Relation Between QT Interval Variability and Cardiac Sympathetic Innervation in Patients with Diabetes Mellitus

Mathias Baumert¹, Julian Sacre², Bennett Franjic²

¹The University of Adelaide, Adelaide, Australia
²University of Queensland, Brisbane, Australia

Abstract

Elevated QT interval variability (QTV) has been associated with increased cardiac mortality, but the underlying mechanisms are incompletely understood. Sympathetic activity is thought to be a main contributor to QTV. The aim of this study was to investigate the relation between cardiac sympathetic integrity and QTV in 15 patients with type 2 diabetes mellitus and varying degrees of cardiac autonomic neuropathy. Cardiac sympathetic innervation was assessed by 123I-mIBG scintigraphy based on heart-to-mediastinum ratio of 123I-mIBG uptake 4 hours after infusion. To assess QTV high resolution ECGs (1000 Hz) were recorded during standing. Beat-to-beat QT intervals were calculated over a period of 5 minutes, using a template-stretching algorithm. QTV was quantified using time and frequency domain measures as well as non-linear approaches (symbolic dynamics, fractal dimension). The group mean and standard deviation of HMR values were 1.07 ± 0.48. Time and frequency domain QTV parameters were significantly increased in subjects with sympathetic dysinnervation and inversely correlated with HMR ($r = -0.7, p < 0.001$). In conclusion, there is a clear link between sympathetic dysinnervation and elevated QTV in patients with type 2 diabetes mellitus during sympathetic activation. Sympathetic dysinnervation is associated with increased ventricular repolarization lability.

1. Introduction

QT interval variability reflects temporal fluctuations in the duration of ventricular repolarization. Elevated QT variability has been associated with increased sudden cardiac death risk in chronic heart failure [1] and ventricular arrhythmogenesis in patients with structural heart disease [2]. The origins of QT variability, particularly the influences of autonomic nervous system activity, remain incompletely understood. Acute elevation of QT variability has been observed in response to sympathetic activation [3] and in disease states characterized by sympathetic overactivity [1, 2]. Conflicting results on associations with cardiac norepinephrine spillover, the gold standard in assessment of cardiac sympathetic activity, have been reported. Positive correlations were described in hypertension [4] but not major depression/panic disorder [5]. The cardiac autonomic neuropathy (CAN) of type 2 diabetes mellitus (T2DM) is independently associated with poor prognosis [6]. Vagal impairment of cardiac control can be readily assessed by measuring heart rate variability [7]. Sympathetic involvement in CAN may be identified with high specificity by radionuclide imaging using the tracer iodine 123-metaiodobenzylguanidine (123I-mIBG), which shares the neuronal uptake and storage mechanisms of norepinephrine. Reduced heart rate variability as well as globally reduced cardiac uptake of 123I-mIBG, consistent with vagal and sympathetic dysinnervation, have been identified in patients with diabetes mellitus [6]. In a recent study we reported negative correlations between cardiac 123I-mIBG uptake and QT variability in patients with T2DM, suggestive of an association between myocardial sympathetic dysinnervation and repolarization lability. [8]. Importantly, this association was only observed during a period of sympathetic activation (i.e. standing), but not during rest. The aim of this study was to further identify specific features of QT interval variability that might be primarily reflective of sympathetic dysinnervation.

2. Methods

2.1. Subjects

Subjects with T2DM ($n = 15$) with no history of cardiovascular disease, cancer or psychiatric or other severe illness were recruited from the community (Table 1). 123I-mIBG imaging and heart rate variability data for this cohort has been reported previously [9]. Exercise echocardiography studies were performed in all patients to verify normal ejection fraction (> 50%) and the absence of coronary artery disease (i.e. no inducible wall motion abnormalities indicative of ischemia). Patients provided written informed consent and the study protocol was approved by
hospital and university human research ethics committees.

2.2. 123I-MIBG imaging

Protocols for recording and analysis of 123I-mIBG images have been described in detail [9]. Patients were premedicated with 600 mg potassium perchlorate to block thyroid uptake of radioiodine. A low-energy, high-resolution collimator (Symbia, Siemens, Erlangen, Germany) was used in the acquisition of anterior planar and single photon emission computed tomography (SPECT; 32 projections for 50 s each) images 15 minutes (early) and 4 hours (delayed) following injection of 150 MBq of 123I-mIBG. Global cardiac uptake of 123I-mIBG was calculated from both early and delayed planar images by the ratio of tracer activity (mean count per pixel) in the heart and mediastinum. Due to non-neuronal uptake affecting early images, the delayed heart-to-mediastinum ratio (HMR) was primarily used in analyses and to define the presence of cardiac sympathetic dysinnervation (HMR < 1.8) [10].

2.3. ECG recording and QT variability analysis

Studies were performed in accordance with standard conditions for clinical autonomic testing. Subjects were assessed in the morning and following a light meal and administration of diabetes medications. Pre-test abstinence from smoking and caffeine (12 hours), and alcohol, heavy exercise and anti-hypertensive medications (24 hours) was required. Following at least 20 minutes supine rest in a quiet room, an ECG (lead II) was recorded continuously over 5 minutes during standing at a sampling frequency of 1 kHz using a Powerlab 8SP data acquisition system linked with commercially available software (LabChart Pro v6.1.3, AD Instruments, Sydney, Australia). After visual inspection of all ECG recordings to remove artifacts, beat-to-beat QT intervals were calculated using the algorithm proposed by Berger et al [1]. Here, an operator-defined QT interval template is selected for one beat based on the beginning of the QRS complex and the beginning and end of the T wave. The algorithm then calculates the QT intervals of all other beats by determining the degree to which the template must be stretched or compressed in time to optimally match each T wave. In contrast with alternative methods, consideration of the whole T wave enables a relatively robust estimation of beat-to-beat QT interval changes. Of the beat-to-beat QT interval time series we computed the measures summarized in Table 2.3.

Time and frequency domain measures were computed according to the Heart Rate Variability Task Force guidelines [11]. To compute the fractal dimension D_H of a graph, Higuchi considers a finite set of observations $X(j), j = 1, 2, ..., N$ taken at a regular interval k, and evaluates the length $L_m(k)$ of the corresponding graph for different interval lengths k from sequences $X^k_m: X(m), X(m+k), X(m+2k), ..., X(m+[\frac{N-m}{k}])$, where $m = 1, 2, ..., k$ and $[\frac{N-m}{k}]$ denotes the integer part of $(N - m)/k$. The length of the graph is calculated as

$$L_m(k) = \sum_{i=1}^{[\frac{N-m}{k}]} |X(m + ik) - X(m + (i - 1)k)|$$

(1)

If the behaviour of the graph has fractal characteristics over the available range k then

$$L(k) \propto k^{-D_H},$$

(2)

where D_H is the fractal dimension and $L(k)$ is the average value over k partial lengths of the graph. For a straight line, $D_H = 1$. For Brownian motion, $D_H = 1.5$, and for Gaussian white noise, D_H saturates at two. For time series with $1/f^\beta$ power spectra, $D_H = (5 - \beta)/2$. This relationship is valid for $1 < \beta < 3$. Numerical experiments have shown that time series with the same β can show different D_H values depending on the phase distribution [12]. We have previously employed Higuchi’s fractal dimension to measure the roughness of R-R time series.
nervation. In a recent study we investigated temporal dy-
temporal pattern of QTV indicative of sympathetic dysin-
123
ment of QTV complexity and its lack of association with
being primarily responsible for this association. Assess-
ysis of QTV suggest a lack of a specific frequency range
pathetic dysinnervation. Time and frequency domain anal-
elicited by sympathetic activation is associated with sym-
4. Discussion and conclusions
measures shows a significant correlation with HMR.
time and frequency domain measures and HMR around
ble 3 show a similar degree of correlation between all QTV
ation coefficients as indicated in the last column of T a-
avaluation level. All the patterns
(patternic sequences) with a length of three were grouped
into four families according to the number and types of
vations from one symbol to the next. The pattern fami-
ies are: 1) patterns with no variation (0V—all three sym-
ols are equal); 2) patterns with one variation (1V—two
secutive symbols are equal and the remaining one is
different); 3) patterns with two like variations (2LV—the
three symbols form an ascending or descending ramp), 4)
atterns with two unlike variations (2ULV—the three sym-
ols form a peak or a valley).

2.4. Statistics
For statistical analysis we computed mean values and
standard deviations of QTV measures as well as 123I-
MBG markers. To investigate the relationship between
QTV measures and cardiac sympathetic dysinnervation,
we computed Pearson’s correlation coefficients.

3. Results
Patients displayed a wide range of cardiac 123I-MBG
uptake, ranking from normal (HMR > 1.8; n = 9) to
abnormal (HMR < 1.8; n = 5). Measures of QTV are
displayed in Table 3 subdivided based on presence of sym-
pathetic dysinnervation (Table3) All time and frequency
domain measures indicate elevated QTV in patients with
sympathetic dysinnervation. Non-linear measures, which
assess the complexity rather than the magnitude of QTV
show no significant group differences Pearson’s correla-
tion coefficients as indicated in the last column of Ta-
ble 3 show a similar degree of correlation between all QTV
time and frequency domain measures and HMR around
$r = 0.7$, with the exception of HF. None of the complexity
measures shows a significant correlation with HMR.

4. Discussion and conclusions
The main finding of our study is that magnitude rather
than complexity of beat-to-beat QT interval variability
elicted by sympathetic activation is associated with sym-
pathetic dysinnervation. Time and frequency domain anal-
ysis of QTV suggest a lack of a specific frequency range
being primarily responsible for this association. Assess-
ment of QTV complexity and its lack of association with
123I-MBG uptake further suggests that there is no specific
temporal pattern of QTV indicative of sympathetic dysin-
nervation. In a recent study we investigated temporal dy-
namics of QTV by means of detrended fluctuation analysis
and multiscale entropy and observed no long-range corre-
lations and multiscale entropy patterns, which were similar
to those of random data [15]. Despite the close physiologi-
cal relationship between average heart rate and average QT
interval, temporal short-term dynamics differ notably, the
latter being more erratic. With regard to sympathetic in-
volvement in the generation of QTV, our current findings
point towards a rather non-specific association.

Our data support the hypothesis that QT variability
reflects sympathetic function in the context of acute or
chronic sympathetic activation, as with standing, selective
pharmacological intervention, or disease. However, 123I-
MBG scintigraphy is not synonymous with measuring
sympathetic activity per se, but instead reflects the holistic
integrity of postganglionic presynaptic sympathetic nerve
terminals, including norepinephrine uptake, storage and
release mechanisms [16]. Indeed, the dysinnervation iden-
tified by low HMR in our patients may relate to structural,
rather than functional defects, characterized by anatomical
neuronal loss (i.e. denervation).

In conclusion, there is a clear link between sympathetic
dysinnervation and elevated QTV in patients with type 2
diabetes mellitus during sympathetic activation. Sympa-
thetic dysinnervation is associated with increased ventric-
ular repolarization lability.

Table 3. Group means and standard deviations of QT vari-
ability measures in patients with normal sympathetic in-
nervation (T2DM+) and with sympathetic dysinnervation
(T2DM-). t-test p-values as well as Pearson’s correlation
coefficient r with HMR.

\begin{tabular}{lcccr}
& T2DM+ & T2DM- & p & r \\
meanQT & 356.2 ± 33.2 & 378.0 ± 33.2 & 0.16 & -0.38 \\
stdQT & 3.6 ± 0.8 & 6.7 ± 0.8 & 0.02 & -0.75 \\
RMSSD & 2.9 ± 1.4 & 7.7 ± 1.4 & 0.01 & -0.77 \\
LF & 0.9 ± 0.4 & 4.6 ± 0.4 & 0.01 & -0.71 \\
HF & 1.4 ± 1.1 & 5.4 ± 1.1 & 0.07 & -0.57 \\
D_H & 1.9 ± 0.1 & 2.0 ± 0.1 & 0.09 & -0.33 \\
0V & 32.9 ± 14.6 & 25.1 ± 14.6 & 0.30 & 0.23 \\
1V & 39.5 ± 4.7 & 42.0 ± 4.7 & 0.32 & -0.19 \\
2LV & 4.3 ± 3.5 & 6.2 ± 3.5 & 0.45 & -0.26 \\
2ULV & 23.3 ± 9.2 & 26.7 ± 9.2 & 0.43 & -0.13
\end{tabular}

Acknowledgements

This study was partly supported by a grant from the Aus-
tralian Research Council (110102049).
References

Address for correspondence:
Mathias Baumert
The University of Adelaide
School of Electrical and Electronic Engineering
SA 5005, Australia
E-mail address: mbaumert@eleceng.adelaide.edu.au