RESERVOIR SIMULATION STUDIES OF FORMATION DAMAGE FOR IMPROVED RECOVERY ON OIL-GAS RESERVOIRS

Australian School of Petroleum (ASP)

Master’s Candidate:

Thi Kim Phuong Nguyen

Supervisors:

Professor Pavel Bedrikovetsky (Principal supervisor)

Professor Manouchehr Haghighi (Co-supervisor)
Abstract

This thesis is dedicated to the development of new technologies for sweep improvement due to plugging of highly permeable channels and layers by injected or lifted or mobilized fines particles. The following methods of improved waterflood have been proposed in the thesis:

- Injection of raw or poorly treated water with consequent homogenization of the injectivity profile due to distributed along the well skin factor.
- Injection of low salinity or fresh water resulting in lifting of reservoir fines, their migration and further capture by the rock with permeability reduction and redirection of the injected water into unswept area.
- Injection of sweet water into watered-up abandoned wells during pressure blowdown in oil and gas reservoirs with strong water support.

In the above three cases, the proposal of the new technologies was backed by detailed reservoir simulations. In all cases, the application of the proposed improved oil recovery technology, as forecasted by reservoir simulation, leads to 3-15% of incremental recovery and 2-3 times decrease of the amount of produced and injected water.

The technology of raw water injection was developed using Eclipse waterflood BlackOil simulator with modelling of injectivity decline along the well due to plugging of porous media by injected particles. A new numerical procedure describing skin growth with time in each section of long horizontal wells have been developed and implemented into BlackOil Eclipse model. Different configurations of horizontal injectors and producers have been modelled resulting in production forecast with raw waterflooding.

The technology of low salinity water injection have been developed using Eclipse reservoir modelling with polymer injection option, which can describe mobilization of fines particles, their migration, capture and subsequent permeability decline. The main physics mechanism of incremental oil recovery found is the diversion of the injected water into unswept zones due to plugging the swept zone by capture particles. The incremental recovery, as obtained by reservoir simulation, is 12%. It may also result in 2 to 3 times decrease in water injection and production.

The proposal of a new technology of small bank of fresh water injection into watered-up and abandoned production wells result in lifting of reservoir fines, their migration and plugging the path for invaded aquifer water. It results in decrease of water production and prolongation of oil or gas production from wells.
DECLARATION AND STATEMENT OF ORIGINALITY

I herewith confirm that this work contains no material which has been accepted for the award of any other degree or diploma at any university or other tertiary institution to „Thi Kim Phuong Nguyen” and, to the best of my knowledge and belief, this thesis/report contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holders of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

I give consent to this copy of my thesis/report, when officially submitted to the Australian School of Petroleum, to be available for loan and photocopying.

Signed Date

………………………… 14th October 2011

Thi Kim Phuong Nguyen
ACKNOWLEDGEMENTS

Special thanks are to Professor Pavel Bedrikovetsky (ASP) and Professor Manouchehr Haghighi for their technical and moral support throughout this project.

I also would like to express my appreciation and gratitude to the Australian School of Petroleum Engineering (ASP) for providing support to my research.
TABLE OF CONTENTS

Abstract .. ii

Declaration and statement of originality ... iii

Acknowledgements .. iv

Publications ... x

CHAPTER 1: Introduction ... 1

1.1 Waterflooding overview ... 1

1.2 Objectives ... 2

CHAPTER 2: Sweep increase due to induced skin damage in horizontal wells: ... 4

2.1 Literature Review: ... 4

2.1.1 Sweep increase due to injectivity in horizontal wells: 4

2.1.2 Sweep increase for waterflooding due to induced skin damage: 4

2.1.3 Formation Damage Phenomenon: ... 7

2.1.4 Analytical model for impedance index formation damage 11

2.1.5 Determining the induced skin factor: ... 15

2.2 Coupled simulation of near wellbore damage and reservoir models: ... 16

2.3 Case study and simulation models: .. 19

2.3.1 Parallel Horizontal Injector and Producer in Thin Horizontal Reservoir with High and Low Permeability Zones (two-zone) .. 19

2.3.2 Bottom-Up Water Injection Using Horizontal Wells (overlapping wells) in homogeneous reservoir: ... 24

2.4 Results ... 28

2.4.1 Two Zone Reservoir .. 28

2.4.2 Homogenous Reservoir with Overlapping Wells: ... 35

2.5 Discussion .. 39

2.5.1 Parallel Horizontal Injector and Producer in Thin Horizontal Reservoir with High and Low Permeability Zones .. 39

2.5.2 Homogenous Reservoir with Overlapping Wells .. 43

2.6 Summary ... 46

2.7 Conclusions: .. 48

CHAPTER 3: Sweep increase due to induced fines migration and formation damage: ... 49

3.1 Literature Review: ... 49

3.1.1 Fines Migration Theory: .. 49

3.1.2 Mechanism for improved sweep efficiency due to fines migration 54

3.1.3 Basic equations for fines migration under 2-phase flow 55

3.1.4 Large scale approximation ... 58
3.1.5 Overview of Polymer Flooding and its modeling in Eclipse simulator: 59

3.2 Coupled simulation of induced damage from fines migration and reservoir models: ... 61

3.3 Simulation models and reservoir descriptions: ... 62

3.4 Waterflooding and Polymer Injection Scheme: ... 64

3.5 Results.. 66

3.6 Discussion.. 68

3.7 Conclusion: ... 71

CHAPTER 4: Sweep increase due to water isolation during pressure depletion: ... 72

4.1 Simulation models and reservoir descriptions .. 72

4.2 Results.. 77

4.2.1 Gas Reservoir ... 77

4.2.2 Oil Reservoir .. 80

4.3 Discussion.. 84

4.4 Conclusion: ... 87

CHAPTER 5: Final conclusions and Recommendations: .. 88

5.1 Conclusions: ... 88

5.2 Recommendations: ... 89

Nomenclature .. 90

Symbols: .. 90

Greek Symbols ... 91

Subscripts .. 91

Abbreviations .. 91

References .. 92

Appendices .. 97

Appendix A-Further Results .. 97

Appendix B - Deep Bed Filtration Formulation: .. 100

B.1 Kinetic Equations: ... 102

B.2 Continuity Equation: .. 103

B.3 Darcy’s law .. 105

Appendix C - Impedance Formulation during Deep Bed Filtration and External Filter Cake Formation: .. 106

Appendix D - Internal formation damage at the transition zone .. 110

Appendix E - External filter cake growth ... 112

E.1 Cake erosion limit ... 114

Appendix F- Maximum retention function ... 117
LIST OF FIGURES

Figure 1: Sweep patterns for “clean” water and “raw” water in two-permeability-zone reservoir (Bedrikovetsky 2009) .. 6
Figure 2: Particles capturing processes: Deep bed filtration and external cake build-up (Bedrikovetsky et al. 2005) .. 7
Figure 3: Forces acting on a particle captured on the surface of the horizontal external cake (Farshbaf Zinati et al. 2007) ... 8
Figure 4: Piece-wise relationship between impedance index and time (pvi) during formation damage (Sharma et al., 1997) ... 10
Figure 5: Impedance index during Deep Bed Filtration and External Filter Cake build-UP (Bedrikovetsky 2009) .. 11
Figure 6: Framework for couple modeling formation damage into the reservoir model ... 18
Figure 7: a) Recovery factor during waterflood by clean water and suspension after 1 PVI as a function of permeability ratio; b) Incremental recovery during waterflood by "raw" water if compared with "clean" water injection as a function of the permeability ratio (Muhammad, 2008) ... 20
Figure 8: Two Zone reservoir with the high permeability shown in green 22
Figure 9: Bottom-up water injection using horizontal wells 26
Figure 10: Eclipse visualization for layout of overlapping wells in homogeneous reservoir .. 27
Figure 11: Recovery Factor vs Real Time (yrs) for injection of "clean" water and of "raw" water in two-zone reservoir .. 28
Figure 12: Recovery factor vs time (pvi) for "clean" and "raw" water injection in two- zone reservoir .. 29
Figure 13: Incremental recovery, by using "raw" water injection instead of "clean" water, vs skin factor in the two-zone reservoir ... 30
Figure 14: Water cut, during injection of "raw" and of "clean" water, vs real time in two-zone reservoir .. 31
Figure 15: Volume of injected water vs real time for injection of “raw” and of “clean” water in two-zone reservoir .. 32
Figure 16: Improved sweep efficiency with injectivity damage after 1 pvi in two-zone reservoir .. 33
Figure 17: Sweep efficiency increase due to skin factor distributed along the horizontal injector; the case of "long" hw ... 34
Figure 18: Recovery factor (of "raw" and of “clean” water injection) vs real time (yrs) for perpendicular overlapping wells in homogeneous reservoir ... 35
Figure 19: Recovery factor (of "raw" and of “clean” water injection) vs time (pvi) for perpendicular overlapping wells in homogeneous reservoir 36
Figure 20: Water Cut, during "raw" and “clean” water injection, vs real time for perpendicular overlapping wells in homogeneous reservoir 37
Figure 21: Water injected volume vs real time for perpendicular overlapping wells in homogeneous reservoir .. 38
Figure 22: Showing Effect of skin in homogeneous Reservoir with overlapping wells ... 45
Figure 23: Forces acting on attached particles during flow in porous media (torque balance on a single particle) (Bedrikovetsky et al. 2010) 50
Figure 24: Straining of detached particles in a single pore (Bedrikovetsky et al. 2010). ... 52
Figure 25: Permeability of the Hopeman sandstone to KCl brines (Lever & Dawe, 1984) ... 53
Figure 26: Dependency of retained particle concentration erosion number (Zeini et al. 2011) .. 54
Figure 27: Permeability profile for 5-layer-cake reservoir .. 63
Figure 28: Permeability profile for Highly heterogeneous SPE9 reservoir 63
Figure 29: Viscosity vs polymer concentration (Gao & Su, 2004) 64
Figure 30: Recovery factor (of “clean” water injection, polymer and low salinity water injection) vs real time (yrs) of “normal” and of “low salinity” water .. 66
Figure 31: Water Cut (of “clean” water injection, polymer and low salinity water injection) vs real time .. 66
Figure 32: Water produced volume (of “clean” water injection, polymer and low salinity water injection) vs real time .. 67
Figure 33: Injection pressure (of “clean” water injection, polymer and low salinity water injection) vs real time .. 67
Figure 34: Water invasion profile during normal depletion and during low salinity waterflooding .. 73
Figure 35: 3D Visualization of gas Reservoir with underlying aquifer 74
Figure 36: Aquifer encroachment towards the producers in a dipping gas reservoir . 75
Figure 37: Recovery factor, with normal depletion and with induced fines migration, vs real time .. 77
Figure 38: Field Water cut, with normal depletion and with induced fines migration, vs time ... 77
Figure 39: Cumulative aquifer influx, with normal depletion and with induced fines migration, vs time .. 77
Figure 40: Residual gas at abandonment for normal depletion and with limited low salinity injection .. 78
Figure 41: Recovery factor, with normal production and with induced fines migration, vs real time .. 80
Figure 42: Field water cut, with normal depletion and with induced fines migration, vs real time .. 80
Figure 43: Aquifer influx rate, with normal depletion and with induced fines migration, vs real time .. 81
Figure 44: Low permeable zone, resulted from fines migration, during low salinity water injection .. 81
Figure 45: Sensitivity analysis for various pore volume injected on low salinity water injection performance ... 82
Figure 46: Sensitivity analysis for oil viscosity on low salinity water injection performance .. 82
Figure 47: Residual oil at abandonment with normal Depletion and with induced fines migration .. 83
Figure 48: Visualization of oil displacement in two zone reservoir with no skin after 1 p.v.i .. 97
Figure 49: Visualization of oil displacement in two zone reservoir with skin after 1 p.v.i .. 97
Figure 50: Visualization of oil displacement in heterogeneous reservoir with channel with no skin after 1 p.v.i .. 98
Figure 51: Visualization of oil displacement in heterogeneous reservoir with channel with skin after 1 p.v.i .. 98
Figure 52: Visualization of oil displacement in homogeneous reservoir with overlapping wells with no skin after 1 p.v.i ... 99

Figure 53: Visualization of oil displacement in homogeneous reservoir with overlapping wells with skin after 1 p.v. ... 99

LIST OF TABLES

Table 1: Parameters used for two-zone reservoir ... 21
Table 2: Data for simulation of formation damage during waterflooding in a two-zone reservoir ... 23
Table 3: Parameters used for overlap studies .. 24
Table 4: Formation damage data for simulation in Overlap configuration case study 25
Table 5: Incremental Recovery factor by “raw” water injection compared to “clean” water injection in volatile oil 1cp two-zone reservoir .. 39
Table 6: Incremental Recovery factor by “raw” water injection compared to “clean” water injection in volatile oil 1cp in homogeneous reservoir 44
Table 7: Parameters used for 5-layered-cake reservoir .. 62
Table 8: Recovery Factors vs real time for normal waterflood, low salinity waterflood and polymer flood after 30 years ... 68
Table 9: Parameters used for gas reservoir with a strong underlying aquifer 73
Table 10: Recovery factor and field life for "normal depletion" case and "with limited low salinity water injection" case ... 85
PUBLICATIONS

Peer-Review Journal Paper:

Conference Paper: