Gold Mineralisation in the Adelaide Fold Belt

PhD thesis submitted by

Martin Griessmann (MSc)

on the 4th April 2011

Department of Geology and Geophysics
School of Earth and Environmental Sciences
The University of Adelaide
Declaration

This work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Martin Griessmann and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.
Abstract

This project provides an up to date study of the various types and occurrences of gold-(base metal) mineralisation in the Adelaide Fold Belt, South Australia. The Adelaide Fold Belt comprises Neoproterozoic to Cambrian sediments and igneous rocks and Mesoproterozoic basement inliers deformed and metamorphosed during the Delamerian Orogeny between 520 Ma and 490 Ma. A number of small primary gold-(base metal) mineralisations are known in the Fold Belt which have produced about 250,000 oz of gold since the middle of the 19th century. This study investigates the geological setting, the mineralogy, geochemistry, fluid characteristics, stable and radiogenic isotopes as well as the timing of these mineralisation in relation to the Delamerian Orogeny. Gold mineralisation in the Adelaide Fold Belt are dominantly sediment-hosted, structurally controlled mineralisation in host-rocks that underwent greenschist- to amphibolite facies metamorphism during the Delamerian Orogeny. The majority of mineralisations is hosted by a restricted section of the Neoproterozoic Adelaidean strata, the lower Umberatana Group. Gold in the investigated mineralisation is usually associated with base metals (Cu and, or Pb-Zn-Cd-Ag). Fluid inclusion studies show that mineralising fluids have moderate to high salinities. Fluid inclusion studies were combined with Titanium in Quartz geothermobarometry resulting in a T-P range of ore formation from 300°C to 450°C and 1.5 kbar to 5 kbar. Oxygen isotopes of hydrothermal quartz (+13.3‰ to +19.9‰) and carbonate (+10.8‰ to +30.6‰) indicate an metamorphic origin of fluids. Carbon isotopes of hydrothermal carbonate range from -10.2‰ to +1.4‰ and may be a result of a mixing of carbon from sedimentary carbonate and C_organic. Sulphur isotope values in the investigated mineralisation range from -0.53‰ to +0.43‰ with the majority of values close to crustal average, indicating that most Zn from the source could be mobilised and that no fractionation took place between source and mineralisation. Pb isotopes of galena of the Woodside and Baratta mineral field are anomalous radiogenic and could represent a source within the Basement or the Adelaidean strata. Sr-isotopes of vein carbonate range from 0.710 to 0.719 and support a Sr source within the central to lower Adelaidean. Direct dating of mineralisation and the relationship of mineralisation to Delamerian igneous rocks show that mineralisation formed post-peak metamorphism in the extensional late stage of the Delamerian Orogeny or later. Most mineralisation have shown no links to magmatic activity. The general geological, structural and T-P characteristics support a classification of the investigated mineralisation as orogenic gold mineralisation but fluid chemistry and the base metal content of the mineralisation are unusual for these type of deposits. Some deposits in the central part of the Adelaide Fold Belt (Nackara Arc) also have characteristics of Telfer-style mineralisation.
Acknowledgments

Many great people, institutions and companies have supported this project. Therefore I want to thank

- my parents, for supporting me throughout all my years of studies in uncountable ways,
- Andreas Schmidt Mumm, my principal supervisor, for his guidance and support throughout my research, all the discussions and corrections,
- David Giles, my Co-supervisor, for his help and support of the project,
- the staff of the Department of Geology and Geophysics at the University of Adelaide,
- Maximus Resources Ltd. for the financial support of my research as well as providing data, samples and access,
- David Bruce for all the help with my geochemical and radiogenic isotope analyses,
- Galen Halverson and Justin Payne for supporting my stable isotope work,
- the staff of Adelaide Microscopy, especially Angus Netting, Ben Wade and Aoife McFadden,
- the geologists of PIRSA, especially John Keeling, Colin Conor, Brian Morris, Gus Williams, Wolfgang v. Preiss, and the core library staff for providing valuable information, literature and samples ,
- Phoenix Copper for providing sample, data and giving access to their exploration tenements,
- David Hopton for giving access and guiding me on the Mongolata and Baratta goldfields,
- Prof. Ross Both for providing unpublished data for the Kitticoola mineralisation for this project,
- the Department of Economic Geology at the TU Bergakademie Freiberg supporting my ore petrography work,
- Boral Ltd and McLaren Vale Quarries Ltd for giving access and allowing sampling in their quarries,
- John Simnovec for providing access and information on the Mt. Grainger goldfield,
- Adam Jones for providing samples and guiding me on the Lady Alice mine site,
- my dear colleagues Gernot Loidl, Marcus Kunzmann and Daniela Focke for many fruitful discussions, ideas and moral support,
- and Bill Winser for proof reading my final thesis.
Contents

1 Introduction 1
 1.1 Geology of the Adelaide Fold Belt 2
 1.1.1 Geography 2
 1.1.2 Stratigraphy 3
 1.1.3 Delamerian Orogeny 10
 1.2 Mining and exploration history 13
 1.3 Previous research 17
 1.4 Gold mineralisation 22
 1.5 Approach 24

2 Geology 29
 2.1 Introduction 30
 2.2 Woodside 30
 2.3 Kitticoola, Palmer 31
 2.4 Deloraine 32
 2.5 Humbug Scrub Diggings/Lady Alice Mine 33
 2.6 Mongolata area 34
 2.6.1 Mongolata 34
 2.6.2 Black Hill diggings 36
 2.7 Mt. Grainger 37
 2.8 Baratta 38

3 Ore characterisation 41
 3.1 Introduction 42
 3.2 Ore petrography 42
 3.2.1 Woodside 42
 3.2.2 Kitticoola 49
 3.2.3 Lady Alice 52
 3.2.4 Deloraine 55
 3.2.5 Mongolata 55
 3.2.6 Mt. Grainger 60
 3.2.7 Baratta 60
 3.3 EPMA 64
 3.3.1 Methods 64
 3.3.2 Results 64
 3.4 Trace elements 72
 3.4.1 Methods 72
 3.4.2 Results 73
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Mineralogy</td>
<td>205</td>
</tr>
<tr>
<td>A.1</td>
<td>Woodside</td>
<td>206</td>
</tr>
<tr>
<td>A.1.1</td>
<td>Bird In Hand</td>
<td>206</td>
</tr>
<tr>
<td>A.1.2</td>
<td>Eureka</td>
<td>213</td>
</tr>
<tr>
<td>A.2</td>
<td>Kitticoola</td>
<td>217</td>
</tr>
<tr>
<td>A.3</td>
<td>Deloraine</td>
<td>220</td>
</tr>
<tr>
<td>B</td>
<td>Microprobe data</td>
<td>223</td>
</tr>
<tr>
<td>B.1</td>
<td>Tourmaline</td>
<td>224</td>
</tr>
<tr>
<td>B.2</td>
<td>Chlorite</td>
<td>228</td>
</tr>
<tr>
<td>B.3</td>
<td>Carbonate</td>
<td>232</td>
</tr>
<tr>
<td>B.4</td>
<td>Pyrite</td>
<td>234</td>
</tr>
<tr>
<td>B.5</td>
<td>Pyrrhotite</td>
<td>240</td>
</tr>
<tr>
<td>B.6</td>
<td>Sphalerite</td>
<td>241</td>
</tr>
<tr>
<td>B.7</td>
<td>Native gold and electrum</td>
<td>242</td>
</tr>
<tr>
<td>B.8</td>
<td>Arsenic minerals from Eureka</td>
<td>244</td>
</tr>
<tr>
<td>B.9</td>
<td>Lady Alice mine</td>
<td>245</td>
</tr>
<tr>
<td>C</td>
<td>Sulphide LA-ICP-MS-data</td>
<td>247</td>
</tr>
<tr>
<td>C.1</td>
<td>Concentrations</td>
<td>248</td>
</tr>
<tr>
<td>C.1.1</td>
<td>Woodside</td>
<td>248</td>
</tr>
<tr>
<td>C.1.2</td>
<td>Kitticoola</td>
<td>259</td>
</tr>
<tr>
<td>C.1.3</td>
<td>Deloraine</td>
<td>262</td>
</tr>
<tr>
<td>C.1.4</td>
<td>Mongolata area</td>
<td>264</td>
</tr>
<tr>
<td>C.1.5</td>
<td>Mt. Grainger</td>
<td>269</td>
</tr>
<tr>
<td>C.1.6</td>
<td>Baratta</td>
<td>271</td>
</tr>
<tr>
<td>C.1.7</td>
<td>Lady Alice, Para Wirra</td>
<td>273</td>
</tr>
<tr>
<td>C.1.8</td>
<td>McLaren Vale Quarry</td>
<td>275</td>
</tr>
<tr>
<td>D</td>
<td>Geochemical data</td>
<td>277</td>
</tr>
<tr>
<td>D.1</td>
<td>Whole rock data</td>
<td>278</td>
</tr>
<tr>
<td>D.1.1</td>
<td>Sample list</td>
<td>278</td>
</tr>
<tr>
<td>D.1.2</td>
<td>Major element data</td>
<td>279</td>
</tr>
<tr>
<td>D.1.3</td>
<td>Whole rock trace element data</td>
<td>282</td>
</tr>
<tr>
<td>D.1.4</td>
<td>REE data</td>
<td>286</td>
</tr>
<tr>
<td>D.1.5</td>
<td>Sequential leach data</td>
<td>289</td>
</tr>
<tr>
<td>D.2</td>
<td>Tourmaline and carbonate</td>
<td>298</td>
</tr>
<tr>
<td>D.3</td>
<td>Sulphides</td>
<td>301</td>
</tr>
<tr>
<td>D.3.1</td>
<td>Pyrite</td>
<td>301</td>
</tr>
<tr>
<td>D.3.2</td>
<td>Sphalerite</td>
<td>302</td>
</tr>
<tr>
<td>E</td>
<td>Fluid inclusion and TiQ data</td>
<td>303</td>
</tr>
<tr>
<td>E.1</td>
<td>Fluid inclusion data</td>
<td>304</td>
</tr>
<tr>
<td>E.1.1</td>
<td>Woodside goldfield</td>
<td>304</td>
</tr>
<tr>
<td>E.1.2</td>
<td>Kitticoola, Palmer</td>
<td>307</td>
</tr>
<tr>
<td>E.1.3</td>
<td>Mongolata</td>
<td>308</td>
</tr>
<tr>
<td>E.1.4</td>
<td>Baratta</td>
<td>308</td>
</tr>
<tr>
<td>E.2</td>
<td>TiQ data</td>
<td>309</td>
</tr>
<tr>
<td>E.2.1</td>
<td>Woodside</td>
<td>309</td>
</tr>
</tbody>
</table>
E.2.2 Kitticoola, Palmer ... 311
E.2.3 Deloraine .. 312
E.2.4 Mongolata .. 313
E.2.5 Baratta .. 315

F Stable isotope data .. 317
 F.1 Carbon and oxygen isotope data 318
 F.2 Sulphur isotope data .. 320
 F.3 Zinc isotope data .. 323

G Radiogenic Isotopes .. 325
 G.1 Pb isotope data .. 326
 G.2 Sr isotope data .. 327

H U-Pb data .. 329
 H.1 Kitticoola data .. 330
 H.2 Deloraine data .. 331
List of Figures

1.1 Subareas of the Adelaide Fold Belt .. 2
1.2 The Adelaide Fold Belt in South Australia 3
1.3 Geological overview map ... 5
1.4 Stratigraphy of the Adelaiderian ... 6
1.5 Saddleworth Formation ... 7
1.6 Tapley Hill Formation .. 8
1.7 Brighton Limestone ... 8
1.8 Cox Sandstone ... 9
1.9 Tarcoowie Siltstone ... 9
1.10 Stratigraphy of the Cambrian Moralana Supergroup 10
1.11 Geological overview map of the Adelaide Fold Belt with major gold mineralisation 14
1.12 Types of hydrothermal gold deposits in orogenic belts 23
2.1 Geological map of the Woodside goldfield 30
2.2 Geological map of the Palmer area including the Kitticoola mine 32
2.3 Geological map of the Deloraine and Humbug Scrub goldfield areas 33
2.4 Geology of the Mongolata area ... 34
2.5 Geology of the Mongolata Goldfield .. 35
2.6 Quartz-Fe veins at Byles open cut, Mongolata 36
2.7 Geological map of the Mt. Grainger Goldfield 37
2.8 Veining near Mt. Grainger Mine ... 38
2.9 Geological map of the Baratta mineral field 38
2.10 Veining at Baratta, Saltbush Flat .. 39
3.1 Mineralogy of Bird In Hand, Woodside goldfield 43
3.2 Mineralogy of Bird In Hand, Woodside goldfield 44
3.3 Mineralogy of Bird In Hand, Woodside goldfield 45
3.4 Mineralogy of Eureka, Woodside goldfield 48
3.5 Mineralogy of Kitticoola, Palmer ... 50
3.6 Mineralogy of Kitticoola, Palmer ... 51
3.7 Mineralogy of the Lady Alice Mine .. 53
3.8 Mineralogy of the Lady Alice Mine .. 54
3.9 Mineralogy of Deloraine ... 56
3.10 Mineralogy of the Mongolata goldfield 57
3.11 Mineralogy of the Mongolata goldfield 58
3.12 Mineralogy of Mongolata Black Hill Diggings and Mt. Grainger goldfield 61
3.13 Mineralogy of Baratta Eukaby Hill 62
3.14 Mineralogy of Baratta Saltbush Flat 63
3.15 FeO-CaO-MgO plot of microprobe analyses of hydrothermal carbonate 64
3.16 Ag concentration in native gold / electrum 66
3.17 Boxplot of Fe and Cd microprobe concentration in sphalerite 70
3.18 SEM/BSE image of LA spot 1d, BH20-2 .. 74
3.19 Time resolved LA-ICP-MS intensity plot of pyrite in sample BH20-2, point 1d ... 75
3.20 Time resolved LA-ICP-MS intensity plot of pyrite in sample BH20-2, point p2 ... 76
3.22 Zonation of a pyrite crystal in section Mon-2 79
3.23 Time resolved LA-ICP-MS intensity plot of pyrite in sample BSB004, point 1e ... 81
3.24 Time resolved LA-ICP-MS intensity plot of pyrite in sample BSB004, point 2b ... 82
3.25 Co vs Ni of LA-ICP-MS and solution ICP-MS data of pyrite of gold mineralisation and metasediments .. 83
3.26 As vs Co+Ni LA-ICP-MS data of pyrite of gold mineralisation and metasediments .. 83
3.27 As vs Co/Ni LA-ICP-MS and solution ICP-MS data of pyrite of gold mineralisation and metasediments .. 84
3.28 As vs Se LA-ICP-MS and solution ICP-MS data of pyrite of gold mineralisation and metasediments .. 84
3.41 Concentration biplots of LA-ICP-MS and solutions ICP-MS data of sphalerite from the Woodside goldfield .. 91
3.42 Concentration biplots of LA-ICP-MS and solutions ICP-MS data of sphalerite from the Woodside goldfield .. 92
3.43 Time resolved LA-ICP-MS intensity plot of galena in sample BH01, point g1 ... 93
3.44 Time resolved LA-ICP-MS intensity plot of galena in sample BH20-2, point g1 ... 94
3.45 Time resolved LA-ICP-MS intensity plot of galena in sample BH20-2, point g2 ... 95
3.46 Concentration biplots of LA-ICP-MS concentration data of galena from Bird In Hand, Eureka and Baratta Eukaby Hill .. 97
3.47 Summarised mineralogy of the Woodside Goldfield 100
3.48 Summarised mineralogy of the Kitticoola mineralisation 101
4.1 Tapley Hill Formation ... 106
4.2 Major elements vs upper crust plot of lower Umberatana Group sediments ... 109
4.3 Trace elements vs upper crust plot of lower Umberatana Group sediments ... 110
4.4 REE vs upper crust plot of lower Umberatana Group sediments 111
4.5 Sample LW-1, Linwood Quarry: Availability of various elements during sequential leaching ... 112
4.6 Sample LW-2, Linwood Quarry: Availability of various elements during sequential leaching ... 112
4.7 Sample MVQ-4, McLaren Vale Quarry: Availability of various elements during sequential leaching ... 112
4.8 Sample MVQ-5, McLaren Vale Quarry: Availability of various elements during sequential leaching ... 112
4.9 Sample TH-1, Mongolata: Availability of various elements during sequential leaching ... 112
4.10 Sample TS-7, Mongolata: Availability of various elements during sequential leaching ... 112
4.11 Sample Mon-15u, Mongolata: Availability of various elements during sequential leaching ... 113
4.12 Average availability of various elements during sequential leaching 113
4.13 Co / Ni ratios changes in sequential leach of Tarcowie Siltstone and Tapley Hill Formation samples ... 113
4.14 Sample TH-2, Drilling PCD001 Mongolata .. 114
4.15 Pyrite in sample Mon-15u, Byles Mine, Mongolata
4.16 Pyrite in sample MVQ-5, McLaren Vale Quarry
4.17 As vs Au count per second data for Tarcowie Siltstone and Tapley Hill Formation pyrite
4.18 Cu vs Se count per second data for Tarcowie Siltstone and Tapley Hill Formation pyrite
4.19 As vs Au count per second data for Tarcowie Siltstone and Tapley Hill Formation pyrite
4.20 Cu vs Se count per second data for Tarcowie Siltstone and Tapley Hill Formation pyrite
4.21 As vs Au count per second data for Tarcowie Siltstone and Tapley Hill Formation pyrite
4.22 Cu vs Se count per second data for Tarcowie Siltstone and Tapley Hill Formation pyrite
4.23 TAS diagram of Woodside Dolerite samples
4.24 Woodside Dolerite vs primitive mantle
4.25 REE data for sequential leach of altered Woodside Dolerite
4.26 REE data for sequential leach of altered Woodside Dolerite
4.27 Isocon diagramm for altered/unaltered Woodside Dolerite
4.28 Tourmaline REE vs chondrite plot
4.29 Chondrite normalised REE plot of alteration carbonate from Woodside Dolerite
4.30 Chondrite normalised REE plot of vein carbonate
4.31 Scans of section BH19-AD2 (left) and BH22-AD2 (right). Tourmaline appears brown-green, chloritised dolerite appears olive green, sulphides are black and calcite veins appear white.
4.32 BSE image of a tourmaline cross section in sample BH22-AD2. Tourmaline occurs in a chlorite matrix (white). It shows internal zoning with brighter parts being type I tourmaline and darker parts being type II tourmaline.
4.33 Microprobe crosssection of tourmaline
4.34 Fe/(Fe+Mg) vs Na/(Na+Ca) plot of tourmaline
5.1 Fluid inclusion in quartz of sample BH02, Bird In Hand, Woodside
5.2 Fluid inclusion in quartz of sample BH02, Bird In Hand, Woodside
5.3 Fluid inclusion in quartz of sample KD04-2, Kitticoolo mine, Palmer
5.4 Type I fluid inclusion in quartz of sample MC-6, Mongolata
5.5 Fluid inclusion in quartz of sample BEH006, Eukaby Hill, Baratta
5.6 Fluid inclusion data of Bird In Hand and Eureka, Woodside: Histogram of salinity
5.7 Fluid inclusion data of Bird In Hand and Eureka, Woodside: Histogram of TT
5.8 Fluid inclusion data of Bird In Hand and Eureka, Woodside: Salinity vs TH
5.9 Fluid inclusion data of Kitticoolo mine, Palmer: Histogram of salinity
5.10 Fluid inclusion data of Kitticoolo mine, Palmer: Histogram of TH
5.11 Fluid inclusion data of Kitticoolo mine, Palmer vs TH
5.12 P-T diagram for combined fluid inclusion and TiQ data, Woodside goldfield
5.13 P-T diagram for combined fluid inclusion and TiQ data of Kitticoolo, Mongolata and Baratta
5.14 T-P diagram for fluid inclusion (FI) and Titanium-in-Quartz (TiQ) data for sections from Bird In Hand and Eureka, Woodside
List of Tables

1.1 Goldfields of the Adelaide Fold Belt .. 16

3.1 Summarised microprobe data of hydrothermal carbonate 65
3.2 Summarised microprobe data for native gold and electrum 67
3.3 Summarised microprobe data of pyrite .. 69
3.4 Summarised microprobe data for arsenopyrite, gersdorffite and tennantite 71
3.5 Summarised LA-ICP-data for various gold mineralisation 86
3.6 Summarised sphalerite LA-ICP-MS data, Woodside 96
3.7 Summary of mineralogy and pyrite geochemistry of investigated mineralisation in the Adelaide Fold Belt ... 99

4.1 Summarised data of Tapley Hill and Tarcowie Siltstone samples 108
4.2 Summarised LA-ICP-data for sedimentary pyrite 116
4.3 Summary of tourmaline microprobe data of altered Woodside Dolerite, Bird In Hand, Woodside ... 126

5.1 Summary of primary fluid inclusion data, Woodside goldfield 133
5.2 Summary of primary fluid inclusion data, Kitticoola mine, Palmer 135
5.3 Summarised fluid inclusion data of quartz from gold bearing quartz veins in the Adelaide Fold Belt ... 138
5.4 Fluid inclusion and TiQ isochor input data and P-T results for Woodside, Kitticoola, Mongolata and Baratta quartz ... 149
5.5 Summarised microprobe data of chlorite ... 150
5.6 Summarised δ^{18}O data of vein quartz ... 153
5.7 Summary of δ^{18}O and δ^{13}C$_{PDB}$ data of carbonate 153
5.8 Summary of δ^{34}S data of gold mineralisation in the Adelaide Fold Belt 154
5.9 Rb-Sr data for investigated tourmaline and calcite from Bird In Hand, Woodside 171

6.1 Ages of mineralisation in the Adelaide Fold Belt 182