DIAPIRS AND DIAPIRISM IN THE ADELAIDE 'GEOSYNCLINE'
SOUTH AUSTRALIA

by

TREVOR JAUNAY MOUNT, B.Sc.(Hons.) (Adelaide)

Department of Geology and Mineralogy
University of Adelaide

© April, 1975.
FRONTISPIECE -

ARKABA DIAPHRAGM; 1.4 cm = 1 km
Aerial photograph, SVY. 1081, 0246
Dept. Lands, S. Aust.
CONTENTS

Abstract ... (1)

Statement of Originality ...(ii)

Acknowledgements ...(iii)

Nomenclature ...(iii)

CHAPTER 1

INTRODUCTION

Historical Review ... 1

- The global concept of diapirs and diapirism 1
- The local concept; diapiric studies in the Adelaide 'geosyncline' 8

Scope of Studies ... 11

CHAPTER 2

Regional Setting

Geography ... 12

Geology ... 12

- **Introduction** .. 13

- The Adelaide 'geosyncline'
 - General ... 15

- The basement
 - Introduction .. 15
 - The Gawler Platform ... 15
 - Willyama Block .. 15
 - Mount Painter Province ... 15
 - Peake-Denison Inliers .. 16
 - Mount Lofty Ranges ... 16
 - Flinders Ranges .. 16

- **The Cover**
 - General ... 17

- Stratigraphy of the Cover

- Proterozoic
 - **Adelaide Supergroup**
 - **Callanna Beds**
 - General .. 20
 - Willovan Range ... 21
 - Peake-Denison Range ... 21
 - Mount Painter Province 21
 - Depot Creek area .. 23
 - Emeroo Range .. 24
 - Stuart Shelf .. 24
 - North Flinders Ranges 24
 - South Flinders Ranges 25
 - Burra area .. 25
 - Barrier Range .. 26
 - Officer Basin .. 26
Burra Group .. 27
Umberatana Group 27
Wilpena Group ... 28
Phaner zoic
Cambrian .. 29
Ordovician ... 50
Permian .. 30
Triassic .. 30
Upper Jurassic .. 30
Lower Cretaceous 31
Tertiary .. 31
Quaternary ... 31
Structural Geometry of the Cover 31
Metamorphism of the Cover 37
Igneous rocks of the cover 37

CHAPTER 3

Observations on diapirs in the Adelaide 'Geosyncline'

Introduction ... 40
Distribution of Diapirs 40
General ... 40
The pre source-bed rocks 41
The source-bed rocks 43
The overburden ... 44
Discussion ... 48
Additional points 49
Geomorphography of the Diapirs 50
Vegetation ... 52
Weathering of the Diapirs 53
General ... 53
Colour .. 54
Carbonates ... 55
Apatite .. 56
Silicified Material 57
Soils ... 57
Efflorescences ... 58
Additional points 58
Form of the Diapirs 58
Local comment .. 58
New concept ... 59
Global Comparisons 67
General ... 67
The U.S. Gulf Coast 68
Germany ... 68
Rumanian ... 69
IRAN .. 69
SVERDRUP BASIN 69
OTHER INTRUSIONS 70
CONCLUSIONS ON FORM 70
ADDITIONAL POINTS 71
DIAPIR/HOST-ROCK CONTACTS 72

INTRODUCTION 72
LOCAL COMMENT 72
NEW OBSERVATIONS 73

INTRODUCTION 73
INDIVIDUAL DIAPIRS 73
Thompson Gap 73
Arkaba ... 73
Moorowie Set 76
Respook Hill Diapir 77
Enoroma Dyke 77
Walloway Diapir 77
Greenwell Diapir 77
Nuccaleena Southern Set 77
Nuccaleena Northern Set 77
Warraweena South Diapir 78
Jeremiah Creek Diapir 79
other diapirs 79
GENERALIZATIONS 79

GLOBAL COMPARISONS 81
SALT DOMES 81
General .. 81
Sverdrup Basin 81
Rumania 82
U.S. Gulf Coast 82
Iran ... 82
Paradox Basin 83
Spain ... 83
CLASTIC DYKES 83

IGNEOUS INTRUSION 83
General .. 83
carbonatites 84
kimberlites 84
diatermes 84
damkjernite pipes 84
lamprophyre dykes 84
peridotite 84
volcanic explosion pipes 85
GLACIERS 85
OTHER INTRUSIONS
clay diapirs ... 85
shale diapir ... 85
bituminous dykes .. 85
intrusive breccias 85
pseudotachylites 85
MODEL STUDIES .. 85
GENERAL CONCLUSIONS .. 85
THE SUBSTANCE OF THE DIAPIRS—THE CORE ROCK 86
RECAPITULATION .. 86
LOCAL COMMENT .. 86
NEW CONCEPT .. 86
INTRODUCTION ... 86

TEXTURE OF THE DIAPIRC SUBSTANCE

Local comment .. 87
New observations 87
The size of the fragments 88
The shape of the fragments 88

Introduction ... 89
Local comment .. 89
New observations 89
Global comparisons 91
salt domes ... 91
anhydrite diapirs 91
mylonite .. 91
'pebble dykes' ... 92
igneous plutonic breccias 92
replacement breccias 92
rheomorphic breccias 92
intrusive breccias 92
pseudotachylites 92
kimberlite ... 92
carbonatite ... 92

Conclusions on shape 92
Additional points on shape 93

Sorting of the breccias 94
Zoning of the cores 95

ROCKS AND MINERALS OF THE CORES

The rocks .. 95
Local comment .. 96
New observations 96
General ... 96
Mappable, Non-Igneous Rafts 96
'Arkaba-Hill Beds' 97
REAPHOOK HILL DIAPIR
MOOROWE SET
ENORAÑA-ORAPARINNA DIAPIR
WALLOWAY DIAPIR
MORALANA NORTH DIAPIR
MOUNT IDE DIAPIR
ROBERTSTOWN BRECCIA ZONE
PATAWARTA WEST DIAPIR
OTHER DIAPIRS

IGNEOUS BODIES; ADDITIONAL POINTS, CONCLUSIONS
GLOBAL COMPARISONS
Iran
Sverdrup Basin
Algeria
Spain-Portugal
U.S. Gulf Coast
Paradox Basin
Donna River
New Mexico

SPECIAL FEATURES OF THE CORE ROCKS
Flow features
Local comment
New observations on flow features
Global comparisons; flow
U.S. Gulf Coast
Sverdrup Basin
Iran
Central Cuba
N.E. Mexico
Campion Region
Green
Rumania
clastic dikes
igneous intrusion
'theomorphic breccias'
igneous breccias
'intrusive breccias'
Sudbury breccias
Other structures
Flow experiments
Discussion on flow
Conclusions on flow
Evidence for Saline-Evaporites

SUBSTANCE OF THE DIAPIRS – SOME GENERAL CONCLUSIONS
CHAPTER 4

CONCLUSIONS ... 185
BIBLIOGRAPHY .. 189
APPENDIX 1: some authors to whose works one may refer for background on geological
studies in the Flinders-Mount Lofty Ranges ... 1
APPENDIX 2: some authors who have commented on the nature of the substance of the
diaps of the Flinders-Mount Lofty Ranges ... 1
APPENDIX 3: SELECTED PETROLOGICAL DESCRIPTIONS ... 2
APPENDIX 4: SELECTED PHOTOGRAPHS OF THE DIAPS OF THE FLINDERS-MOUNT LOFTY RANGES.

ILLUSTRATIONS number of the page that precedes the illustration

FIG.1 LOCALITY MAP ... 11
TABLE 1 BASEMENT MATERIAL IN DIAPS; BOTH LOCAL AND FOREIGN .. 17
FIG.2 TIME-ROCK Nomenclature of the ADelaide 'geosyncline' 17
FIG.3 DISTRIBUTION OF THE CALLANNA BEDS .. 20
FIG.4 DISTRIBUTION OF DIAPS IN THE MOUNT-LOFTY FLINDERS RANGES in pocket
FIG.5 GEOLOGY OF THE ARKABA DIAPIR (cf. FIG.8) ... in pocket
FIG.6 MAJOR STRUCTURAL DIVISIONS OF THE FLINDERS-MOUNT LOFTY RANGES 31
FIG.7 SIMPLIFIED GEOLOGICAL MAP OF THE GLEN LYEL DYKE; ARKABA DIAPIR 46
FIG.8 SIMPLIFIED STRUCTURAL MAP OF THE ARKABA DIAPIR (cf. FIG.5) 46
FIG.9 GEOLOGY OF THE MOUNT CHAMBERS GORGE REGION ... in pocket
FIG.10 GEOLOGY OF THE THOMPSON GAP DIAPIR .. in pocket
FIG.11 SIMPLIFIED GEOLOGICAL MAP OF THE THOMPSON GAP DIAPIR 46
FIG.12 ALTERNATIVE MODELS FOR THE EMBLACEMENT OF THE THOMPSON GAP DIAPIR . 46
FIG.13 SURFACE EXPRESSION OF PARTS OF THE MOOLOOLOO DIAPIR (photograph) 49
FIG.14 SURFACE EXPRESSION OF PORTION OF THE SOUTHERN LOBE, ARKABA DIAPIR (photograph) 49
FIG.15 DOLOSTONE XENOCLAST IN THE ARKABA-HILL DYKE, ARKABA DIAPIR (photograph) 49
FIG.16 DOLOSTONE XENOCLAST IN THE WARRAWEENA SOUTH DIAPIR (photograph) 52
FIG.17 DOLOSTONE XENOCLAST IN THE OWIEANDANA DIAPIR (photograph) 52
FIG.18 Nomenclature FOR THE ARKABA DIAPIR .. 49
FIG.19 Eucalyptus oleosa IN THE SOUTHERN DIAPIR, NUCALEENA NORTHERN SET (photograph) ... 52
FIG.20A PORTION OF THE SOUTHERN LOBE, ARKABA DIAPIR (photograph). 52
FIG.20B CLOSE-UP OF PART OF THE LARGE SILICEOUS KNOLL IN FIG.20A (photograph) 52
TABLE 2 SOME DATA ON THE DEPTH OF WEATHERING AT VARIOUS LOCALITIES - INCLUDING DIAPS - IN THE FLINDERS-MOUNT LOFTY RANGES ... 53
FIG.21 HOST-ROCK FAULT TRENDS IN RELATION TO DIAPIR-MARGIN TRENDS FOR THE ARKABA DIAPIR AND FOR DIAPS OF THE MOUNT CHAMBERS GORGE REGION (cf. FIGS.5,9). ... 63
FIG.22 FORM-IN-PLAN OF THE ENORAMA-ORAPIELMA DIAPIR IN RELATION TO MAJOR STRUCTURAL ELEMENTS OF THE HOST-ROCKS .. 66
FIG.23 PORTION OF THE WARRAWEENA SOUTH DIAPIR; DETAILS OF DIAPIR/HOST CONTACT, VEGETATION, AND SURFACE EXPRESSION (photograph) ... 77
TABLE 3 SIZE OF SOME XENOCLASTS IN THE LOCAL DIAPS COMPARED WITH SIMILAR FRAGMENTS IN VARIOUS TYPES OF INTRUSION ELSEWHERE ... 87
FIG.24 AUGEN OF BRECCIATED PURPLE Siltstone DRAPE by FLOW BANDS OF DOLOMITIC DIAPIRIC BRECCIA; CENTRAL ARKABA DIAPIR (photograph) .. 88
FIG.25 DOLOSTONE XENOCLAST OF CLASSIC FORM IN THE WALLWAY DIAPIR (photograph) 88
FIG.26 FLOW-LAYERED DIAPIRIC BRECCIAS IN THE NORTHERN DIAPIR, NUCAALEENA NORTHERN SET (photo.) 88
FIG.27 DIAPIRIC BRECCIAS, GREENWELL DIAPIR (photograph) 88
FIG.28 A DOLOSTONE XENOCLAST OF CLASSIC FORM AND LITHOLOGY, FROM THE NORTHERN DIAPIR, NUCAALEENA NORTHERN SET (photograph) 88
FIG.29 DIAPIRIC BRECCIAS IN THE WARRAWEEENA SOUTH DIAPIR (photograph) 88
FIG.30 BASIC-IGNEOUS AND BASEMENT OUTCROP IN THE ARKABA DIAPIR (cf. FIG.5) in pocket
TABLE 4 ROCK-TYPES FOUND AS Masses Exposed WITHIN THE DIAPIRS OF THE FLINDERS-MOUNT LOFTY RANGES; EXISTING AND NEW OBSERVATIONS 95
FIG.31 ARKABA-HILL BEDS; TYPE SECTION DESIGNATE 96
FIG.32 COMPOSITE STRATIGRAPHIC COLUMN OF THE HOST-ROCK SEQUENCE, ARKABA DIAPIR in pocket
FIG.33 MASSIVE SPECULARITE-QUARTZ REPLACEMENTS OF BEDS IN HOST-SEQUENCES ADJACENT TO THE SOUTHERN LOBE, ARKABA DIAPIR (colour photograph) 128
FIG.34 MARTITE-SPECULARITE-QUARTZ MASS, A PRESUMED XENOCLAST, POSSIBLY A METASOMATIZED METASEDI- MENT; CENTRAL SOUTHERN LOBE, ARKABA DIAPIR (photograph) 128
FIG.35 SMALL, ANGULAR XENOCLASTS OF ULTRABASIC-IGNEOUS ROCK SCATTERED ALONG FLOW BANDS IN FINE DOLOMITIC BRECCIAS; WALLWAY DIAPIR (colour photograph) 128
FIG.36 ORTHO-AMPHIBOLITE XENOCLAST OF CLASSIC FORM IN THE PATAWARTA WEST DIAPIR (photograph) 156
FIG.37 PROMINENT FLOW-LAYERING IN TYPICAL DIAPIRIC BRECCIAS, NORTHERN DYKE, ARKABA DIAPIR (colour photograph) 156
FIG.38 STROMATOLITE FROM A XENOCLAST IN THE MOUNT DESIRE DYKE, ARKABA DIAPIR (photograph) 156
TABLE 5 THE ABUNDANCE OF VARIOUS ELEMENTS IN ROCKS FROM THE LOCAL DIAPIRS COMPARED WITH VALUES FROM STRUCTURES ELSEWHERE in pocket
FIG.39 PROPOSED CLASSIFICATION OF INTRUSIONS 187
GEOLOGICAL MAP SHEETS (1:250,000) in pocket
COPLEY in pocket
PARACHILNA in pocket
ORROROO in pocket
BURRA in pocket
ADELAIDE in pocket
Diapirs and diapirism in the Adelaide Geosyncline
PhD thesis by Trev J Mount, 1975

NOTE ON PUBLISHED GEOLOGICAL MAPS

The regional geology of the study area, the Flinders- Mt Lofty Ranges, is well described by a series of 1:250,000 map sheets published by the Geological Survey of South Australia (Department of Mines, Adelaide).

Copies of these maps are included in the pocket at the back of the original thesis, but they cannot be scanned and reproduced here due to copyright restrictions.

Prior to 1975, the principal area of known diapirs was covered, from north to south, by the following geological map sheets:

Copley
1973: S. A. GEOLOGICAL ATLAS SERIES SHEET SH 54-9 ZONES 5 & 6

Parachilna
1966: S. A. GEOLOGICAL ATLAS SERIES SHEET H 54-13 ZONES 5 & 6

Orroroo
1968: S. A. GEOLOGICAL ATLAS SERIES SHEET SI 54-1 ZONES 5 & 6

Burra
1964: S. A. GEOLOGICAL ATLAS SERIES SHEET I 54-5 ZONES 5 & 6

Adelaide
1969: S. A. GEOLOGICAL ATLAS SERIES SHEET SI 54-9 ZONES 5 & 6

ljm
9 Nov 2011
ABSTRACT

Approximately 180 diapirs define a 500 km belt coincident with the Flinders-Mount Lofty Ranges. New observations on these structures are prefaced by reviews of the concept of diapirism in general and of the history and regional geological setting of the province — the Adelaide 'Geosyncline'. The proposed model for diapirism in the 'Geosyncline' is based on a detailed map of the Arkaba Diapir.

Primary control of diapir distribution in the trough can be related to fracture patterns in the pre-source-bed rocks.

Outcrop of diapiric material is distinctive over a wide area, and may be accentuated by patterns of vegetation. Weathering is deep and intense but cap-rock or solution megabreccias are absent.

Typical forms are very complex, varying from massifs, domes, dykes, and plugs, shapes that have been controlled by host-rock anisotropy, notably patterns of fracture.

Diapir/host-rock contacts are invariably abrupt and coincide with planes of weakness in the host. The contacts, despite sculpting and quarrying by invading diapiric material, can often be matched in 'continental drift' type reconstructions across the cores. Host strata are rarely brecciated or upturned against a diapir, illustrating the passive nature of the intrusions. Where such deformation occurs, it usually pre-dates diapirism and is due to faulting. Permitted intrusion under local extension in the cover, plausibly induced by regional compression, is implied. Alteration of host-rock adjacent to contacts is absent but for minor dolomitization in certain zones.

The intrusive material is an intensely mixed chaotic breccia but one which includes many well rounded and subspherical xenoclasts, from kilometres across to the finest dust. The size spectrum appears to obey Rosin's Law of Crushing. The breccias, but for rare basement and host-rock xenoclasts, involve a restricted and characteristic range of shallow-marine lithologies including terrigenous clastics, carbonates (especially dolostones), and saline evaporites. This suite may well be assigned to the Callanna Beds of Late Precambrian age.

Petrographic studies have revealed a suite of metamorphic minerals, notably carbonate, chlorite, clay, felspar, haematite, magnesioriebeckite, quartz, stilpnomelane, and talc, developed in the core rocks. All mineral components may reasonably have been derived by simple processes entirely from rocks of the type that comprise typical xenoclasts. Many reactions involved dedolomitization and/or saline evaporites. A low pressure, hypersaline, aqueous, oxidative metamorphic environment (zeolite facies) is indicated; replete with CO₂, open-system, and low temperature (150°-250°C-300°C). Affinities are with natural hydrothermal and geothermal systems.

Igneous rocks with a wide range of ages occur in the cores and include both intrusive and extrusive types, mainly basic to intermediate in character. They are essentially xenolithic but include some in situ post-diapiric intrusions. The occurrence of igneous rock is fortuitous and non-essential to diapirism.

Typical breccias have a banded fabric and other features such as the shaping, disruption, mixing, and alignment of xenoclasts that must be attributed to flow. Movement was slow, rather passive, and plug-like, described by non-Newtonian, Andradean law.

Mobility of the source material, rather than factors such as density, was paramount to diapirism. The mobility is explained by the former presence of saline evaporites in the interstices of the breccias and by appeal to the concepts of dilatancy, fluidization, and rheology. The overburden was relatively brittle, its weight the prime driving force to the intrusions. Emplacement was at least partly syn-tectonic, linked to pulses of deformation of the cover, as well as to basement evolution in the 'Geosyncline'. Decollement at the source layer is implied. The host was not explosively breached in the manner of a diatreme; the diapirs are not carbonatites.

Although further problems have been outlined, a study of diapirs in the Flinders-Mount Lofty Ranges has clarified many aspects of the global theory. The essence of the new observations is embodied in a proposed classification of intrusions that includes diapirs.
This thesis contains no material which has been accepted for the award of any other degree or diploma in any University, nor, to the best of my knowledge and belief, does it contain any material previously published or written by another person, except where due reference and acknowledgement is made in the text.
ACKNOWLEDGEMENTS

A special expression of gratitude is due to Dr. Brian Daily who initiated this project and gave every possible assistance towards its completion.

The participation of other members of the Department of Geology and Mineralogy in some stages of research and presentation is recognized. People outside the Department who have assisted include Drs. T. Deans, J. Ferguson, N. Sobolev, and I.C.F. Stewart, Messrs. R.P. Coats, and D.C. Nicholls, and the family Ireland of Hawker. The services of the Barr Smith Library (Miss C. Walker) were invaluable. Typing is by Helen Ball, the final copy by Brenda Froiland.

The study was financed by the University of Adelaide, a Commonwealth Postgraduate Award, and a research grant from the Electrolytic Zinc Company of Australasia Limited.

NOMENCLATURE

Physical units and their abbreviations conform to the S.I. system (Chiswell & Grigg, 1971). The preferred bedding classification is that of McKee and Weir (1953, p.383), while the grade scale of Folk (1968, p.25), after Wentworth (1922), has been the most applicable. Sandstone classification is after Pettijohn (1957, p.291). For a classification of fine-grained fragmental rocks that of Dunbar and Rodgers (1957, p.166), after Ingram (1954), has been adopted. Igneous rock terminology is that of Morgan (1964). Rock colour is related to the chart of Goddard et al. (1951). CAPITALIZED map titles define a 1:250,000 sheet (10° lat., 15° long.), of the Department of Mines, Geological Survey of South Australia; lower-case titles refer to their 1:63,560 sheets (15° Int., 30° long.). The spelling Romanian is used in preference to Roumania or Romania. A distinction is drawn between the mineral dolomite and the rock, dolostone.

Attention is drawn to the following diapir nomenclature: a rock-mass from which the material of a diapir appears to have largely derived is loosely referred to as the source-rock in the general case, or the source-beds where this is thought to have been a horizontal, laterally extensive lens of sedimentary material. More than one horizon, at various stratigraphic levels, may have contributed to the diapir(s) and not all of any layer may have been donated. All material above a given source bed is referred to as its overburden. The overburden may be termed the host-rock to diapirs derived by migration into it of source-rock material. The term host-rock replaces rim-rock, prevalent in the literature but often thought to be (geometrically) inappropriate. It contrasts with the core-rock of the actual diapir. Tectonic nomenclature recognizes a sedimentary cover and a crystalline basement as typical of basins or troughs of extensive sedimentation. It is important to note that in diapiric provinces the 'overburden' is not synonymous with the 'cover' but that it is included within it, underlain by a source-bed(s) and, potentially, under the (or under the oldest) source-bed by a portion of the cover that cannot be 'overburden' but forms, with the basement, a substrate to the (or to the lowest) source-bed. Where source material was formerly an inactive diapir then it is said to have been reactivated.

The distinction between material that has itself been 'intruded into' and material that has been 'intruded by' another body is emphasized; the phrase 'the intruded sequence' is ambiguous.

The simplicity of the term 'diapir' appears preferable to the 'diapiric structure' - used so frequently in the literature.

Again, the term raft is often applied locally to what are thought to be discontinuous masses of rock, 'out of stratigraphic context' and apparently 'floating' in a matrix of finer breccia in the core-rock of the diapirs. In this work, however, although 'raft' may be used and especially in quote, the synonyms xenolith, xenoclast, inclusions, or block may be variously utilized, particularly where analogy with igneous intrusives needs to be emphasized.

It is intended that Fig. 4 be of general reference use throughout the text and thus is not always cited in detail.

1 The definition of a diapir is discussed in Chapters 1 and 4.