AUTOMATIC FAULT ANALYSIS IN POWER SYSTEMS
VIA APPLICATION SERVICE PROVIDER

by

MUSTARUM MUSARUDDIN

B. Eng. (Electrical Engineering),
Hasanuddin University, Indonesia, 1999

MIT. (Electrical & Computer Engineering),
The University of Newcastle, Australia, 2003

Dissertation submitted in partial fulfilment
of the requirements for the Degree of

Doctor of Philosophy

in

The School of Electrical and Electronic Engineering
The Faculty of Engineering, Computer and Mathematical Sciences
The University of Adelaide, Australia

Supervisor: Dr. Rastko Zivanovic
Co-supervisor: Assoc. Prof. Nesimi Ertugrul

February 2011
Table of Contents

Table of Contents ... ii
Abstract ... v
Statement of Originality .. vi
List of Figures .. vii
List of Tables ... x
List of Abbreviations .. xi
Acknowledgments .. xiv
List of Publications .. xv

Chapter 1: Introduction .. 1
1.1 Background .. 1
1.2 Research Objectives ... 4
1.3 Major Contributions ... 5
1.4 Organisation of the Dissertation .. 5

Chapter 2: Review of Transmission System Fault Analysis 7
2.1 Introduction .. 7
2.2 Infrastructure for Collecting Fault Data .. 7
 2.2.1 Remote Terminal Unit (RTU) .. 8
 2.2.2 Intelligent Electronic Devices (IEDs) ... 8
 2.2.3 Substation Communication Infrastructure .. 9
 2.2.4 Supervisory Control and Data Acquisition (SCADA) Systems 10
2.3 Fault Investigation Scenario .. 12
2.4 Fault Analysis Functions .. 14
 2.4.1 Signal Segmentation ... 15
 2.4.2 Fault Type Classification .. 16
 2.4.3 Fault Location .. 17
2.5 Fault Analysis Techniques .. 21
2.6 Overview of the Fault and Disturbance Analysis Tools 23
 2.6.1 Wavewin .. 23
2.6.2 SIGRA ... 24
2.6.3 SEL-PROFILE .. 26
2.6.4 DFR Assistant .. 27
2.6.5 TransView .. 27
2.7 Chapter Summary .. 30

Chapter 3: Application Service Provider and IEC 61850 Technologies 31
3.1 Introduction .. 31
3.2 Application Service Provider (ASP) 31
3.3 Web Services .. 33
 3.3.1 Extensible Markup Language (XML) 34
 3.3.2 Simple Object Access Protocol (SOAP) 35
 3.3.3 Web Services Description Language (WSDL) 37
 3.3.4 Universal Discovery, Description and Integration (UDDI) 37
3.4 Thin Client Computing ... 39
3.5 Impact of the IEC-61850 Standard on Disturbance Recording 40
 3.5.1 Information Models of IEC 61850 for Disturbance Recording 42
 3.5.2 Information Exchange Model 46
 3.5.3 Mapping to Communication profile 47
3.6 Ole for Process Control (OPC) 47
3.7 Manufacturing Message Specification (MMS) 50
3.8 Chapter Summary .. 51

Chapter 4: Automated Fault and Disturbance Analysis Service (AFAS) 52
4.1 Introduction .. 52
4.2 AFAS System Overview .. 52
4.3 Signal Segmentation Service 59
4.4 Signal Modelling Service .. 71
4.5 Fault Type Classification Service 71
4.6 Fault Location Service ... 74
4.7 Illustrative Examples of Using Services 74
 4.7.1 Simulated PSCAD Fault Records 74
 4.7.2 Real Disturbance Records from Power Utilities 81
Abstract

Automatic Fault Analysis in Power Systems via Application Service Provider
Mustarum Musaruddin, B.Eng., Hasanuddin University, Indonesia;
MIT., The University of Newcastle, Australia

This dissertation presents a new approach to automated fault analysis in electrical power systems. New contributions to the fault and disturbance investigation topic are automated fault analysis service (AFAS) via application service provider (ASP) and remote relay testing service (RRTS). The implementation of AFAS complies with the new international standard of communication network and system in substations (IEC-61850).

The signal processing approaches in an automated fault analysis service are based on the wavelet transform and empirical mode decomposition methods. Several case studies have been carried out to test the performance of the signal segmentation technique. The data for analyses are from simulated fault data and from real disturbance records obtained from the intelligent electronic devices (IEDs) in substations.

The implementation of AFAS and RRTS was developed using C# with .NET technologies, MATLAB and open source software. Signal segmentation, signal modelling, fault type classification, fault location service, a web-based COMTRADE viewer and remote relay test service have been developed in this dissertation. Such services are designed to enhance manual investigations performed by engineers. The services have been tested extensively using disturbance records from power utilities and a power system simulation model.
Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the Adelaide University library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1998.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the university to restrict access for a period of time.

Mustarum Musaruddin

Date

List of Figures

Figure 2-1. Single line diagram representation of line fault 19
Figure 2-2. Fault locator in SIGRA ... 25
Figure 2-3. Waveforms viewer in SIGRA .. 25
Figure 2-4. SEL-PROFILE software running under DOS 26
Figure 2-5. Fault locator in TransView .. 29
Figure 2-6. Waveforms viewer in TransView .. 29
Figure 3-1. Web services architecture model .. 33
Figure 3-2. Example of web services ... 34
Figure 3-3. SOAP structure .. 36
Figure 3-4. SOAP example .. 36
Figure 3-5. WSDL example .. 37
Figure 3-6. IEC 61850 according to OSI layer [7] ... 41
Figure 3-7. Example of logical devices and logical nodes from SEL421 relay 43
Figure 3-8. SEL-421 relay logical nodes ... 44
Figure 3-9. Logical Nodes for Disturbance record ... 45
Figure 3-10. ACSI communication method [7] .. 46
Figure 4-1. Fault analysis scenario ... 53
Figure 4-2. An example of the investigation procedure and required services ... 54
Figure 4-3. Architecture of AFAS model complying with IEC 61850 57
Figure 4-4. Matrikon OPC server for IEC61850 ... 57
Figure 4-5. AX4-MMS OPC server ... 58
Figure 4-6. Web client for IEC 61850 explorer .. 58
Figure 4-7. Signal segmentation algorithm using wavelet 61
Figure 4-8. Signal decomposition using wavelet method with $db4$ as a mother wavelet, the original Blue phase current and its approximation coefficient ($a6$) and detail coefficients ($d1$ to $d6$), signals recorded at Delphi substation on 11/01/2002. .. 62
Figure 4-9. AFAS database (table: waveletdata) .. 63
Figure 4-10. The segmented disturbance signal (Ic) using wavelet method
(signals recorded at Delphi substation on 11/01/2002) ... 63
Figure 4-11. Signal segmentation algorithm using EMD .. 66
Figure 4-12. IMF components of Blue phase current in the single-phase-to-ground fault, signals recorded at Delphi substation on 11/01/2002.68
Figure 4-13. Instantaneous Amplitude (IA) corresponding to each IMF 69
Figure 4-14. Hilbert spectrum of dl-d11 IMFs ... 70
Figure 4-15. The segmented Blue phase current (Ic) using EMD method (signals recorded at Delphi substation on 11/01/2002) .. 70
Figure 4-16. Fault type classification algorithm ... 73
Figure 4-17. Example of segmented signal using EMD Method in the single-phase-to-ground Fault (AG fault) where the fault resistance (RF) = 0.001 Ω and 20% fault location .. 76
Figure 4-18. Comparison time segment using wavelet and EMD methods in the single-phase-to-ground fault (AG fault) where the fault resistance (RF) = 0.001 Ω. ... 77
Figure 4-19. Comparison of time segment between wavelet and EMD methods in the phase A for the case of an ABG fault .. 78
Figure 4-20. Time segment in phase A using wavelet and EMD methods for variations in fault resistance (RF) in the three-phase fault where the fault location is 50% .. 81
Figure 4-21. The segmented current (Ic) signals in the faulty phase, (signals recorded at Delphi substation on 11/01/2002) ... 83
Figure 4-22. The segmented disturbance signals using wavelet method (signal recorded from Bulukumba substation on 16/09/2008) 84
Figure 4-23. The segmented disturbance signal using EMD method (signal recorded from Bulukumba substation on 16/09/2008) 85
Figure 4-24. AFAS implementation process ... 87
Figure 4-25. Automated fault analysis service model ... 88
Figure 4-26. Successful compilation of signal processing module (AbruptChange.dll) .. 90
Figure 4-27. Integrate signal processing module (AbruptChange.dll) 91
Figure 4-28. Automated fault analysis service running on server................... 91
Figure 4-29. Example interface of AFAS web client for IEC 61850 explorer 93
Figure 4-30. Typical system configuration .. 96
Figure 4-31. Disturbance data retrieval and pre-processing for automated fault and disturbance analysis .. 98
Figure 4-32. AFAS database (Table: Station) .. 99
Figure 4-33. Java Internet Matlab (JIM) server interface 101
Figure 4-34. Example of web based COMTRADE viewer interface 102
Figure 4-35. Example of AFAS COMTRADE viewer interface with the automated signal segmentation for two-phase fault (AC fault) 105
Figure 4-36. Example of zooming functions in the AC fault. 107
Figure 4-37. Example of simple AFAS report ... 109
Figure 5-1. Remote relay testing system via ASP ... 115
Figure 5-2. Remote relay testing architecture .. 116
Figure 5-3. RRTS console running on server .. 120
Figure 5-4. RRTS job notification sent to user via email 121
Figure 5-5. Example of power system simulation model using PSCAD 122
Figure 5-6. Fault control in PSCAD ... 122
Figure 5-7. COMTRADE recorder model in PSCAD 122
Figure A-1. DWT algorithm [122] ... 148
Figure A-2. Multiresolution signal decomposition realised by QMF [91]. 150
Figure A-3. Signal X with the local extrema identification 154
Figure A-4. Signal X with the upper and lower envelope 154
Figure A-5. Signal X with the average value and residual 155
Figure A-6. Iteration 1 with the average value and residual 155
List of Tables

Table 3-1. Example IEC 61850 descriptor components [7] .. 42
Table 3-2. Example of SEL-421 Logical Devices [7] .. 43
Table 4-1. Segmented signal estimation based on wavelet and EMD when 76
Table 4-2. Segmented signal estimation based on wavelet and EMD in the two-
phase-to-ground fault (ABG Fault) where fault resistance (R_F) is 0.001 Ω 78
Table 4-3. Segmentation time of disturbance record using wavelet and EMD
methods for variation of fault resistance in the three-phase fault where fault
location is 50 % .. 80
Table 4-4. Segmented signal estimation based on wavelet and EMD method in the
Blue phase current (I_C) obtained from Delphi substation on 11/01/2002 82
Table 4-5. Segmented signal estimation based on wavelet and EMD, disturbance
record obtained from Bulukumba substation Indonesia on 16/09/2008 84
Table 5-1. Relay response times ... 125
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACSI</td>
<td>Abstract Communication Service Interface</td>
</tr>
<tr>
<td>AFAS</td>
<td>Automated Fault and disturbance Analysis Service</td>
</tr>
<tr>
<td>ANN</td>
<td>Annunciator elements</td>
</tr>
<tr>
<td>API</td>
<td>Application Program Interfaces</td>
</tr>
<tr>
<td>ASP</td>
<td>Application Service Provider</td>
</tr>
<tr>
<td>ATP</td>
<td>Alternative Transient Program</td>
</tr>
<tr>
<td>CB</td>
<td>Circuit Breaker</td>
</tr>
<tr>
<td>CBMA</td>
<td>Circuit Breaker Monitor Analysis</td>
</tr>
<tr>
<td>CFG</td>
<td>Configuration elements</td>
</tr>
<tr>
<td>COMTRADE</td>
<td>Common format for Transient Data Exchange</td>
</tr>
<tr>
<td>CON</td>
<td>Control elements</td>
</tr>
<tr>
<td>CT</td>
<td>Current Transformer</td>
</tr>
<tr>
<td>CWT</td>
<td>Continuous Wavelet Transform</td>
</tr>
<tr>
<td>DFRs</td>
<td>Digital Fault Recorders</td>
</tr>
<tr>
<td>DFRA</td>
<td>Digital Fault Recorders Analysis</td>
</tr>
<tr>
<td>DPRA</td>
<td>Digital Protective Relay Analysis</td>
</tr>
<tr>
<td>DFT</td>
<td>Discrete Fourier Transform</td>
</tr>
<tr>
<td>DPRs</td>
<td>Digital Protective Relays</td>
</tr>
<tr>
<td>DWT</td>
<td>Discrete Wavelet Transform</td>
</tr>
<tr>
<td>EJS</td>
<td>Easy Java Simulation</td>
</tr>
<tr>
<td>EMD</td>
<td>Empirical Mode Decomposition</td>
</tr>
<tr>
<td>EMS</td>
<td>Energy Management System</td>
</tr>
<tr>
<td>FAFL</td>
<td>Fault Analysis with Fault Location</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>FTP</td>
<td>File Transfer Protocol</td>
</tr>
<tr>
<td>GOOSE</td>
<td>Generic Object Oriented Substation Event</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>HPF</td>
<td>High Pass Filter</td>
</tr>
<tr>
<td>ICA</td>
<td>Independent Computing Architecture</td>
</tr>
<tr>
<td>IEDs</td>
<td>Intelligent Electronic Devices</td>
</tr>
<tr>
<td>ISP</td>
<td>Internet Service Providers</td>
</tr>
<tr>
<td>ISVs</td>
<td>Independent Software Vendors</td>
</tr>
<tr>
<td>IA</td>
<td>Instantaneous Amplitude</td>
</tr>
<tr>
<td>IMF</td>
<td>Intrinsic Mode Functions</td>
</tr>
<tr>
<td>IT</td>
<td>Information Technology</td>
</tr>
<tr>
<td>JIM</td>
<td>Java Internet Matlab</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LD</td>
<td>Logical Devices</td>
</tr>
<tr>
<td>LN</td>
<td>Logical Nodes</td>
</tr>
<tr>
<td>LPF</td>
<td>Low Pass Filter</td>
</tr>
<tr>
<td>MET</td>
<td>Metering and measurement elements</td>
</tr>
<tr>
<td>MMI</td>
<td>Man Machine Interface</td>
</tr>
<tr>
<td>MMS</td>
<td>Manufacturing Message Specification</td>
</tr>
<tr>
<td>MSD</td>
<td>Multi-resolution Signal Decomposition</td>
</tr>
<tr>
<td>OLE</td>
<td>Object Linking and Embedding</td>
</tr>
<tr>
<td>OPC</td>
<td>Ole for Process Control</td>
</tr>
<tr>
<td>PHP</td>
<td>PHP Hypertext Pre-processor</td>
</tr>
<tr>
<td>PRO</td>
<td>Protection elements</td>
</tr>
<tr>
<td>PSCAD</td>
<td>Power System Computer Aided Design</td>
</tr>
<tr>
<td>QMF</td>
<td>Quadrature Mirror Filter</td>
</tr>
<tr>
<td>RDP</td>
<td>Remote Desktop Protocol</td>
</tr>
<tr>
<td>RF</td>
<td>Fault Resistance</td>
</tr>
<tr>
<td>RMS</td>
<td>Root Mean Square</td>
</tr>
<tr>
<td>RPC</td>
<td>Remote Procedure Calls</td>
</tr>
<tr>
<td>RRTS</td>
<td>Remote Relay Testing Service</td>
</tr>
<tr>
<td>RTS</td>
<td>Relay Test System</td>
</tr>
<tr>
<td>SAS</td>
<td>Substation Automation System</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation</td>
</tr>
<tr>
<td>SEL</td>
<td>Schweitzer Engineering Laboratories</td>
</tr>
<tr>
<td>SER</td>
<td>Sequence of Event Recorder</td>
</tr>
<tr>
<td>SOA</td>
<td>Service Oriented Architecture</td>
</tr>
<tr>
<td>SOAP</td>
<td>Simple Object Access Protocol</td>
</tr>
<tr>
<td>TimeSeg</td>
<td>Time Segment</td>
</tr>
<tr>
<td>TLI</td>
<td>Test Laboratories International</td>
</tr>
<tr>
<td>UDDI</td>
<td>Universal Description and Discovery Interface</td>
</tr>
<tr>
<td>VNC</td>
<td>Virtual Network Computing</td>
</tr>
<tr>
<td>VT</td>
<td>Voltage Transformer</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide Area Network</td>
</tr>
<tr>
<td>WAP</td>
<td>Wireless Application Protocol</td>
</tr>
<tr>
<td>WCF</td>
<td>Windows Communication Foundation</td>
</tr>
<tr>
<td>XML</td>
<td>eXtensible Markup Language</td>
</tr>
<tr>
<td>WS-AFA</td>
<td>Web Services for Fault Analysis</td>
</tr>
<tr>
<td>WSDL</td>
<td>Web Services Description Language</td>
</tr>
</tbody>
</table>
Acknowledgments

Firstly, I want to thank ALLAH the Almighty, the most beneficent, the most compassionate, and the most merciful. I also want to express my deepest gratitude to so many people who had a tremendous effect and notable help, so that this dissertation could be well completed.

In particular, I am indebted to my advisors, Dr. Rastko Zivanovic and Assoc. Prof. Nesimi Ertugrul, for their guidance, nurturing, encouragement, and support in every stage of my study. Their knowledge, kindness, patience, open-mindedness, and vision have provided me with lifetime benefits.

AusAID Australian Development Scholarship provided me with a scholarship during my studies for which I am grateful.

I would like also to thank Dr. Bill Winser at the Centre for Learning and Professional Development, University of Adelaide, for his help in editing this dissertation.

I am grateful to every member of department, and staff of University of Adelaide International student centre, especially Niranjala Seimon, who has help me during my stay in Adelaide.

Acknowledgment is extended to ESKOM Transmission Network South Africa and Indonesian Power Utility for providing the experimental data.

Many thanks are also devoted to my family members: my mother, father, my beloved wife, my daughters, brothers and sisters, for all the support they provided and their patience with all frustration they encountered during my study.

Thanks must go to my friends and colleagues for the constant encouragement, helpful suggestions and the enthusiasm they have shown towards this research during its development.
List of Publications

Journal Papers:

Conference Papers:

