The impact of pharmacological treatments on outcome after adult traumatic brain injury: What does the research show?

Patricia Wheaton

School of Psychology
Faculty of Health Sciences
University of Adelaide, SA, Australia
Table of Contents

Abstract .. vi
Declaration ... viii
Acknowledgements ... xi
Statements of the contributions on jointly authored papers ... xii
Permission for the use of published papers and manuscripts submitted for peer review and publication .. xiv

Chapter 1: Introduction ... 1

The Scope and Focus of the Thesis ... 1

1.1 Traumatic Brain Injury .. 4
 1.1.1 Prevalence, risk factors and causes of TBI ... 4
 1.1.2 Types of TBI ... 6

1.2 Neuropathology of TBI ... 6
 1.2.1 Measurement of injury severity following TBI .. 8

1.3 Outcomes following TBI ... 9
 1.3.1 Cognitive changes ... 9
 1.3.2 Behavioural changes ... 11

1.4 Intervention strategies ... 14
 1.4.1 Rehabilitation strategies .. 15
 1.4.2 Pharmacological treatments .. 16

Chapter 2: The Pathology of Secondary Injury ... 17

2.1 Secondary biochemical changes .. 20
 2.1.1 Excitatory Amino Acids .. 20
 2.1.2 Ion Changes ... 21
 2.1.3 Neurotransmitters (acetylcholine, monoamines) .. 23
 2.1.4 Free Radicals .. 26
2.1.5 Opioid Peptides 27
2.1.6 Oedema/ICP (Vasogenic, Cytotoxic) 28
2.1.7 Inflammation/Regeneration 30
2.1.8 Secondary Axonal Injury 32
2.1.9 Apoptosis 32

2.2 General Summary ... 34

2.3 Aims .. 35

Chapter 3: Impact of pharmacological treatments on outcome in adult rodents after traumatic brain injury: A meta-analysis .. 37

Chapter 4: Impact of early pharmacological treatment on cognitive and behavioural outcome after traumatic brain injury in adults: A meta-analysis 106

Chapter 5: Impact of pharmacological treatments on cognitive and behavioural outcome in the post-acute stage of adult traumatic brain injury: A meta-analysis 146

Chapter 6: Discussion ... 203

6.1 Translation between animal and human research ... 206

6.2 Translation between early and post-acute treatment .. 211

6.3 Limitations ... 213

6.4 Future directions .. 214

6.5 Conclusions ... 216

References .. 217

Appendices ... 281
List of Figures and Tables

CHAPTER 2

Figure 1: Summary of the secondary biochemical changes that occur following TBI... 19

CHAPTER 3

Table 1: Key search terms used in database searches ... 45
Table 2: Criteria for inclusion/exclusion of studies ... 46
Table 3: Animal and treatment data for the TBI treatment and control groups 53
Table 4: Weighted mean effect sizes for serotonergic, catecholamine, cholinergic, calcium agents, TRH analogues, vasodilators, and opioids with large treatment effects. .. 55
Table 5: Weighted mean effect sizes for anti-inflammatories, immunosuppressants, modulators of free radical formation, and steroids with large treatment effects. 61
Table 6: Weighted mean effect sizes for modulators of amino acid activity, growth factors, and other agents with large treatment effects..................................... 68
Table 7: Summary of treatments with large beneficial effects (N_{studies} > 1, N_{fs} > 3) 74

CHAPTER 4

Table 1: Demographic and injury data for the TBI treatment and placebo control groups .. 120
Table 2: Pharmacological treatments: Weighted effect sizes organised by chemical group, drug and cognitive/behavioural measure ... 122

CHAPTER 5

Table 1: Demographic and injury data for the TBI treatment and placebo control groups .. 161
Table 2: Treatments administered in the post-acute stage with moderate to large effect sizes for cognitive and behavioural measures. ... 163

Table 3: Treatments administered at mixed post-injury intervals with moderate to large effect sizes for cognitive and behavioural measures. ... 174

CHAPTER 6

Table 1: Summary of treatments that showed efficacy in either animal or human studies. ... 204

Table 2: Summary of efficacious treatments that were examined in both animals and humans or acute and post-acute treatment studies. ... 208
Abstract

A traumatic brain injury (TBI) can cause immediate and delayed damage to the brain producing long-term cognitive and behavioural problems. Young people in the early stages of a productive life are at most risk of sustaining a TBI making these persistent problems of major personal and social importance. Post-TBI rehabilitation provides one possible strategy for improving outcome following injury. Pharmacological treatments, on the other hand, have the potential to either minimise the amount of damage that the brain sustains following TBI, thereby improving outcome, or reduce persistent biochemical disruptions that are associated with poorer outcome. However, research in this area has shown mixed results hampering advances in the treatment of this condition. This thesis will, therefore, synthesise the findings from pre-clinical and clinical research that has examined the effects of pharmacological treatments on cognitive and behavioural outcome following adult TBI.

A large number of the pharmacological agents have been investigated in pre-clinical experimental research with rodents making it difficult to consolidate the findings. Therefore, the first study meta-analysed the data from 223 pre-clinical studies that examined 91 pharmacological treatments in adult male rodents (rats, mice) after TBI. Sixteen treatments improved cognition and motor outcome across a range of models of TBI injury. Four of these showed dose-dependent treatment effects and two showed treatment-interval effects. The findings suggest that anti-inflammatories are the most efficacious treatments for improving cognition and motor function in rodents following TBI. Behaviour, on the other hand, did not improve with any of the treatments.
It is unclear whether these treatment benefits translate to an adult human TBI population. Study two, therefore, evaluated the impact of early (≤ 7 days post-injury) pharmacological treatments on cognition and behaviour in humans after TBI using meta-analytic techniques. Twenty-two studies that investigated eleven different treatments were analysed. Two treatments (amantadine and bradycor) showed marked improvements in arousal. A further three were associated with dose-dependent treatment effects (LF 16-0687Ms, dexamabinol, GK-11). The outcome measure used to evaluate a pharmacological agent influenced the likelihood of finding a treatment benefit.

It is also unclear whether long-term changes (≥ 4 weeks post-injury) to neurotransmitters in the brain additionally benefit from pharmacological interventions. Again, the findings from clinical studies in an adult human TBI population have been inconsistent. In study three, the data from 30 studies that investigated 19 pharmacological treatments administered prior to and spanning, the post-acute stage, and in the post-acute stage after adult human TBI were synthesised. Three treatments (methylphenidate, amantadine, donepezil) improved behaviour (mood, combativeness), cognition or general outcome while one (sertraline) worsened post-concussion symptoms and cognition.

In summary, this thesis confirms that both early and post-acute pharmacological interventions can improve the outcomes of adult rodents and humans after TBI. Early treatments that reduce brain swelling (i.e., inflammation and oedema) appear to be beneficial to outcome in both rodents and humans. Stimulant treatments administered to humans in the early and post-acute stage after TBI also show marked benefits. Finally, drug dosage, injury-to-treatment interval and outcome measure influenced the likelihood of finding treatment benefits.
Declaration

I declare that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed below*) resides with the copyright holder(s) of those works.

I give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Thesis Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Patricia Wheaton

Date
Published Works

In accordance with publisher guidelines a link to this paper is provided at the beginning of Chapter 3.

Kindly reprinted with the permission of Wolters Kluwer Health, License Number 2532110031024 (see Appendix 7.A for the published version).

The abovementioned studies are presented in Chapters 3, 4, and 5, respectively. These papers were originally prepared to meet different journal requirements. To
ensure consistency in the presentation of this thesis the bibliographic style of the American Psychological Association, sixth edition publication manual (American Psychological Association, 2009) has been used and the original English spelling has been retained. Accordingly, chapters may vary slightly from the published versions. Every attempt was made to avoid a repetition of the wording in the method section, however, similarity in the procedures that were used meant that some duplication was unavoidable.
Acknowledgements

There are many people that I would like to thank for their support and friendship.

Firstly, I would like to thank my two supervisors, Jane and Bob. Jane, you are a great supervisor and mentor. Thank you for the help, guidance, support and friendship that you have so willingly provided. It has been a privilege to work with you. Bob, thank you for the expertise that you have brought to this project, your helpful advice and friendly guidance has been invaluable.

I would also like to thank Sharon Kent for the many hours that she has spent rating papers. More importantly, I would like to thank Sharon for her friendship and the many coffees and chats we have shared over the last few years. Thank you also to Mark Hutchinson for your helpful advice, as well as, Heidi, Diana, Susan, Joel, James, Jo, Jess and the many other people I have met along the way that have offered advice and a friendly ear. I feel very lucky to have met each of you.

Thank you to the office staff in the School of Psychology and those in the School of Medical Sciences for your endless help, patience and friendly smiles.

To my brother and sister, my nieces and nephews, thank you for believing in me and encouraging me to follow my dreams. Thank you to Philip for the encouragement and support that you have given me, and for always listening. Last, but certainly not least, I would like to thank my three wonderful children, Shaun, Jessie and Emma who inspire and motivate me every day. You are my biggest cheerleaders, sharing all my highs and lows. The love and support that you have provided over the years has given me the strength and determination to pursue my goals. I love you all and I feel very blessed to have each of you in my life.
Statements of the contributions on jointly authored papers

Chapter 3
Title: Impact of pharmacological treatments on outcome in adult rodents after traumatic brain injury: A meta-analysis.
Co-Authors: J.L. Mathias, R. Vink
Contributions: Both co-authors acted in a supervisory capacity during all stages of the research and manuscript preparation. I was responsible for the study’s inception and design, data-collection, statistical analyses, data interpretation, and manuscript preparation, under the supervision of J.L. Mathias and R. Vink.

Chapter 4
Title: Impact of early pharmacological treatment on cognitive and behavioural outcome after traumatic brain injury in adults: A meta-analysis.
Co-Authors: J.L. Mathias, R. Vink
Contributions: Both co-authors acted in a supervisory capacity during all stages of the research and manuscript preparation. I was responsible for the study’s inception and design, data-collection, statistical analyses, data interpretation, and manuscript preparation, under the supervision of J.L. Mathias and R. Vink.
Chapter 5
Title: Impact of pharmacological treatments on cognitive and behavioural outcome in the post-acute stage of adult traumatic brain injury: A comparison of treatment effects.

Co-Authors: J.L. Mathias, R. Vink
Contributions: Both co-authors acted in a supervisory capacity during all stages of the research and manuscript preparation. I was responsible for the study’s inception and design, data-collection, statistical analyses, data interpretation, and manuscript preparation, under the supervision of J.L. Mathias and R. Vink.

The undersigned agree that the statements made regarding author contributions are accurate and true.

__

J.L. Mathias Date

__

R. Vink Date

__

P. Wheaton Date
Permission for the use of published papers and manuscripts submitted for peer review and publication

Chapter 3

I give permission for the following paper to be included in Patricia Wheaton’s thesis.

Impact of pharmacological treatments on outcome in adult rodents after traumatic brain injury: A meta-analysis.

J.L. Mathias Date

R. Vink Date
Chapter 4

I give permission for the following published paper to be included in Patricia Wheaton’s thesis.

Impact of early pharmacological treatment on cognitive and behavioural outcome after traumatic brain injury in adults: A meta-analysis.

J.L. Mathias

Date

R. Vink

Date
Chapter 5

I give permission for the following paper to be included in Patricia Wheaton’s thesis.

J.L. Mathias Date

R. Vink Date
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPA</td>
<td>L-Alpha-Amino-3-Hydroxy-5-Methyl-4-Isoxazolepropionic Acid</td>
</tr>
<tr>
<td>APP</td>
<td>Amyloid Precursor Protein</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine Triphosphate</td>
</tr>
<tr>
<td>Bcl</td>
<td>B-cell Lymphoma</td>
</tr>
<tr>
<td>BDNF</td>
<td>Brain Derived Neurotrophic Factor</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood Brain Barrier</td>
</tr>
<tr>
<td>CCI</td>
<td>Controlled Cortical Impact Injury</td>
</tr>
<tr>
<td>ChAT</td>
<td>Choline Acetyl Transferase</td>
</tr>
<tr>
<td>DAI</td>
<td>Diffuse Axonal Injury</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic Acid</td>
</tr>
<tr>
<td>FPI</td>
<td>Fluid Percussion Injury</td>
</tr>
<tr>
<td>GABA</td>
<td>(\gamma)-Aminobutyric Acid</td>
</tr>
<tr>
<td>GCS</td>
<td>Glasgow Coma Scale</td>
</tr>
<tr>
<td>GOS</td>
<td>Glasgow Outcome Scale</td>
</tr>
<tr>
<td>ICAM</td>
<td>Intercellular Adhesion Molecule</td>
</tr>
<tr>
<td>ICP</td>
<td>Intracranial Pressure</td>
</tr>
<tr>
<td>IgG</td>
<td>Nonspecific Control Antibody</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>IQ</td>
<td>Intelligence Quotient</td>
</tr>
<tr>
<td>LOC</td>
<td>Loss of Consciousness</td>
</tr>
<tr>
<td>mGluR</td>
<td>Metabotropic</td>
</tr>
<tr>
<td>NGF</td>
<td>Nerve Growth Factor</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-Methyl-D-Aspartate</td>
</tr>
<tr>
<td>NOS</td>
<td>Nitric Oxide Synthase</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>PARP</td>
<td>poly(ADP-ribose) polymerase</td>
</tr>
<tr>
<td>PPAR</td>
<td>peroxisome proliferator-activated receptor</td>
</tr>
<tr>
<td>PTA</td>
<td>post-traumatic amnesia</td>
</tr>
<tr>
<td>sAPP</td>
<td>soluble amyloid precursor protein</td>
</tr>
<tr>
<td>TBI</td>
<td>traumatic brain injury</td>
</tr>
<tr>
<td>TGF</td>
<td>transforming growth factor</td>
</tr>
<tr>
<td>TNF</td>
<td>tumor necrosis factor</td>
</tr>
<tr>
<td>TRH</td>
<td>thyrotropin releasing hormone</td>
</tr>
<tr>
<td>VCAM</td>
<td>vascular cell adhesion molecule</td>
</tr>
<tr>
<td>WD</td>
<td>weight drop injury</td>
</tr>
</tbody>
</table>