CORTICOSTEROID BINDING GLOBULIN:

HIGH RESOLUTION SEPARATION OF PLASMA GLYCAN ISOFORMS FROM PREGNANT AND COMBINED ORAL CONTRACEPTIVE PILL TAKING WOMEN

> This thesis is submitted for award of the degree of Master of Medical Science by Miss Elizabeth Mitchell February 2007

CONTENTS

DECLARATION	i
ACKNOWLEDGMENTS	ii
ABSTRACT	iii-iv

CHAPTER 1:

1.1	BACKGROUND		1
	1.1.1	Introduction	1
	1.1.2	Glycobiology: Protein Glycosylation	2
		1.1.2a Corticosteroid binding globulin (CBG)	3
		1.1.2b CBG glycosylation	5
	1.1.3	The Hypothalamic-pituitary adrenal (HPA) axis cortisol and CBG	6
		1.1.3a The HPA axis and Cortisol	6
		1.1.3b The HPA axis, pregnancy and CBG	7
		1.1.3c CBG genetics and biosynthesis	9

	1.1.4	Intrinsic and Extrinsic physiological factors influencing CBG	10
		levels and/or glycosylation	
		1.1.4a Pregnancy induced CBG changes	10
		1.1.4b Physiology and possible function(s) of CAN-CBG	12
		1.1.4c CAN-CBG binding	14
	1.1.5	The Oral Contraceptive Pill (OCP) and CBG	15
1.2	INVES	STIGATIVE RATIONALE	16
	1.2.1	Glycoprotein characterisation methods and applications to CBG	16
		analysis	
		1.2.1a General glycoprotein analytical methods	16
		1.2.1b CBG analysis: SDS-PAGE and IEF	17
		1.2.1c Two- dimension electrophoresis (2D-E)	18
		1.2.1d 2D-E analysis of plasma CBG during pregnancy and OCP	20
		use	
	1.2.2	CBG analysis: SDS-PAGE and IEF	
	1.2.3	Two dimension electrophoresis (2D-E)	18
	1.2.4	2D-E analysis of plasma CBG during pregnancy and OCP use	20
1.3	НҮРО	THESES	21
1.4	AIMS		21

2.1	SUBJI	ECTS		22
2.2	MATE	MATERIALS		24
	2.2.1	Chemi	cals and Apparatus	24
		2.2.1a	Isoelectric Focussing (IEF):	24
		2.2.1b	SDS-PAGE:	26
		2.2.1c	Western blotting:	29
		2.2.1d	Affinity chromatography: Concanavalin A:	30
2.3	METH	IODS		31
	2.3.1	Plasmo	a preparation	31
	2.3.2	Two D	imensional Electrophoresis (2D-E): sample preparation,	32
		IEF an	nd SDS-PAGE	
		2.3.2a	TCA precipitation: Pilot samples	32
		2.3.2b	TCA precipitation: direct 2D-E plasma samples	33
		2.3.2c	Affinity chromatography protocol	34
		2.3.2d	TCA Precipitation: Affinity chromatography samples)	35
		2.3.2e	2D-E First Dimension: Strip rehydration SDS-PAGE	35
			PAGE	
		2.3.2f	2D-E first Dimension: Strip rehydration SDS-PAGE	36
			PAGE revised protocol	
		2.3.2g	2D-E Second Dimension: SDS-PAGE	38

2.3.3	Western Blotting	38
	2.3.3a Electroblotting	38
	2.3.3b Blot development	39
2.3.4	Ovalbumin Mass Spectrometry (MS) analysis	40
2.3.5	Data analysis: Main study data	40
2.3.6	Data analysis: Pilot study data	41

3.1	INTRO	DUCTION	42
	3.1.1 C	CBG heterogeneity	43
3.2	RESU	LTS Part A: Pilot experiments	44
	3.2.1	Experimental rationale	44
	3.2.2	Experimental protocol	45
	3.2.2a	Data analysis	46
	3.2.3	High resolution separation of CBG glycoforms in pregnancy plasma	46
	3.2.4	Limitations of experimental methods and analysis	47
	3.2.5	Experimental design improvements	49
3.3	REVIS	SED DATA ANALYSIS	50
	3.3.1	Internal standards (IS)	50
		3.3.1a Experimental Rationale	50
		3.3.1b Internal standard: 14.3.3	50
		3.3.1c Internal standard: ovalbumin	51
		3.3.1d Ovalbumin properties	51
	3.3.2	Isoelectric point (pI) calculation and estimation: OVA isoform pI	53
		3.3.2a Isoelectric point (pI)	53
		3.3.2b OVA Isoelectric point (pI) estimation	55

	3.3.3	2-D image digitisation and computer analysis	57
		3.3.3a Summary	57
		3.3.3b 2-D image computer analysis: qualitative analysis	58
		3.3.3c 2-D image computer analysis: quantitative analysis	59
3.4	RESU	LTS part B: Serial sample data analysis	61
	3.4.1	2D-E analysis of CBG in pregnancy plasma	61
		3.4.1a Experimental Rationale	62
		3.4.1b Sample preparation	63
	3.4.2	<i>The CBG 2D-E-E profile is altered in pregnancy compared with control</i>	63
		3.4.2a CBG 2D profile alternation in early and mid to late pregnancy	65
	3.4.3	Comparison of CBG 2D-E profiles from OCP with control samples	67
		3.4.3a Experimental Rationale	67
		3.4.3b The OCP causes a change in plasma CBG visible using 2D-E and western blotting	67
3.5	DISCU	USSION	69
	3.5.1	2D-E demonstrates a difference in CBG glycoforms between pregnancy and control plasma	69
	3.5.2	2D-E demonstrates a difference in CBG glycoforms between normal women and women on the OCP	70
	3.5.3	2D-E as a means of studying plasma proteins	70
3.6	CONC	CLUSIONS	73

4.1	AFFIN	NITY CHROMATOGRAPHY	74
	4.1.1	Introduction Concanavalin A	74
4.2	RESU	LTS Part C Affinity chromatography	76
	4.2.1	affinity chromatographic analysis of selected serial samples	76
4.3	ONE I	DIMENSIONAL ELECTROPHORESIS (1D-E)	77
	4.3.1	Experimental rationale	77
	4.3.2	Preliminary testing	77
	4.3.3	The ratio of CAN-CBG to CAB-CBG in human plasma	79
4.4	TWO	DIMENSIONAL ELECTROPHORESIS (2D-E)	80
	4.4.1	Experimental Rationale	80
	4.4.2	Con A sample preparation for 2D-E	80
	4.4.3	Con A 2D-E qualitative analysis	81
	4.4.4	Con A 2D-E quantitative analysis	82
4.5	CONC	CLUSIONS	83-4

5.1 DISCUSSION: SIGNIFICANCE OF STUDY FINDINGS	85
5.1.1 Pregnancy and the OCP alter the CBG 2D-E profile	85
5.1.1a CBG glycoforms specific to pregnancy vary with gestational age	85
5.1.1b Pregnancy associated physiology related to CBG glycosylation changes	88
5.1.1c The OCP causes CBG glycosylation changes	90
5.2 CONCLUSIONS AND FUTURE CONSIDERATIONS	91-3
REFERENCES	94-103
APPENDIX 1	
ABBREVIATIONS	i-ii
APPENDIX 2	
Mitchell, E. , Torpy, D. J., & Bagley, C. J. (2004). Pregnancy-associated corticosteroid-binding globulin: high resolution separation of	iii

glycan isoforms. Horm. Metab Res. 36, 357-359

DECLARATION

I, Elizabeth Mitchell declare that this thesis contains no material which has been accepted for the award of any other degree or diploma in any university and that to my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the text of the thesis.

In addition, I give consent to this copy of my thesis, when deposited in the University Library, being available for photocopying and loan if accepted for the award of Masters of Medical Science.

13th day of February the year 2007

Miss Elizabeth Mitchell

ACKNOWLEDGMENTS

I would like to extend my kind thanks and gratitude to both my supervisors, Associate Professor David J Torpy and Dr Chris J Bagley for all their assistance and encouragement throughout the experimental and writing process. Furthermore, I would like to thank Ian Milne for his assistance with the mass spectrometric analysis of ovalbumin and CBG, and all the laboratory staff who assisted with equipment maintenance and cleaning.

ABSTRACT

Corticosteroid binding globulin (CBG) is the main carrier of cortisol in the circulation. Generally, the glycoprotein bears a mixture of bi- and tri-antennary N-linked glycosylation. During pregnancy, the concentration of CBG increases and the glycosylation converts to more tri-antennary with appearance of a sub-fraction, known as pregnancy-specific CBG, lacking any bi-antennary glycosylation. Previous methods including one dimension SDS-PAGE and crossed immunoelectrophoresis, have not been able to elucidate the full repertoire of CBG glycoforms during pregnancy due to low resolution. Therefore, a high-resolution analytical method, two-dimensional electrophoresis (2D-E), capable of broader examination of CBG glycosylation changes during pregnancy was employed.

It is postulated that glycoforms specific to pregnancy appearing in the first trimester may vary with gestational age. Furthermore, it is postulated that CBG glycosylation may be altered by exogenous oestrogen from the oral contraceptive pill (OCP).

Plasma samples were analysed from five pregnant women at various gestational ages, ten samples from women at 3-16 weeks and forty consecutive samples from ten women at 4 time points between 16-36 weeks. In addition, ten plasma samples were analysed from women taking the OCP, as well as five control samples, from three non-pregnant non-OCP women and two healthy men.

A method developed combining 2D-E and Western blotting detected 9-15 CBG glycoforms, an improvement on the afore mentioned lower resolution, methods. During pregnancy, CBG glycoforms were found to become generally more acidic, presumably as a result of incorporation of increased sialic acid residues.

Experiments using Concanavalin A, which binds bi-antennary but not tri-antennary glycosylated proteins, demonstrated the appearance of a portion, 10-15%, of CBG glycoforms exhibiting solely tri-antennary glycosylation during mid to late pregnancy. This form of CBG, previously termed pregnancy-specific CBG, had a heterogeneous profile on 2D-E that substantially overlapped the CBG profiles from non-con A treated samples.

The OCP 2D-E sample profiles demonstrated overlap with an increased CBG glycoform acidity compared with controls although there was no evidence of the solely triantennary-glycosylated glycoforms. These results indicate that there may be additional factors to oestrogen that may be involved in the modulation of CBG glycosylation during pregnancy.