Investigating Mechanisms of Post-transcriptional Gene Regulation in the Germ Cells of Zebrafish

Sophie Wiszniak, B.Sc (Honours)

February, 2011

Thesis submitted in fulfilment of the requirements of the degree of Doctor of Philosophy in the Department of Biochemistry, School of Molecular and Biomedical Sciences, University of Adelaide
Table of Contents

Abstract ..3
Declaration ..4
Acknowledgements ..5

Chapter 1 – Introduction...6
1.1 The importance of post-transcriptional gene regulation in development6
1.2 Mechanisms of post-transcriptional gene regulation ...10
1.3 An overview of germ cell development in zebrafish ..16
1.4 Post-transcriptional gene regulation plays a major role in germ cell development and specification ..17
1.5 An introduction to the Hu family of RNA-binding proteins19
1.6 Interaction of the Hu proteins with RNA ..22
1.7 The role of the Hu proteins in post-transcriptional gene regulation25
1.8 Is HuB post-transcriptionally regulated, and does it play a role in germ cell development? ..30

Chapter 2 – Materials and Methods..32
2.1 Zebrafish husbandry and microinjection ...32
2.2 RNA extraction ...32
2.3 Northern blotting ...32
2.4 Reverse transcription and PCR ..33
2.5 Whole-mount in situ hybridisation ...34
2.6 In vitro transcription ...34
2.7 Western blotting ...34
2.8 Fluorescence microscopy ...35
2.9 Whole-mount antibody staining ...36
2.10 Immunoprecipitation ..36
2.11 Oligonucleotides ...38
2.12 Cloning and plasmid constructs ..39

Chapter 3 – Results..42
3.1 HuB mRNA is maternally provided in the zebrafish embryo42
3.2 HuB mRNA is expressed in the germ cells of zebrafish ...43
3.3 The long N-terminal form of HuB protein is expressed in the early zebrafish embryo44
3.4 Post-transcriptional regulation of the HuB 3’UTR restricts HuB expression to the germ cells ..45
3.5 Cis-regulatory elements control differential mRNA stability in the germ cells and somatic tissue ..46
3.6 The 30-nucleotide 91011 element required for germ cell specific mRNA stabilisation is not required for general mRNA stability ...48
3.7 Is the 91011 element sufficient for germ cell specific mRNA stabilisation?50
3.8 MS2 RNA tethering approaches towards identifying factors important for HuB mRNA stabilisation in the germ cells ...51
3.9 Exploring other RNA tethering options: N-peptide/BoxB and Nova/NISE55
3.10 An immunoprecipitation combined with RT-PCR approach to identify HuB 3’UTR interacting proteins ...57
3.11 A germ cell specific RNA-binding protein, DAZL, is able to stabilise HuB mRNA .. 61
3.12 HuB protein functional studies: knockdown and overexpression approaches......... 64
3.13 Summary and highlights .. 67

Chapter 4 – Discussion..68
4.1 Addressing the aims of this study ... 68
4.2 HuB mRNA is maternally provided and is expressed in the germ cells of zebrafish...... 68
4.3 HuB mRNA is post-transcriptionally regulated ... 69
4.4 The HuB 3’UTR contains cis-acting elements that regulate differential mRNA stability in the soma and germ cells ... 69
4.5 The RNA-binding protein, DAZL, stabilises HuB mRNA................................. 73
4.6 Future experiments .. 79
4.7 Conclusions ... 85

Chapter 5 – Appendix..86

Chapter 6 – References ..88
Abstract

In most organisms, the primordial germ cells are specified and set aside from the surrounding somatic tissues very early in development. Their ability to carry out a gene regulatory program quite distinct from the surrounding somatic cells, and their capacity to specify entire new organisms has made them a focus of many studies that seek to understand how specific transcriptional and translational programs contribute to cell fate.

Zebrafish, a vertebrate with external development of the embryo, is currently one of the best animal models for understanding the molecular basis of germ cell specification. Briefly, germ cell specification is dependent on maternally provided cytoplasmic determinants, termed the germ plasm. The germ plasm, is localised to areas of the embryo that will become the germ cells later in development by inheritance the germ plasm through cleavage divisions. A number of mRNA components of the germ plasm have been identified; interestingly many of them encode RNA-binding proteins, and almost all of them have invertebrate and mammalian orthologues. Evidence suggests that these maternally provided mRNA determinants are specifically maintained in the germ cells throughout embryonic development, and at least some of these gene products are essential for germ cell specification.

A number of studies have begun to elucidate the molecular mechanisms that allow germ cell specific maintenance of these mRNAs, and also to identify how maternally provided messages destined for the germ cells are destabilised and eliminated in the somatic tissues. For example, the germ cell specific mRNAs nanos and TDRD7 are destabilised in somatic cells through interactions of the 3´UTR sequences with the microRNA miR-430. This miR-430-mediated repression is overcome in germ cells through the binding of an RNA-binding protein Dead end (DND) to distinct sites within the nanos and TDRD7 3´UTRs.

This thesis details a study of the zebrafish orthologue of HuB, a highly conserved RNA-binding protein with expression in neurons, testes and ovaries in adult vertebrates. In zebrafish, HuB mRNA is maternally provided, and is restricted to the germ cells by 24 hours of development; this is the first report to indicate expression of HuB in the germ cells of vertebrates, suggesting a possible role for HuB in germ cell development.

Through detailed mutagenesis studies, the HuB 3´UTR has been found to contain a set of four destabilising elements, which bring about somatic degradation of the mRNA, and a separate, 30-nucleotide motif that is responsible for germ cell specific stabilisation of the message. None of these identified destabilising elements are targets for miR-430, and thus they represent novel sequence elements for somatic message degradation in zebrafish. Through a candidate screening approach, DAZL, a germ cell specific RNA-binding protein, was identified as being capable of stabilising HuB mRNA. Furthermore, DAZL was shown to mediate this stabilisation of HuB mRNA by interacting, either directly or indirectly, with the 30-nucleotide stabilisation element that was indentified in the HuB 3´UTR. This elucidation of the mechanisms of germ cell specific expression of the HuB mRNA is an important finding, for it reveals mechanisms of post-transcriptional regulation that are distinct from that of other germ cell specific mRNAs.

In summary, the identification of HuB as a germ cell specific mRNA, and the determination of the post-transcriptional mechanisms responsible for this specific expression is an important first step in understanding how HuB and other germ cell specific RNA-binding proteins contribute to germ cell development and function.
Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Sophie Wiszniak and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Sophie Wiszniak

1st February, 2011
Acknowledgements

Well, it is the end of an era! The PhD road has been a long, and at times, difficult journey, but it has been extremely rewarding nonetheless, and of course I wouldn’t have achieved what I have without the help of a lot of people:

Kirk, for taking me on as a student, for giving me the freedom to explore my own scientific interests, for encouraging me to follow my intuition, and for giving me guidance when I needed it.

Kate, for your willingness to share your experience when it comes to new techniques, for being the lab manager even though it’s not in your job description, and for always being happy to spend time talking about ideas and coming up with new ways to answer the questions I wanted to ask.

Jane, for always being interested in what experiment I was doing next, and for being excited about discussing new data, it was always very encouraging for me to have you to discuss all of my ideas with.

Pete, for being my fellow PhD mate in the Jensen lab, but most importantly for being a great friend, both inside and outside the lab, for noticing and caring when the PhD was clearly taking its toll, for not being afraid to argue your point and for always challenging me to argue mine.

Sarah, for being there since the start, literally. It’s amazing to think we started 1st year together all the way back in 2003, and now here we are in 2011 almost finished. Thank you for being a great friend to me, for being someone to share with and understand all the highs and lows of science and life too.

All my other PhD friends too, Anne, Sam, Kristie, Nick, Dale, Dave, Simon, Clare, it’s been rather quiet and lonely at home writing without seeing you all around all the time. The PhD experience would not have been the same without you all, and it’s great to have such good friends I can enjoy spending time out of the lab with too.

All past and present members of the Discipline of Biochemistry for support, advice, and Friday arvo drinks, with special mention to the Peet, Whitelaw and Thomas labs, you guys have all been great mates!

The CMGD and NGED for travel support, the Australian zebrafish community, especially Dr. Joan Heath for donating a transgenic line, Jason Cockington and Simon Wells for spending countless hours maintaining the invaluable zebrafish facility.

My family, Bronwyn, Paul and Lucy for supporting me and always being encouraging through what I think has been a trying time for all of us. Here’s to a wonderful future.

Thank you all!

xx