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The Jacobian for solving water distribution system equations

with the Darcy-Weisbach head loss model

Angus Simpson∗, M.ASCE Sylvan Elhay†

November 18, 2014

Abstract

The widely used Todini and Pilati method for solving the equations which model water

distribution systems was originally developed for pipes in which the head loss is modeled

by the Hazen-Williams formula. The friction factors in this formula are independent of flow.

Rossman’s popular program EPANET implements elements of the Todini and Pilati algorithm,

but in the case where the Darcy-Weisbach head loss formula is used, does not take into account

the dependence of the friction factors on Reynolds number, and therefore flow, in computing

the Jacobian. In this Technical Note we present the correct Jacobian matrix formulae which

must be used in order to fully account for the friction factor’s dependence on flow when the

Todini and Pilati method is applied with Darcy-Weisbach head loss formula. With the correct

Jacobian matrix the Todini and Pilati implementation of Newton’s method has its normally

quadratic convergence restored.

The new formulae are demonstrated with an illustrative example.

INTRODUCTION

This paper considers a new way to deal with the Darcy-Weisbach friction factor in computing

the Jacobian matrix when solving the pipe network equations for a water distribution system. In

their paper, Todini & Pilati (1988) gave consideration only to the head loss equation of Hazen and

Williams, where the Hazen-Williams coefficient is assumed to be independent of flow. Rossman

(2000) in his EPANET program, implemented elements of the Todini and Pilati algorithm, but also

provided a choice of head loss equations for the solution of flow and pressure in water distribution
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systems. In particular, he incorporated the Darcy-Weisbach formula where the friction factor, f ,

is dependent on the Reynolds number and the relative roughness. However, while solving the pipe

network equations in which the head loss is modeled by the Darcy-Weisbach formula, Rossman

(2000) treated the friction factors as independent of flow when computing the Jacobian. In this

paper, we give the correct formulae required to take into account this variation of friction factor

with flow in the computation of the Jacobian matrix. Using the correct Jacobian for this case

restores the normally quadratic convergence of the method.

Results from the application of the new technique to an example network shows a smaller final

error for the same number of iterations.

THE DARCY-WEISBACH PIPE HEAD LOSS EQUATION

We consider a water distribution network which has np pipes, nj variable-head nodes and

nf fixed-head nodes. The head loss in all pipes in a network is assumed to be modeled by the

Darcy-Weisbach formula so the relation between the heads at two ends of a pipe and the flow is

Hi −Hk =


rjQj , for laminar flow,

rjQj |Qj |n−1, for turbulent flow
(1)

where Qj is the flow in pipe pj , Hi is the HGL or head at node i and n = 2. The pipe resistance

factors are

rj =


128ν
πg

Lj
D4
j
, for laminar flow rj is independent of Qj ,

8
π2g

Ljfj
D5
j
, for turbulent flow fj depends on Qj .

(2)

where ν is the kinematic viscosity of water at a given temperature, g is the gravitational acceleration

constant, Lj is the pipe length, Dj is the pipe diameter and fj is the Darcy-Weisbach friction factor.

For turbulent flow the friction factor for each pipe depends on both the relative roughness,

εj/Dj , which is the ratio of the pipe roughness εj to the diameter, and the Reynolds number, R,

which is defined as R = V D/ν, where V is the average fluid velocity. We also define a diagonal

matrix, G = G(q, r) ∈ Rnp×np by

[G]jj =


rj , for laminar flow

rj |Qj |n−1, for turbulent flow
, j = 1, 2, . . . , np, (3)

where we define the vectors q = (Q1, Q2, . . . , Qnp)T of the unknown flows and r = (r1, r2, . . . , rnp)T

of the resistance factors.
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THE NETWORK EQUATIONS

The topological matrices, A1 ∈ Rnp×nj , the unknown head node incidence matrix, and A2 ∈

Rnp×nf , the fixed head node incidence matrix are defined by

[A1,2]ji =


−1 if the flow in pipe j enters the node i,

0 if pipe j does not connect to the node i,

1 if the flow in pipe j leaves the node i.

We also define O as an nj square, zero matrix and o as an np × nj zero matrix.

For the nodes we define the vectors:

h = (H1, H2, . . . ,Hnj
)T , the unknown heads; dm ∈ Rnj×1, the known nodal demands; and e` ∈

Rnf×1, the fixed head elevations.

The energy and continuity equations describing the flows and nodal heads in a water distribution

system are, expressed in matrix form,

f(x) =

 G −A1

−AT
1 O

 q

h

−
A2e`

dm

 = o (4)

if we denote by x the np + nj dimensional real vector of unknown flows and heads in the system

as x = (qT ,hT )T .

The matrix in (4) has important structural properties: it is always symmetric, it is sparse

whenever the network is large, the (1,1) block is diagonal and the (2,2) block is zero. These

properties give an advantage when designing algorithms to solve the system of equations in (4).

The matrix A1 is constant but G depends on the unknown pipe flows in q (except for the case

of laminar flows) and this makes the system in (4) non–linear.

Systems of non-linear equations f(x) = 0 such as those in (4) are frequently solved by Newton’s

iterative method

J(x(m))(x(m+1) − x(m)) = −f(x(m)), x(0) prescribed , m = 0, 1, 2, . . . (5)

where J is the Jacobian of f and m is the iteration number. For f(x), the vector function of the

vector variable x in (4), we denote by ∇xf the gradient of f with respect to x. In view of the fact

that A1, A2e` and dm are constant with respect to q and h, the Jacobian for the system (4) is

J =

∇q (Gq) −A1

−AT
1 O

 . (6)
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NUMERICAL CONSIDERATIONS

The calculations in this paper have been performed using two programs: one written by the

authors in Matlab (Mathworks 2008), and EPANET V2.00.12 written by L. Rossman. Both

codes use IEEE standard double precision arithmetic with precision, measured by machine epsilon

(Forsythe & Moler 1967) εmach ≈ 2 × 10−16. The EPANET program was modified in only three

ways:

(a) by replacing those constants in the code which are given to a smaller number of decimal
places by the same constants to full 20 decimal digit accuracy, as shown below,

#define A1 3.14159265358979323850e+03 /* 1000*PI */

#define A2 1.57079632679489661930e+03 /* 500*PI */

#define A3 5.02654824574366918160e+01 /* 16*PI */

#define A4 6.28318530717958647700e+00 /* 2*PI */

#define A8 4.61841319859066668690e+00 /* 5.74*(PI/4)^.9 */

#define A9 -8.68588963806503655300e-01 /* -2/ln(10) */

#define AA -1.56346013485170657950e+00 /* -2*.9*2/ln(10) */

#define AB 3.28895476345399058690e-03 /* 5.74/(4000^.9) */

#define AC -5.14214965799093883760e-03 /* AA*AB */

(b) by outputting certain intermediate quantities which are normally not available to the user.

(c) by allowing stopping tolerances smaller than 10−5 (the current built–in minimum stopping
tolerance) to be set by the user. This was done to allow better comparisons of the accuracy
between the authors’ Matlab code and EPANET.

To verify our implementation, we configured our Matlab code to mirror the convergence cri-

terion and the Jacobian calculation used in EPANET. The Matlab code took the same number

of iterations (±1) as EPANET in these tests. In addition, the solutions obtained by the Matlab

and EPANET codes agreed in norm to better than 10δstop in all cases and the residuals were all

better that δstop. The Matlab code, when configured to mirror the EPANET calculations produced

results at each step which agree with those of EPANET to better than 13 decimals of accuracy.

The iterations were terminated using the same criterion as is applied in EPANET when there

are no pumps or valves (the case considered in this paper): terminate execution when the relative

change in flow

φ
(
q(m+1)

)
=

np∑
k=1

∣∣∣Q(m+1)
k −Q(m)

k

∣∣∣/ np∑
k=1

∣∣∣Q(m+1)
k

∣∣∣ ≤ δstop, (7)

a predetermined stopping tolerance.

THE JACOBIAN FOR THE DARCY-WEISBACH FORMULATION
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We now consider the resistance factors for the Darcy-Weisbach head loss model in more detail.

The Reynolds number R may be expressed in terms of discharge as R = 4|Q|/(πνD) and

falls into the three ranges of interest shown in the first column of Table 1 (although many would

consider a Reynolds number of 2300 as the limit of the laminar flow region, this choice was made to

maintain consistency with EPANET). For these three ranges of R we have the following formulae

for friction factors, resistance factors and terms on the diagonal of the matrix G:

Case 1: Laminar flow R ≤ 2000 For this range of R the Hagen-Poiseuille formula (Bhave

1991) f = 16πνD/|Q| is applicable and so the term on the diagonal of the matrix G in (3) is just

[G]jj = rj . Importantly, this term does not depend on the pipe flow.

Case 2: Transitional flow 2000 < R < 4000 We use Dunlop’s interpolating cubic splines

(Dunlop 1991) (expressed in a slightly different form) in order to ensure a smooth transition of

the friction factors from laminar to turbulent flow in this Reynolds number range. The following

representation gives exactly the same Dunlop cubic spline approximation as that used in EPANET

and which is discussed on pages 189-190 in the EPANET User’s Manual (Rossman 2000): f =∑3
k=0 (αk + βk/θ) η

k where αk, βk are defined in Table 2, and where we have introduced the new

variables η = R/2000,

θ =
ε

3.7D
+

5.74

R9/10
=
bε

D
+ c

∣∣∣∣DQ
∣∣∣∣9/10 , θ̂ =

bε

D
+

5.74

40009/10
. (8)

where b = 1/3.7 and c = 5.74 (πν/4)
9/10

. Note that η, θ, αk and βk all depend on ε and D and so

are different for each pipe. With this representation the term on the diagonal of the matrix G in

(3) is that given in the third column of Table 3 for this case.

Case 3: Turbulent flow R ≥ 4000 The Darcy-Weisbach friction factor can be estimated by

the Swamee and Jain approximation (Swamee & Jain 1976) to the Colebrook–White formula:

f =
0.25

[log10 (ε/3.7D + 5.74/R0.9)]
2 =

ln2 10

4 ln2 θ
(9)

with θ defined in (8). The term on the diagonal of the matrix G in (3) is therefore that given in

the third column of Table 3 for this case.

In both Cases 2 and 3, rj depends on the flow. Table 3 summarizes the formulae for the

diagonal elements of the matrix G for Cases 1,2 and 3.
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INCLUDING THE FLOW DEPENDENCE OF FRICTION FACTORS

Todini & Pilati (1988) use the Hazen-Williams head loss formulae and so in the formulation

of the Newton method to solve (4), the resistance factors rj are treated as constant with respect

to the flows Qj . EPANET, (Rossman 2000) which implements the Todini-Pilati method for the

Hazen-Williams head loss model allows also for the Darcy-Weisbach head loss formula. As noted

earlier the Darcy-Weisbach friction formula for turbulent flow is dependent on the fluid Reynolds

number which itself depends on the unknown flow. When using the Darcy-Weisbach head loss

formula, EPANET appears to use a Jacobian with a (1,1) block which is nG. Using this value

for the (1,1) block in the Jacobian does not correctly account for the dependence of the friction

factors on flow for this case and this means it is no longer a true Newton method. Nevertheless,

the iteration can still give the correct solution, if it converges, but at a linear convergence rate

rather than the quadratic rate that is in general characteristic of the Newton method (Isaacson

& Keller 1966). In fact, ignoring the dependence of the friction factors on flow in computing the

Jacobian is roughly equivalent to using a variation of the Newton method called the chord method

(Isaacson & Keller 1966) where an approximation to the true Jacobian is used in place of the exact

form.

To implement a true Newton method either as it stands or as set out by Todini and Pilati but

with the Darcy-Weisbach head loss formula for turbulent flow one needs to add terms to the (1,1)

block, nG, of the Jacobian which account for the dependence of the resistance factors on the flows.

We now derive the correct terms for the Jacobian when head loss is modeled by the Darcy-

Weisbach formula and demonstrate the quadratic convergence which is restored when these terms

are included.

In computing the Jacobian of f(x) in (4) we need the differential of the quantity Gq. From

(3) we see that the vector Gq has elements given by [Gq]j = rjQj for laminar flow and [Gq]j =

rjQj |Qj | for turbulent flow. Thus, (dropping subscripts where there is no ambiguity and remem-

bering that the resistance factor r for laminar flow is independent of flow) the differential, with
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respect to Q, of an element of Gq is

∂[Gq]j
∂Q

=


∂
∂QrQ = r laminar flow

∂
∂QrQ|Q| = 2r|Q|+ ∂r

∂QQ|Q| turbulent flow
.

Thus, for turbulent flow, a term ∂r
∂QQ|Q| must be added to the diagonal element of the (1,1)

block, nG, of the Hazen-Williams Jacobian. The Darcy-Weisbach Jacobian matrix (6) now has

∇q(Gq) = F where the np diagonal terms in F include the correction term. The linear system

which must be solved at each iteration of the Newton method is now seen to be F −A1

−AT
1 O

 q(m+1)

h(m+1)

 =

F −G o

oT O

 q(m)

h(m)

+

A2e`

dm

 (10)

and the block equations of this system are

Fq(m+1) −A1h
(m+1) = (F −G)q(m) + A2e`, (11)

−AT
1 q

(m+1) = dm. (12)

We now derive the terms for the elements of F for the three ranges of Reynolds numbers and

display them in Table 4.

Case 1: Laminar flow R ≤ 2000 For this range of R we have ∂r
∂Q = 0 and so [F ]jj = [G]jj .

Case 2: Transitional flow 2000 < R < 4000 Denote tk = (αk + βk/θ) η
k. The differential of

tk with respect to Q is

∂tk
∂Q

=
1

Q

{
9c

10

βk
θ2

∣∣∣∣DQ
∣∣∣∣9/10 + k (αk + βk/θ)

}
ηk

and so

∂r

∂Q
Q|Q| =

(
8

π2g

)
L

D5
|Q|

3∑
k=0

{
9c

10

βk
θ2

∣∣∣∣DQ
∣∣∣∣9/10 + k (αk + βk/θ)

}
ηk (13)

from which the term shown in Table 4 follows.

Case 3: Turbulent flow R ≥ 4000 Using (9) and (2) we get

∂r

∂Q
=

(
18c ln2 10

5π2g

)
L

D5

1

Q

1

θ ln3 θ

∣∣∣∣DQ
∣∣∣∣9/10

and again the term shown in Table 4 follows.

Let us denote the nj–square matrix (Schur complement) V = AT
1 F
−1A1. Multiplying (11) on

the left by −AT
1 F
−1, using (12) and rearranging gives

h(m+1) = V −1
[
−dm + AT

1 F
−1 ((G− F )q(m) −A2e`

)]
(14)
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which leads, using (11) again, to

q(m+1) = q(m) + F−1A1h
(m+1) − F−1

(
Gq(m) −A2e`

)
. (15)

These equations, with F as defined in Table 4, are the Todini-Pilati implementation of the true

Newton method with the correct Jacobian where the Darcy-Weisbach head loss model is used. We

now demonstrate the effect of including the correction terms on an illustrative example.

Example 1 The network shown in Figure 1 has pipe and node parameters as shown in Table 5.

In addition, columns five and nine of Table 5 show the steady state flows as determined by the

Todini-Pilati method. All pipes have head loss modeled by the Darcy-Weisbach formula.

In Table 6 we show the convergence data for two runs of the Todini-Pilati method as described

by equations (14) and (15): the first using EPANET with the (uncorrected) Jacobian with nG as

the (1,1) block and updating of the r factors after each iteration, and the second using the full

derivative terms shown Table 4 on the diagonal of the (corrected) Jacobian.

Column two of Table 6 shows the EPANET error measure φu(q), the relative flow measured by

(7), for the uncorrected Jacobian and the third column shows error measure φc(q), for the corrected

Jacobian.

With a stopping tolerance of δstop = 10−6 EPANET terminates after six iterations with an

accuracy of 3.6× 10−8 while using the corrected Jacobian obtains an accuracy of 1.3× 10−14.

Quadratic convergence is often characterized by an approximate (asymptotic) doubling of the

number of correct decimals as the solution is approached. We see that the reduction in errors shown

in Table 6 is consistent with linear convergence for the case of flow independent friction factors

(column two) and is consistent with quadratic convergence for the case of flow dependent friction

factors (column three).

CONCLUSIONS

A method for the computation of the Jacobian matrix in the case where the head loss is modeled

by the Darcy-Weisbach formula is proposed. The new method is based on taking full account of the

variation of the Darcy-Weisbach friction factor with flow when computing the Jacobian elements.
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The method is demonstrated on an example network and shows an improvement over the

accuracy obtained when not fully accounting for the dependence of the friction factor on flow in

the computation of the Jacobian.
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NOMENCLATURE

A1 = unknown head node incidence matrix

A2 = fixed head node incidence matrix
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b = 1/3.7

c = 5.74 (πν/4)
9/10

Dj = diameter of pipe j

dm = vector of nodal demands

e` = vector of fixed head elevations

F = diagonal matrix with elements defined by Table 4

fj = Darcy-Weisbach friction factor for pipe j

f(x) = function for the energy and continuity equations

G = diagonal matrix with elements rj or rj |Qj |n−1

g = gravitational acceleration constant

Hi = head at node i

h = (H1, H2, . . . ,Hnj
)T = vector of heads

J = Jacobian matrix

k = counter variable

Lj = length of pipe j

n = head loss equation exponent

nf = number of fixed–head nodes

nj = number of variable–head nodes

np = number of pipes

O = nj–square zero matrix

o = np × nj zero matrix

pj = pipe j

Qj = flow in pipe j

q = (Q1, Q2, . . . , Qnp
)T = vector of flows

R = Reynolds number for pipe j, R = VjDj/ν

r = (r1, r2, . . . , rnp
)T = vector of resistance factors

rj = resistance factor for pipe j

tk = quantity defined as (αk + βk/θ) η
k

V = AT
1 F
−1A1 = matrix for Jacobian correction method
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Vj = average fluid velocity for pipe j

x =

 q

h


αjk = interpolating spline coefficient

βjk = interpolating spline coefficient

δstop = EPANET stopping tolerance

εj = roughness height of pipe j

εmach = machine epsilon

η = R/2000

ν = kinematic viscosity of water

θ = parameter defined in (8)

θ̂ = parameter defined in (8)

φ = EPANET error measure, defined in (7)
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TABLES AND FIGURES

Table 1: The three ranges of Reynolds numbers of interest, their corresponding resistance factor
formulae and sources.

Case Range of R Resistance factor r Formula source

1
R ≤ 2000

Laminar flow
128ν
πg

L
D4 Hagen-Poiseuille

2
2000 < R < 4000
Transitional flow

(
8
π2g

)
L
D5

∑3
k=0 (αk + βk/θ) η

k Dunlop αk, βk as in
Table 2

3
R ≥ 4000

Turbulent flow

(
2 ln2 10
π2g

)
L
D5

1
ln2 θ

Swamee-Jain (see
(9))

Table 2: Coefficients of the cubic interpolating spline defining the friction factor for 2000 < R <
4000. The constants are τ = 0.00514215 and ξ = −0.86859.

k αk βk

0 5/(ξ2 ln2 θ̂) τ/(ξ3 ln3 θ̂)

1 0.128− 12/(ξ2 ln2 θ̂) −5τ/(2ξ3 ln3 θ̂)

2 −0.128 + 9/(ξ2 ln2 θ̂) 2τ/(ξ3 ln3 θ̂)

3 0.032− 2/(ξ2 ln2 θ̂) −τ/(2ξ3 ln3 θ̂)

Table 3: The terms on the diagonal of the matrix G for Darcy-Weisbach head loss model.
Case Range of R Terms on the diagonal of G

1 R ≤ 2000
(

128ν
πg

)
L
D4

2 2000 < R < 4000 |Q|
(

8
π2g

)
L
D5

∑3
k=0 (αk + βk/θ) η

k

3 R ≥ 4000 |Q|
(

2 ln2 10
π2g

)
L
D5

1
ln2 θ
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Table 4: The diagonal terms of the matrix F , the Jacobian, for Darcy-Weisbach head loss model
Case Range of R The diagonal terms in F

1∗ R ≤ 2000
(

128ν
πg

)
L
D4

2 2000 < R < 4000
(

8
π2g

)
L
D5 |Q|

∑3
k=0

{
9c
10
βk

θ2

∣∣∣DQ ∣∣∣9/10 + (2 + k) (αk + βk/θ)

}
ηk

3 R ≥ 4000
(

2 ln2 10
π2g

)
L
D5

|Q|
ln2 θ

(
2 +

(
9c

5θ ln θ

) ∣∣∣DQ ∣∣∣9/10)
* Note that for Case 1 the diagonal term in F is constant and is independent of Q

Table 5: Pipe and node parameters and the steady state solution for the network shown in Figure
1.

Pipe ID L(m) D(mm) ε(mm) Flow (m3/s) Node ID dm(m3/s) e`(m) Head (m)

Pipe 1 400 200 0.30 0.12665 Tank 1 - 240 240

Pipe 2 100 300 0.30 0.49335 Node 2 0.050 - 203.403

Pipe 3 500 200 0.30 0.03123 Node 3 0.030 - 200.509

Pipe 4 700 300 0.30 0.04542 Node 4 0.020 - 223.588

Pipe 5 700 200 0.30 0.00123 Node 5 0.030 - 202.360

Pipe 6 400 300 0.30 0.27959 Node 6 0 - 200.499

Pipe 7 400 250 0.30 0.19377 Node 7 0.080 - 197.048

Pipe 8 100 300 0.30 0.16472 Node 8 0.090 - 191.818

Pipe 9 900 300 0.30 0.13029 Node 9 0.090 - 191.058

Pipe 10 500 300 0.30 0.16594 Node 10 0.090 - 118.384

Pipe 11 900 300 0.30 0.09123 Node 11 0.080 - 139.416

Pipe 12 700 100 0.30 0.02254 Node 12 0.060 - 188.456

Pipe 12 700 100 0.30 0.02254

Pipe 13 100 200 0.30 0.03590

Pipe 14 1000 200 0.30 0.09562

Pipe 15 300 300 0.30 0.11185

Pipe 16 800 200 0.30 -0.06746

Pipe 17 700 150 0.30 -0.05185

Table 6: Convergence data for the application to the network of Figure 1 of the Todini-Pilati
method with uncorrected (u) Jacobian (from EPANET) and from the authors’ Matlab code with
corrected Jacobian (c).

i φu(q(i)) φc(q(i))

1 9.0e-001 9.0e-001

2 8.1e-002 8.2e-002

3 4.6e-003 5.5e-003

4 7.9e-005 2.3e-005

5 1.5e-006 1.0e-009

6 3.6e-008 1.3e-014
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Figure 1: The network discussed in Example 1. It has np = 17, nj = 11 and nf = 1.
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