An in-vitro Evaluation of the Effectiveness of Endodontic Irrigants, with and without Sonic and Laser Activation, in the Eradication of Enterococcus faecalis Biofilm

A report submitted to the University of Adelaide in partial fulfilment of the requirements of the Degree of Doctor of Clinical Dentistry (Endodontics)

Dr Aaron Nicholas Seet
BSc (Hons) (S’pore), BDS (Adel)
3.2.6 Laser activation of sodium hypochlorite .. 91

Chapter 4. Discussion .. 95

4.1 Comparing syringe irrigation with 0.9% saline & 4% sodium hypochlorite . 97
4.2 Comparing sonic activation of 0.9% saline & 4% sodium hypochlorite 99
4.3 Comparing laser activation of 0.9% saline & 4% sodium hypochlorite 99
4.4 Clinical considerations ... 101
4.5 Limitations of the study .. 102

Chapter 5. Conclusion ... 104

Chapter 6. References ... 106

Appendix 1 .. 125

Appendix 2 .. 126
Declaration

I, Aaron Seet, declare that this work to the best of my knowledge and belief contains no material previously published or written by another person, except where due reference has been made in the text. It contains no material which has been accepted for the award of any other degree of diploma in any university or tertiary institution.

I give consent to this copy of my thesis to be made available to the University Library, for loan or photocopying, subject to the provisions of the Copyright Act 1968, as well for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Declared by: ___________________________ Witnessed by: ___________________________

 Aaron Seet

Date: __________ Date: __________
Acknowledgements

Firstly, I would like to express my greatest gratitude to A/Prof Peter Cathro for his guidance and support, both on a professional and personal basis. His boundless patience and encouragement, as well as the constant reminders to keep things in perspective will never be forgotten. Thank you for seeing me through some of the darkest days.

Deepest thanks to Dr Peter Zilm, for sharing his wealth of research experience. His expertise and uncanny ability to devise ingenious solutions were invaluable in seeing the research project through. I am always indebted for his assistance so that I could see the birth of my daughter while the project was running.

I would also like to extend my thanks to Prof Geoffrey Heithersay for his insights and pearls of wisdom. He has been most generous with his wealth of knowledge and I am always grateful and privileged to have been able to partake of it. His friendship and willingness to listen will always be treasured.

Many thanks also to Dr Neville Gully for his assistance and advice with the research project. I appreciate the time taken to read and correct my thesis.

I would also like to acknowledge the assistance of all the staff at the Adelaide Microscopy Centre, especially Lyn Waterhouse, who was always willing to lend a hand.

The postgraduate program would not have been the same without the friendship of Drs Barbara Plutzer, Mark Stenhouse and Jonathan Christo. It has been an honour to be in the company of such fine friends.

Thank you, Dad, Mum and Lyn for your love and always believing in me.

San, thank you for your unconditional love, patience and sacrifice so that I can fulfil my aspirations. Thank you for our beautiful daughter, Shevonne. The completion of this degree would have been empty if not for the both of you.

Finally, I would like to acknowledge the support of Dentsply and Biolase for the loan of equipment necessary for the conduct of the research, as well as financial support from the Australian Dental Research Foundation and the Australian Society of Endodontology.
Abstract

Introduction

It is well established that the causative agent of endodontic disease is the presence and growth of bacteria (Kakehashi et al., 1965; Möller et al., 1981). Therefore, eradication of bacteria is essential to prevent or eliminate apical periodontitis. Studies have shown that elimination of bacteria prior to obturation has resulted in a more favourable outcome for endodontic therapy (Sjögren et al., 1997). When endodontic treatment fails, bacteria is often isolated from the root canals of these teeth. One of the most commonly isolated bacteria is Enterococcus faecalis (Molander et al., 1998; Sundqvist et al., 1998). As such, endodontic therapy is founded upon three principles: mechanical instrumentation; irrigation with antimicrobial agents and placement of an intracanal medicament (Haapasalo et al., 2005). However, the complex anatomy of the root canal system often prevents the penetration of irrigants and medicaments into recesses that cannot be accessed by mechanical instrumentation. The advent of sonic, ultrasonic and laser instruments has led to many investigations looking at their potential for the activation of irrigants (Lee et al., 2004; de Gregorio et al., 2009; De Moor et al., 2009). However, most of these studies have concentrated on the removal of dentinal debris and smear layer (Lee et al., 2004).

Aim

The aim of this study was to evaluate and compare the effectiveness of three modes of irrigation: syringe irrigation; sonic activation and laser activation of the irrigant in eradicating E. faecalis that had been cultivated within the root canals of extracted single rooted teeth.

Methodology

A flow cell was designed and constructed. The extracted teeth were decoronated, and prepared with rotary instruments to #40 to 1 mm beyond the apex of the tooth. This was to allow nutrient media to flow through the root canals. The flow cell was connected to a nutrient reservoir containing Todd Hewitt Broth, which was pumped into the flow cell via a peristaltic pump.
The flow cell was inoculated with *E. faecalis* (ATCC 700802) and cultivated for a period of four weeks. The flow cell was then dismantled and the teeth were assigned to 6 treatment groups:

1. syringe irrigation with saline
2. syringe irrigation with 4% sodium hypochlorite
3. sonic activation of saline (EndoActivator, Dentsply)
4. sonic activation of 4% sodium hypochlorite
5. laser activation of saline (Er,Cr:YSGG Waterlase, Biolase Technology)
6. laser activation of 4% sodium hypochlorite

Teeth were irrigated with 5 ml of either saline or 4% sodium hypochlorite for 1 minute. The 4% sodium hypochlorite solution was inactivated with 5% sodium thiosulphate. Teeth that received sonic activation were irrigated by hand for 5 seconds, followed by 10 seconds of sonic activation, and this was repeated four times over 1 minute. Laser activation of the irrigants was also performed. Irrigant was introduced into the canal for 10 seconds, followed by 5 seconds of laser activation, (0.25W, 20 Hz) this cycle was repeated four times.

Teeth were then crushed and serial dilutions were performed to determine the number of viable bacteria (CFU/ml) remaining in the root canals. Protein assays were conducted to quantitate the amount of biofilm obtained. Samples were also taken from each treatment group and the radicular dentinal surfaces of the root canals were viewed under scanning electron microscopy (SEM).

Results

The root canals that were syringe irrigated with saline were the positive controls. Activation of the irrigants with either the sonic or laser instruments resulted in reduced cellular viability of *E. faecalis*. The most dramatic reduction in viability of *E. faecalis* was seen when the Er,Cr:YSGG laser was used to activate 4% sodium hypochlorite, resulting in 99.93% ± 0.14% percentage kill.

SEM analysis showed that sonic activation with saline only caused minimal disruption to the biofilm. Teeth irrigated with sodium hypochlorite showed fewer bacterial cells on the radicular dentine but was not effective in eliminating *E. faecalis* that had invaded the dentinal tubules. Laser activation of sodium hypochlorite resulted in clean dentine walls and minimal bacteria within the dentinal tubules.
Conclusion

Sonic or laser activation of an antimicrobial irrigant resulted in more effective bacterial elimination compared to hand irrigation. Compared to syringe irrigation and sonic activation of sodium hypochlorite, laser activation of sodium hypochlorite was able to effectively disinfect the root canal.