A Study of Tellurite Glasses for Electro-optic Optical Fibre Devices

by

Sean Manning

Supervisors:
Prof. Tanya M. Monro
Prof. Jesper Munch

A thesis submitted in fulfilment of the degree of Doctor of Philosophy

in the
Faculty of Science
School of Chemistry & Physics

November 2011
Declaration of Authorship

I, Sean Manning, declare that this thesis titled, ‘A Study of Tellurite Glasses for Electro-optic Optical Fibre Devices’ and the work presented in it are my own. I confirm that:

- This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Sean Manning and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

- I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

- The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works.

- I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed:

__

Date:

__
List of Publications

1. Manning, Sean; Ebendorff-Heidepriem, Heike; Heike Monro, Tanya Mary.
 Sodium Zinc Tellurite Glass: a Candidate Material for Core/Clad Fibres for Electro-optic Devices.
 Proceedings of the 9th Pacific Rim Conference on Ceramic and Glass Technology (PACRIM9), held in Cairns, Queensland, Australia July 10-14 2011.

2. Manning, Sean; Monro, Tanya Mary; Munch, Jesper; Ottaway, David John.
 Improved maker fringes data analysis using genetic algorithms.

3. Manning, Sean; Ebendorff-Heidepriem, Heike; Monro, Tanya Mary; Munch, Jesper.
 Tellurite glasses for photonic devices with enhanced nonlinearity.
 Proceedings of the 8th Pacific Rim Conference on Ceramic and Glass Technology (PACRIM8), held in Vancouver, British Columbia, Canada May 31- June 5 2009.

4. Manning, Sean; Monro, Tanya Mary; Munch, Jesper; Ottaway, David John.
 On the application of genetic algorithms to maker fringes analysis.
 18th Australian Institute of Physics (AIP) Congress Conference, held in Adelaide, South Australia Nov 30-Dec 5 2008.
“It doesn’t matter how beautiful your theory is, it doesn’t matter how smart you are. If it doesn’t agree with experiment, it’s wrong.”

Richard P. Feynman
Optical fibre devices that can control light via the application of electric fields are of enormous technological interest. These so called electro-optic devices have potential applications in many varied places, such as data systems, pulsed lasers and sensing technologies.

We have identified tellurium dioxide (tellurite) based glasses as being especially suitable for electro-optic fibre devices owing to their large nonlinear coefficients and high crystallisation stabilities. Furthermore, tellurite glass is compatible with the extrusion technique for producing optical fibre preforms, this being a fabrication strength of our research group.

We developed tellurite glasses based on the general formula $10\text{Na}_2\text{O}.\text{xMO}.(90-x)\text{TeO}_2$ with M=Magnesium, Zinc and Barium and $x = 5, 10, 15$ and 20. Raman spectroscopy was utilised to determine the structure of the glasses under study, from which definite compositional trends were observed. Further, we measured physical, thermal and optical properties of these glasses that are critical for the design of electro-optical optical fibres. Certain of these properties displayed compositional trends that were correlated with the structural data, thus indicating physical origins for the properties. This information can thus be used to guide future glass composition design.

We investigated thermal poling as a potential post processing technique for inducing second order nonlinearities thereby enhancing the efficiency of the electro-optic effects. The Maker fringes technique was applied to measuring the induced second order nonlinearities. We have made refinements to the standard way in which these measurements are made, both in terms of the experimental technique as well as the analysis of the data.
We developed computational models of optical fibres with internal electrodes for determining the properties, such as optical attenuation resulting from the presence of internal electrodes. The results of these computations in combination with the measurements of the glass properties are used to guide the design of prototype electro-optic fibres. Finally, we developed various techniques for the fabrication of electro-optic fibre devices, such as optical fibre preform extrusion, fibre drawing techniques and electrode insertion.
Acknowledgements

First and foremost I would like to thank my supervisors Tanya Monro and Jesper Munch for their guidance, support and advice. Both have contributed heavily to forming the physicist I have become. Additionally, much thanks and appreciation must go to Heike Ebendorff-Heidepriem and David Ottaway who provided me with invaluable co-supervision, if however unofficially, their experience and guidance was greatly appreciated.

During my PhD I had the pleasure of working with so many great people, all of whom helped me at some stage or other, whether directly or in spirit. People such as: Adrian Selby, Aidan Brooks, Alastair Dowler, Blair Middlemiss, Bob Nation, David Hosken, Eric Schartner, Herbert Fu, Ka Wu, Keiron Boyd, Kevin Kuan, Kristopher Rowland, Matt Heintze, Matt Henderson, Michael Oermann, Mifta Ganja, Murray Hamilton, Nikita Simakov, Peter Veitch, Shahraam Afshar, Trevor Waterhouse, Neville Wild, Roger Moore and Tilanka Munasinghe.

I also had the fortune to travel far and wide to meet some fantastic collaborators such as: Walter Margulis and Oleksandr Tarasenko at ACREO, Steve Madden, Barry Luther-Davies and Khu Vu at ANU and Kathleen Richardson at Clemson University.

Finally, I would like to acknowledge my Wife and kids for their love and support. They are the stabilising force in my life and I’d be lost without them.

Thank you.
Contents

Declaration of Authorship iii

Abstract vi

Acknowledgements viii

List of Figures xiii

List of Tables xix

1 Introduction 1

1.1 Background and Motivation .. 1
1.2 Review of Literature .. 5
 1.2.1 Tellurite Glass .. 5
 1.2.2 Electro-optics in Optical Fibres 7
1.3 Thesis Aims and Methodology .. 9
1.4 Thesis Outline ... 10
1.5 Statement of Original Work and Author Contribution 13
1.6 List of Publications .. 14

2 Nonlinear Optical Theory 15

2.1 Introduction ... 15
2.2 Nonlinear Optics .. 15
2.3 Second Order Nonlinearities .. 17
 2.3.1 Propagation of the Fields 21
 2.3.2 Derivation of the Maker Fringes Expression 22
 2.3.3 Second Order Nonlinear Effects in Thermally Poled Materials . . . 27
2.4 Third Order Nonlinearities ... 34
 2.4.1 Origin of the Nonlinear Refractive Index 35
2.5 Conclusion ... 37

3 Glass Theory, Design & Fabrication 39

3.1 Introduction .. 39
3.2 What is a Glass? .. 39
3.3 General Properties of Glasses .. 42
 3.3.1 Structural Properties ... 42
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Thermal Poling</td>
<td>127</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>127</td>
</tr>
<tr>
<td>7.2</td>
<td>Background</td>
<td>127</td>
</tr>
<tr>
<td>7.3</td>
<td>Experimental Details</td>
<td>130</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Experimental Plan</td>
<td>130</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Thermal Poling Apparatus and Configurations</td>
<td>132</td>
</tr>
<tr>
<td>7.4</td>
<td>Results and Discussion</td>
<td>134</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Charge Migration Thermal Poling</td>
<td>134</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Charge Migration Thermal Poling Using a Blocking Electrode</td>
<td>138</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Charge Injection Thermal Poling</td>
<td>141</td>
</tr>
<tr>
<td>7.5</td>
<td>Conclusion</td>
<td>144</td>
</tr>
<tr>
<td>8</td>
<td>Measurements of Second Order Nonlinearities</td>
<td>147</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>147</td>
</tr>
<tr>
<td>8.2</td>
<td>Maker Fringes Analysis: Background</td>
<td>148</td>
</tr>
<tr>
<td>8.3</td>
<td>Experimental Details</td>
<td>151</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Experimental Plan</td>
<td>151</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Description of Maker Fringes Experiment</td>
<td>151</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Data Acquisition</td>
<td>153</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Calibration and Alignment</td>
<td>155</td>
</tr>
<tr>
<td>8.4</td>
<td>Data Fitting Techniques</td>
<td>159</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Root Mean Square Error Minimisation Fitting Procedure</td>
<td>161</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Genetic Algorithm Fitting Procedure</td>
<td>161</td>
</tr>
<tr>
<td>8.5</td>
<td>Results and Discussion</td>
<td>163</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Quartz Reference Measurements</td>
<td>163</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Thermally Poled Infrasil</td>
<td>165</td>
</tr>
<tr>
<td>8.5.3</td>
<td>Thermally Poled Tellurite</td>
<td>167</td>
</tr>
<tr>
<td>8.6</td>
<td>Measurement Techniques for the Thickness of the Nonlinear Region</td>
<td>169</td>
</tr>
<tr>
<td>8.6.1</td>
<td>SHG Microscopy</td>
<td>169</td>
</tr>
<tr>
<td>8.6.2</td>
<td>Differential Etching</td>
<td>172</td>
</tr>
<tr>
<td>8.6.3</td>
<td>Results and Discussion</td>
<td>172</td>
</tr>
<tr>
<td>8.7</td>
<td>Conclusion</td>
<td>175</td>
</tr>
<tr>
<td>9</td>
<td>Fibre Preliminaries</td>
<td>177</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>177</td>
</tr>
<tr>
<td>9.2</td>
<td>Computational Modelling of Electro-optic Optical Fibres</td>
<td>178</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Electric Fields Between Internal Electrodes</td>
<td>179</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Electrode Induced Optical Attenuation</td>
<td>186</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Discussion of Results</td>
<td>191</td>
</tr>
<tr>
<td>9.3</td>
<td>Insertion of Electrodes into Optical Fibres</td>
<td>191</td>
</tr>
<tr>
<td>9.3.1</td>
<td>The Physics of Capillary Filling</td>
<td>192</td>
</tr>
<tr>
<td>9.3.1.1</td>
<td>Contact Angle Measurements</td>
<td>194</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Design and Operation of the Fibre Filling Apparatus</td>
<td>195</td>
</tr>
<tr>
<td>9.3.2.1</td>
<td>Selective Filling of Optical Fibres</td>
<td>197</td>
</tr>
<tr>
<td>9.4</td>
<td>Optical Fibre Preform Fabrication</td>
<td>201</td>
</tr>
<tr>
<td>9.4.1</td>
<td>Fabrication of the Electrode Jacket</td>
<td>202</td>
</tr>
<tr>
<td>9.4.2</td>
<td>Conclusion</td>
<td>205</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>9.5 Preliminary Investigations of Optical Fibre Fabrication</td>
<td>206</td>
<td></td>
</tr>
<tr>
<td>9.5.1 Tellurite Step Index Fibre Fabrication Experiments</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>9.6 Conclusion</td>
<td>211</td>
<td></td>
</tr>
<tr>
<td>10 Concluding Remarks</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>10.1 Conclusion of Thesis Findings and Results</td>
<td>213</td>
<td></td>
</tr>
<tr>
<td>10.2 Future Work</td>
<td>215</td>
<td></td>
</tr>
</tbody>
</table>
List of Figures

1.1 An assortment of microstructured optical fibres .. 2
1.2 Optical transmission of fused silica ... 3
1.3 Voltage dependent wave plate as an example of an electro-optic device 4
1.4 Number of papers published relating to tellurite glass from 1952 to 2011 6
1.5 Thesis structure flow diagram .. 11
2.1 Second harmonic generation energy level diagram .. 18
2.2 Diagram for second harmonic generation in a dispersive medium 22
2.3 Electro-optical response of glass before and after poling 29
2.4 Illustration of the symmetry possessed by the electrical potential in thermally poled glass .. 30
2.5 Configuration for SHG in the pp-configuration ... 32
2.6 Third harmonic generation energy level diagram .. 34
3.1 Atomic arrangements in the crystalline and glassy state 40
3.2 Potential cooling curves for glass and crystal formation 41
3.3 The effect of network modifying ions on the atomic arrangement in a glass 43
3.4 Structural representation of Te-O subunits .. 46
3.5 Brass moulds for glass casting and the resulting billets 51
4.1 Conversion between Raman shift and Frequency (blue) and Wavelength shift (red) for input light at 514 nm ... 57
4.2 Example of deconvoluted raman spectrum ... 58
4.3 Ball and stick representation of the tellurite lattice vibrations that contribute to the Raman A mode ... 59
4.4 Ball and stick representation of the tellurite lattice vibrations that contribute to the Raman B mode ... 59
4.5 Ball and stick representation of the tellurite lattice vibrations that contribute to the Raman C mode ... 60
4.6 Ball and stick representation of the tellurite lattice vibrations that contribute to the Raman D mode ... 60
4.7 Ball and stick representation of the tellurite lattice vibrations that contribute to the Raman E mode ... 61
4.8 Raman spectra for the TMN glass series ... 64
4.9 Raman spectra for the TZN glass series ... 64
4.10 Raman spectra for the TBN glass series ... 65
4.11 Effect of modifier content on the relative intensities of the Raman A band for the TMN, TZN and TBN glasses ... 67
4.12 Effect of modifier content on the position of the Raman A band for the TMN, TZN and TBN glasses ... 67
4.13 Effect of modifier content on the relative intensities of the Raman B band for the TMN, TZN and TBN glasses .. 68
4.14 Effect of modifier content on the position of the Raman B band for the TMN, TZN and TBN glasses .. 69
4.15 Effect of modifier content on the relative intensities of the Raman C band for the TMN, TZN and TBN glasses .. 70
4.16 Effect of modifier content on the position of the Raman C band for the TMN, TZN and TBN glasses .. 71
4.17 Effect of modifier content on the relative intensities of the Raman D band for the TMN, TZN and TBN glasses .. 71
4.18 Effect of modifier content on the position of the Raman D band for the TMN, TZN and TBN glasses .. 72
4.19 Effect of modifier content on the relative intensities of the Raman E band for the TMN, TZN and TBN glasses .. 73
4.20 Effect of modifier content on the position of the Raman E band for the TMN, TZN and TBN glasses .. 74

5.1 Experimental configuration for Archimedes Density Measurement 77
5.2 Densities of TMN, TZN and TBN glass series 79
5.3 Molar masses of TMN, TZN and TBN glass series 80
5.4 Molar volume of TMN, TZN and TBN glass series 80
5.5 Schematic representation of a DSC apparatus 82
5.6 Example of DSC trace with key temperature features indicated 83
5.7 DSC traces for TMN, TZN and TBN glass series 85
5.8 Plot of ΔT=Tg−Tc for TMN, TZN and TBN glass series 86
5.9 Plot of enthalpy of crystallisation for TMN, TZN and TBN glass series . 87
5.10 Schematic of apparatus for thermal expansion coefficient measurement 90
5.11 Example of thermal expansion measurement raw data for IG5 reference glass ... 91
5.12 Example of thermal expansion measurement raw data for TMN glass series 92
5.13 Example of thermal expansion measurement raw data for TZN glass series 92
5.14 Example of thermal expansion measurement raw data for TBN glass series 93
5.15 Thermal expansion coefficients for TMN, TZN and TBN glass series 94

6.1 Proposed energy band diagram for tellurite glass 101
6.2 Examples of indirect band gap fitting procedure for the TZN series 102
6.3 Compositional dependence of indirect band gap for TMN, TZN and TBN glass series .. 102
6.4 Infrared absorption spectrum of TMN1 and theoretical multiphonon edge 105
6.5 Compositional dependence of multiphonon onset wavelength for TMN, TZN and TBN glass series ... 106
6.6 Compositional dependence of attenuation due to OH− contamination 107
6.7 Ray diagram for an optical fibre ... 108
6.8 Prism coupling configuration .. 109
6.9 Example trace from a prism coupler .. 111
6.10 Refractive index of tellurite glasses measured at 1064 nm 112
6.11 Simple Z scan configuration ... 114
6.12 Examples of Z scan signals for self focusing and self defocusing 115
6.13 Schematic of Z-scan experimental setup .. 116
6.14 Overlap of Gaussian with truncated Bessel function 117
6.15 Representative Z scan data set .. 118
6.16 Z Scan measurements at various incident intensities 119
6.17 Nonlinear refractive indices of Tellurite glasses 121
6.18 Millers law plot with various representative glass types indicated along with TMN, TZN and TBN glasses 124

7.1 Schematic of the key steps in the charge migration thermal poling process 128
7.2 Schematic of the key steps in the charge injection thermal poling process 129
7.3 Thermal poling apparatus ... 133
7.4 Ohms law plot for TZN2 at 250°C ... 136
7.5 Time dependence of the current through TZN2 at 250°C 136
7.6 Optical micrograph of the cathodic surface of TZN2 after thermal poling 137
7.7 Reproduction of an optical micrograph of the chemically reduced region at the cathodic surface of a Bismuth borate glass. 138
7.8 Two possible configurations for the blocking electrode thermal poling technique .. 139
7.9 Time dependence of the current for TZN2 in the two blocking electrode configurations ... 140
7.10 Charge injection thermal poling configuration 142
7.11 Time dependence of the current for TZN2 in the charge injection configurations .. 143
7.12 Schematic illustration of the electrode configuration for thermal poling of optical fibres ... 145
7.13 Simulated equipotential maps and ion distributions for fibres with two anodes .. 145

8.1 Experimental configuration for Maker et al. original Maker fringes experi-
ment .. 148
8.2 First recorded Maker fringes ... 149
8.3 Simulated Maker fringes with the inclusion of higher order interference and without ... 150
8.4 Maker fringes measurement apparatus .. 152
8.5 Circuit diagram for the Maker fringe data conditioning and acquisition system .. 154
8.6 Timing diagram for the Maker fringes experiment data acquisition system 156
8.7 Photomultiplier signal linearity plot ... 157
8.8 Relative error in the Maker fringes data vs number of pulses averaged over 158
8.9 Plot of SH power vs lens to sample separation 159
8.10 Optimised fit to y-cut quartz Maker fringes data 165
8.11 Convergence of Maker fringes fitting parameters for thermally poled Infrasil 166
8.12 Optimised fit to thermally poled Infrasil Maker fringes data 168
8.13 Measured angular dependence of second harmonic power for thermally poled TZN3 sample ... 168
8.14 Schematic of SHG microscopy sample, optical micrograph of the region imaged in SHG micrograph and SHG micrograph 171
8.15 Mean line scan of the SHG channel taken from an SHG micrograph of thermally poled Infrasil ... 171
8.16 SEM of the etched depletion region of thermally poled Infrasil 173
8.17 SEM of the anodic face of thermally poled infrasil 173
8.18 Overlay of SON profile with SEM of depletion region 174
8.19 Second order nonlinear susceptibility as a function of depth under the anodic surface ... 175

9.1 Comparison between experiment and simulation for a poled SIF and the modelled electric field distribution 181
9.2 Modelled electric field distribution for a step index fibre with internal electrodes ... 182
9.3 Modelled electric field distribution for a hexagonal three ring MOF with internal electrodes .. 183
9.4 Modelled electric field distribution for a wagon wheel MOF with internal electrodes ... 185
9.5 Core electric field strengths for three representative fibre types with internal electrodes calculated over a range of electrode separations 186
9.6 Optical fibre with internal electrodes ... 187
9.7 Convergence of electrode induced loss .. 188
9.8 Electrode induced loss vs. electrode to core separation 189
9.9 Electrode induced loss for a wagon wheel MOF calculated for various mesh element sizes .. 190
9.10 Schematic representation of pressure assisted filling of capillaries for wetting and nonwetting liquids 192
9.11 Illustration of the contact angles between a liquid on a solid substrate . 193
9.12 Photographs of BiSn contacting silica, bismuth and tellurite substrates . 195
9.13 Photograph of fibre filling apparatus ... 196
9.14 Schematic of filling apparatus showing fibre positioning and sealing technique ... 197
9.15 Illustration of manual fibre hole blocking 198
9.16 Photograph of an optical fibre with a manually blocked hole 199
9.17 Photograph of an optical fibre with pressure assisted filling of UV glue 199
9.18 Illustration of UV glue pressure filling set up 200
9.19 Photograph of an optical fibre prepared for selective filling demonstrating the ideal cleave position .. 200
9.20 Photograph of the cross section of an optical fibre with one hole blocked for selective filling ... 201
9.21 Photograph of an optical fibre with a selectively filled electrode hole 201
9.22 Schematic of the optical fibre preform extrusion apparatus 202
9.23 Illustration of the extruded jacket and core for creating the preform for a step index optical fibre with internal electrodes 203
9.24 Die for electrode jacket preform .. 203
9.25 Electrode jacket preform extrusion trials 204
9.26 Linear fit to TZN refractive index data 208
9.27 Cut back measurement data showing optical attenuation of a core glass bare fibre .. 209
9.28 Microscopy images of tellurite step index fibre 210
9.29 Cut back measurement data showing optical attenuation of a tellurite step index fibre ... 210
List of Tables

3.1 Deitzel’s Field Strength Parameters for Glass Formation 45
3.2 Modifier properties .. 49
3.3 Purity and supplier for glass raw material ... 50
3.4 Table of glass compositions investigated. ... 52

4.1 Comparison of certain properties of Quartz and Fused Silica 56
4.2 Raman band assignment to structural subunits and nomenclature 61
4.3 Table of Raman band relative intensities. ... 66
4.4 Table of Raman band centre positions. ... 66

5.1 Molar masses, Densities and molar volumes of tellurite glasses. 78
5.2 Thermal data for TMN, TZN and TBN glass series 86
5.3 Measured thermal expansion coefficients for the TMN, TZN and TBN glass series. .. 93

6.1 Optical energy gaps calculated from UV-Vis spectra and corresponding wavelength cut off for optical transmission. 103
6.2 Multiphonon onset wavelength for TMN, TZN and TBN glass series. ... 106
6.3 Measured refractive indices .. 111
6.4 Measured nonlinear refractive indices and calculated third order susceptibilities for TMN, TZN and TBN glasses 120

7.1 Brief summary of literature reported tellurite thermal poling 131

8.1 Optical parameters for quartz reference sample 164
8.2 Optimised fitting parameters for y-cut quartz Maker fringes 164
8.3 Optimised fitting parameters for thermally poled Infrasil Maker fringes 167

9.1 Input parameters for SIF with internal electrodes electric field model ... 180
9.2 Input parameters for hexagonal three ring MOF with internal electrodes electric field model .. 182
9.3 Input parameters for wagon wheel MOF with internal electrodes electric field model ... 185
9.4 Input parameters for electrode induced loss model 187
9.5 Contact angle between BiSn solder and some optical glasses 194
For my wife, who deserves a PhD in patience.