Identifying the cause of cereal yield decline in lucerne companion cropping systems; and the role of agronomy for mitigating cereal productivity losses

Robert H. Harris

School of Agriculture, Food and Wine
University of Adelaide
South Australia

Submitted for the degree of Doctor of Philosophy on the 13th of December, 2010
Student Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Robert Harris and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Robert Harris Date: 13/12/2010

Acknowledgements

I wish to sincerely thank the Department of Primary Industries Victoria for allowing me to undertake a PhD study during full time employment. I would also like to thank the Cooperative Research Centre for Future Farm Industries and the Grains Research and Development Corporation for funding the research project, and the University of Adelaide for hosting this PhD study.

In addition I would like to extend my gratitude to the following people:

- My many PhD supervisors during the journey; Dr Murray Unkovich, Prof. Gurjeet Gill, Prof. William Bellotti as well as DPI Victorian supervisors, Dr Jeff Hirth, Dr Tim Clune and Dr Robert Belford. Thank you for your invaluable support, input and patience.
- Roy Latta for his vast practical experience with lucerne and his leadership of the CRC’s ‘High Water Use Farming Systems’ project, under which this research was conducted.
- My collaborating farmers who allowed me to conduct field research on their farms: John and Jan Harris (North Boorhaman) and Merrick Kingston (Burraja).
- Don Gaydon and Dr Michael Robertson for their invaluable assistance in showing a very sceptical and reluctant person on how to use APSIM, and how it could ‘value add’ to existing field research.
- The technical staff who assisted me when I broke my arm and was unable to undertake field work: Ken Wilson and Wayne Dempsey.
ABSTRACT

Integrating perennial plants like lucerne into farming systems has been widely recommended to mimic pre-agricultural native vegetation, to improve year round transpiration and reduce the off-site impacts of agriculture on the surrounding environment. Despite perennial plants providing greater hydrological benefits compared to traditional annual plant based farming systems; integration of lucerne into farming systems remains a challenge. One approach that may enhance the integration is companion cropping, where annual crops are sown directly into an existing lucerne stand. However, past research has shown that this practice can be harmful to the productivity of annual crops, due to competition with lucerne for environmental resources. Yet beyond quantifying the effect on annual crop production, little is understood about what causes the loss of yield. Understanding the underlying mechanisms dictating the performance of annual crops growing with lucerne could help design agronomic strategies that mitigate competition, and improve annual crop productivity; in turn potentially improving industry acceptance and adoption of both lucerne and companion cropping.

In this study, two field experiments showed that competition was apparent early in the growing season prior to cereal stem elongation; when cereal biomass in the presence of lucerne was significantly lower than that of cereal grown in monoculture. Although there were no differences in cereal establishment, companion cereals produced significantly ($P<0.05$) less tillers, spikes, cereal biomass, and consequently grain yield compared with cereals grown in monoculture. Both field experiments showed that fertiliser N could potentially increase companion cereal productivity, and that in-crop lucerne suppression could improve cereal grain quality by reducing lucerne pod contamination. Apart from quantifying the temporal effects of competition between the companion cereal and lucerne and assessing the role of agronomic strategies for mitigating competition, field experiments did not give much insight into what was causing the loss of companion cereal productivity.
Simulation modelling using APSIM (Agricultural Production Systems Simulator) explored competition between the companion cereal and lucerne, and each component’s response to resource supply and agronomic intervention over longer periods. APSIM was found to satisfactorily simulate both simultaneous and stand alone wheat and lucerne growth, after comparison with field observed data. Although APSIM tended to deplete soil mineral N more rapidly under lucerne than field observations indicated, necessitating soil mineral N to be constrained within previously measured values in long-term simulations.

Simulations showed that companion cereals were frequently sown into drier soil profiles, due to soil water extraction by lucerne over the preceding summer/autumn period, compared with monoculture cereals sown after the summer/autumn fallow. Competition for soil water appeared the major contributing factor to companion cereal performance, and simulated data predicted that companion cereals had to rely solely on in-crop rainfall. Therefore companion cropping in low rainfall environments where growing season rainfall (April to October) is less than 350 mm, or in environments where crops rely heavily on stored soil water at sowing for subsequent production, would be unsuitable for reliable grain production from companion cropping.
Experimental design .. 92
Lucerne removal .. 92
Soil sample collection and preparation for mineral N analysis .. 93
Crop establishment .. 93
In-crop lucerne suppression ... 94
N management .. 94
Biomass measurements .. 94
Crop population measurements ... 94
Lucerne population measurements .. 95
Grain harvest measurements .. 95
Cereal grain quality measurements ... 95
Soil water measurements ... 95
Calibration of the neutron moisture meter .. 96
Chemical analysis ... 96
Statistical analysis .. 96

Results .. 97
Rainfall .. 97
Lucerne populations .. 97
Autumn soil mineral N ... 100
Cereal populations ... 100
The impact of crop type (wheat and barley) and additional N ... 102
Lucerne and cereal biomass ... 105
Cereal grain production and quality .. 106
Soil water distribution over time and depth ... 110

Discussion ... 112
Companion cropping effects on lucerne and cereal production in the absence of agronomic manipulation .. 112
Impact of companion cropping on soil water contents ... 118
On-farm implications ... 119
Disclaimer ... 121
Acknowledgments ... 121
References .. 121

Chapter 5. Modelling simultaneous cereal and lucerne growth on the Riverine Plains 125
Co-author declarations .. 126
Abstract ... 130
Introduction .. 131
Material and Methods ... 133
Experimental data .. 133
Simulation model .. 134
Model parameterisation .. 135
Management logic and modifications to the lucerne and weed modules 141
Statistical analysis ... 144

Results ... 146
Simulated and observed cereal production in the presence and absence of lucerne 146
Simulated and observed lucerne production in the presence and absence of a cereal crop ... 150
Simulated and observed soil mineral N and soil water content under cereal and lucerne grown separately and in mixture ... 152

Discussion ... 158
Evaluation of APSIM for simulating companion cropping .. 158
Evaluation of APSIM for simulating cereal and lucerne production in grown monoculture ... 161
Calibration of APSIM using field measured soil water and soil mineral N data 162
Conclusion ... 163
Acknowledgements .. 164