Gel to Prevent Peritoneal Adhesions in a Rat Model.
Lauder CI, Garcea G, Strickland A, Maddern GJ.
J Surg Res. 2010 Sep 8

Signed… Date…20/12/10.....