Limitations to yield in saline-sodic soils:
Quantification of the osmotic and ionic regulations
that affect the growth of crops under salinity stress

Ehsan Tavakkoli
BSc. Hon (Agricultural Engineering)
MSc (Agricultural Sciences)

School of Agriculture Food and Wine
Faculty of Science
The University of Adelaide, Australia

Thesis by publication submitted to the
University of Adelaide for the degree of Doctor of Philosophy

January 2011
DEDICATION

I would like to dedicate this thesis to a number of people without whom I could not stand where I am today.

This thesis is dedicated to my late grandfather, who passed away at the age of 99 in the course of my Masters degree at UNE. His soul will live on within me for his encouragement and support enabling me to continue my studies in Australia.

Also this thesis is dedicated to my parents who were my first teachers and taught me the best kind of knowledge and for their love, endless support and encouragement.

Finally, this thesis is dedicated to Professor Acram Taji who supported me all the way since the beginning of my studies in Australia, and who has been a great source of motivation and inspiration.
Table of Contents

ABSTRACT... v
DECLARATION... vii
Acknowledgments... viii
1. INTRODUCTION... 1
 1.1 Thesis outline .. 3
2. LITERATURE REVIEW .. 5
 2.1 Saline, sodic and saline-sodic soils: definitions .. 5
 2.1.1 Salinity .. 5
 2.1.2 Sodicity .. 7
 2.1.3 Saline-sodic soils .. 9
 2.2 The physical and chemical properties of saline-sodic soils .. 10
 2.2.1 Clay dispersion in sodic soils .. 10
 2.2.2 The chemical properties of saline-sodic soils... 15
 2.3 Causes of salinity .. 17
 2.4 Growth responses of crop plants in saline-sodic soil .. 19
 2.4.1 Two-phase process of growth inhibition by salinity .. 19
 2.4.2 Effects of salinity on plant available water: Osmotic stress 23
 2.4.3 Effects of specific ion toxicity in crops ... 27
 2.4.3.1 Mechanisms of Na⁺ toxicity in plants ... 28
 Selectivity of potassium uptake at the plasma membrane 31
 Binding of calcium to the plasma membrane .. 32
 2.4.4 Plant photosynthesis ... 34
 2.5 Mechanisms of salt tolerance in crop plants ... 37
 2.5.1 Osmotic adjustment .. 39
 2.5.2 Reduced uptake and translocation ... 40
 2.5.3 Transport and compartmentation ... 42
2.6 Chloride dynamics in crop plants in relation to salinity responses 44

2.7 Salinity tolerance in barley and faba bean ... 50
 2.7.1 Barley (Hordeum vulagare) .. 50
 2.7.2 Faba bean (Vicia faba) .. 51

2.8 Breeding for improving salt tolerance in crop plants .. 52
 2.8.1 Screening Methods ... 54
 2.8.1.1 Germination ... 55
 2.8.1.2 Photosynthesis and other physiological indicators 56
 2.8.1.3 Field vs. controlled conditions ... 57

2.9 Salinity research ... 59
 2.9.1 Soil and nutrient culture systems ... 59
 2.9.1.1 Soil culture systems ... 59
 2.9.1.2 Nutrient solution systems .. 60
 2.9.1.3 Field studies .. 61
 2.9.1.4 Growth conditions and salinity treatments ... 62
 2.9.2 Separating the osmotic stress from ionic toxicity .. 63

2.10 Conclusions and further research ... 65

List of articles presented for this thesis .. 68

List of peer-reviewed conference papers presented for this thesis 69

3. Chapter 3 The response of barley to salinity stress differs between hydroponics and soil systems

4. Chapter 4 Growth of faba bean in saline-sodic soils: Monitoring of leaf development and water use dynamics enables the quantification of osmotic and ionic regulation at whole-plant level

5. Chapter 5 Additive effects of Na\(^+\) and Cl\(^-\) ions on barley growth under salinity stress

6. Chapter 6 High concentrations of Na\(^+\) and Cl\(^-\) ions in soil solution have simultaneous detrimental effects on growth of faba bean under salinity stress

7. Chapter 6 Effective screening methods for salinity tolerance: pot experiments but not hydroponics are plausible models of salt tolerance in barley

8. Genotypic variations of faba bean in response to transient salinity at whole-plant level
9. GENERAL DISCUSSION AND CONCLUSIONS ... 70

9.1 Introduction ... 70

9.2 Relative importance of ion (Na$^+$ and/or Cl$^-$) toxicity and osmotic effect to growth and yield reduction under different levels of salinity ... 74

9.3 Relative importance of Na$^+$ and Cl$^-$ toxicity in growth reduction of barley and faba bean ... 76
 9.3.1 Barley ... 77
 9.3.2 Faba bean ... 78

9.4 Evaluation of crop salt tolerance in solution and soil cultures under controlled environmental conditions: Are they good surrogates for evaluating whole-plant response to salinity under field conditions? ... 80
 9.4.1 Barley ... 81
 9.4.2 Faba bean ... 83

9.5 Conclusions ... 84

9.6 Recommended future research... 86

References for literature review and general discussion ... 89
ABSTRACT

Salinity reduces yields of agricultural crops in many arid and semi-arid areas of the world where rainfall is insufficient to leach salts from the root zone. Salinity reduces plant growth and yield by two mechanisms, osmotic stress and ion cytotoxicity. Munns et al. (1995) proposed a two-phase model of salt injury where growth is initially reduced by osmotic stress and then by Na\(^+\) toxicity. However, some uncertainty exists regarding the relative importance of the two mechanisms. This is due to the difficulty in separating the osmotic effect from specific ion effects because of the overlap in the development of the two type stresses during the development of salinity stress. There has also been some recent debate about the importance of soil Cl\(^-\), and by implication plant Cl\(^-\) uptake, as predictors of damage and yield loss, rather than electrical conductivity. Where NaCl is high, increased uptake of Na\(^+\) ions will be associated with high uptake of Cl\(^-\) ions. Reliable and effective salt tolerance screening techniques to predict field performances are important for breeding programmes. Thus, in comparisons between results from laboratory and/or glasshouse soil and solution culture screening techniques and field evaluations of salt tolerance, it is important to verify whether or not the laboratory conditions can predict responses to field stresses. The main objectives of this research were to:

- determine which of the two ions most frequently implicated in salinity, Na\(^+\) and Cl\(^-\), is most toxic to barley and faba bean
- quantify the relative importance of ion (Na\(^+\) and/or Cl\(^-\)) toxicity and osmotic stress on growth and yield reduction under different levels of salinity
investigate whether hydroponics and pot experiments under controlled environmental conditions are useful surrogates for evaluating whole-plant response to salinity under field conditions.

High concentration of Na\(^+\), Cl\(^-\) and NaCl separately reduced growth, however the reductions in growth and photosynthesis were greatest under NaCl stress and were mainly additive of the effects of Na\(^+\) and Cl\(^-\) stress (Chapter 5 and 6). The results demonstrated that Na\(^+\) and Cl\(^-\) exclusion among genotypes are independent mechanisms and different genotypes expressed different combinations of the two mechanisms. The results also suggested the two-phase model of salt stress may not be appropriate at all levels of salt stress. Osmotic stress was the predominant cause of reduced growth at high levels of salinity, while specific-ion toxicity was more important under mild salinity stress (Chapters 3 and 4). In barley, the effects of salinity differed between the hydroponic and soil systems. Differences between barley cultivars in growth, tissue moisture content and ionic composition were not apparent in hydroponics, whereas significant differences occurred in soil. Reductions in growth were greater under hydroponics than in soil at similar EC values and the uptake of Na\(^+\) and Cl\(^-\) was also greater (Chapters 3 and 7). Early assessment of salinity tolerance at seedling stage was found to be unsuitable. This work has also established sound screening procedures that significantly correlated with field evaluation of grain yield in genotypes of barley and faba bean (Chapters 7 and 8). Salt exclusion coupled with a synthesis of organic solutes were shown to be an important component of salt tolerance in the tolerant genotypes and further field tests of these plants under stress conditions will help to verify their potential utility in crop improvement programs.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Ehsan Tavakkoli and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968. The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works. I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Date: 24/1/2011

Ehsan Tavakkoli
Acknowledgements

Completing this thesis has been a long road, and without the help of many people along the way it would not have been possible. I would like to gratefully acknowledge the input and support of my principal supervisor, Associate Professor Glenn McDonald and my co-supervisor Dr Pichu Rengasamy, who have guided my research throughout this project and for their patience and the many discussions during all stages of the research. As I prepared this thesis they have spent many hours revising written material, and their availability, insights and assistance have been much appreciated but words alone cannot express the thanks I owe to them.

Several other individuals have provided me with significant support over the course of this project. In particular, I am very grateful to my best friend, Dr Graham Lyons, for his invaluable advice, continuous support and friendship. His gentle reassurances and encouragement at various times in the course of my study are very much appreciated.

I am very grateful to Waite Analytical Services (Teresa Fowles, Lyndon Palmer, Matthew Wheal and Deidre Cox) for accurate and timely analysis of soil and plant samples. I am also very grateful to my colleagues and friends in the Plant Nutrition Group, in particular Dr G. Lyons, Prof. R. Graham, Dr Y. Genc, Dr W. Bovill and Mr D. Keetch and in SARDI, Dr G. Sweeney, Dr. J. Emms and Mr. H. Drum for their support, frequent advice, technical assistance and friendship.

My thanks go to Mr S. Coventry (National Barley Breeding Program, UA) and Dr J. Paull (National Faba Bean Breeding Program, UA) for their expert management of field trials and providing the seeds of barley and faba bean genotypes for this study.

I am thankful also to Prof M. Tester for making the Lemna Tec imaging system accessible during this research and the Australian Centre for Plant Functional Genomics for enormous help in letting me to use the lab equipments for these studies.

I am very grateful to Prof S. Tyerman, Dr R. Munns, Dr C. Grant, Dr A. McNeil, Dr D. Chittleborough, and Prof. D. Suarez for stimulating discussion on different aspects of this research project.

Many people at the School of Agriculture, Food and Wine (UA) and South Australian Research and Development Institute have also assisted me in this research. I would like to thank Mrs. A. Marchuk, Mr. C. Rivers, Mrs. W. Sullivan and Dr. Y. Shavrukov for their assistance in the laboratory. Many thanks also to Mr. P. Ingram for his help with glasshouse and growth chambers arrangement.

I wish to sincerely thank the Grains Research and Development Corporation for funding and the University of Adelaide, School of Agriculture, Food and Wine for funding and hosting this PhD study.

Finally, and most importantly, I would like to thank my family: mum and dad, my sister Dr M. Tavakkoli and my brother in law Dr H. Fadavi for their positive source of encouragement, love and support throughout this study.