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ABSTRACT 

Positioning sensors in a water supply network is a NP–hard task. We propose three 

algorithms – one based on integer linear programming (ILP) and the other two based 

on the Greedy paradigm. We apply these algorithms to real case networks and com-

pare the results of these algorithms with the results of an algorithm based on NSGA 

II, a genetic algorithm. We come to the conclusion that our algorithms outperform 

NSGA II in every single case. The algorithm based on linear integer programming 

may be applied as a competitor to the algorithm implemented in TEVA –SPOT 

(Berry, 2009), while the first Greedy algorithm may replace the ILP algorithm in 

large networks due to its faster running time. The second Greedy algorithm ap-

proaches the question on finding those nodes which are the most sensitive to varia-

tions in pressure and are thereby ideal places to monitor the hydraulic state of a water 

distribution network. 

KEYWORDS 

Graph Theory, Sensor location layout, Greedy Algorithm, Genetic Algorithm, Inte-

ger Linear Programming, Sensitivity 

 

INTRODUCTION 

Modern water supply systems consist of pipes, pumps, storage tanks and valves. 

Since these networks span over wide areas they often require large investments and 

thus it is desirable to operate these systems with as little loss as possible and save 

energy and material costs to the greatest possible extent. Furthermore, especially in 

the century after the terroristic event of 9/11, consumer security is also an important 

issue. Under these circumstances, it is natural to extend the water supply infrastruc-

ture by installing sensors that monitor the hydraulics of the network as well as the 

quality of the supplied drinking water. 

The benefits from monitoring the hydraulics lie in getting to know, where the water 

moves in the network and what is the pressure. From these data, one could deduce 

rehabilitation plans, strategies of how to operate the pumps in the system or how to 



set the valves. In addition one can detect pipe bursts by simply checking how the 

pressure in the network evolves. If water distribution operators monitor water quality 

parameters such as chlorine, pH–level, contamination by natural causes or by terror-

ists, they can decide the best way to warn the public and thereby prevent adverse 

impacts including disease or even deaths.  

The German Ministry of Education and Research is funding a project called IWaNet, 

which is short for Intelligent Water Network. It includes the development of a hybrid 

network analyzer that consists of a deterministic hydraulic real-time simulation 

model (DSM) combined with an artificial neural network (ANN). Both are fed by 

real time data coming from multi-parameter sensors that monitor the network hy-

draulics as well as water quality at selected locations in the system. Whereas actual 

demands, tank water levels and pump operations are used as boundary conditions of 

the hydraulic solver the ANN estimates the current state of the system based on the 

measurements. Since the ANN can handle only a limited number of data points that 

are actually the monitoring stations, the connection with the DSM fills this gap. 

Against that background it is evident that the locations of the monitoring points have 

to be chosen very carefully in order to get the most information possible from the 

real-time data. 

From a theoretical point of view the question as to where to install sensors is very 

hard and many scientists have been working in this field: including Berry et al. 

(2010) who proposed solving an Integer Linear Programming problem (ILP). This 

type of programming definition is very hard to solve and computationally expensive. 

However, Integer Linear Programming has a significant advantage in that if it termi-

nates an optimal solution is reached. Additionally, one can prove the optimality of 

the solution. Grayman et al. (2006) applied a Genetic Algorithm (GA) to this task. 

Genetic algorithms are types of random search algorithm that mimics evolution by 

using individuals whose genome encodes information which is passed according to 

mating rules to the next generation. Although they are very popular for real world 

data sets they sometimes work very slowly. Krause et al. (2008) propose a Greedy 

algorithm. Greedy algorithms are popular since they are always simple to implement, 

run fast and produce solutions which most times are close to the real optimum. 

In the next part of the paper, we want to introduce two approaches which both adapt 

the greedy paradigm and an Integer Linear Programming approach. We will describe 

how these algorithms have been constructed and compare them to NSGA II (Deb, 

2001), an evolutionary algorithm, on 4 different sized water distribution systems. 

ILP–APPROACH FOR MAXIMUM COVERAGE 

Recently, the TEVA – SPOT (Threat Ensemble Vulnerability Assessment – Sensor 

Placement Optimization Toolkit) has been published by the US EPA. It provides 

algorithms for finding ideal sensor locations. The objective is to minimize the impact 

of randomly chosen intrusion scenarios. A two step scheme has been chosen: in the 

first step, a Markov chain Monte Carlo simulation is run, during which several intru-

sion scenarios are simulated concerning how dangerous substances spread in a water 

distribution system. These scenarios are each weighted with each individual sce-



nario’s probability of occurrence. In the second step, one solves an ILP which mini-

mizes the overall impact by finding the ideal placement of the sensors considering 

the simulated attack scenarios. The problem with this approach is, that for the first 

step a great number of hydraulic simulations have to be run and kept in storage. This 

accumulates even for small networks to very large sizes of data and days of computa-

tion time.  

In our approach the objective is to find a sensor configuration that maximizes the 

detection likelihood of intrusions at any location in the network. At the beginning for 

every node i in the network the set of nodes U(i) upstream of i is calculated using a 

Breadth–First–Search (BFS). A node j is considered to be upstream of a node i if and 

only if the travel time from j to i is within a given time span maxt ; in that case 

)(iUj ∈ . As a simplification we assume perfect mixing at junctions and perfect sen-

sors. With the set U(i) we know the locations from where water quality information 

can travel to i within maxt . 

The computations are based on the results of an extended period simulation of the 

network. In our case, we simulated the hydraulics of a day using 15 minute time in-

tervals. As mentioned above the BFS only places nodes in the queue if their temporal 

distance to i is smaller than maxt . For the BFS, the distance from every node to m is 

initially set to a large number, say one billion seconds, whereas the distance from i to 

itself is obviously 0 seconds. During the BFS, the time the water takes to pass from 

one endpoint of a pipe to the other endpoint is computed. For that purpose we use the 

results of the extended period simulation considering that the flow velocity of the 

water varies with time. Based on this preliminary calculation we can apply a version 

of the Floyd–Warshall–algorithm (Floyd, 1962) in order to compute the minimal 

flow time of the water from an arbitrary node l to a sensor i. That computation is 

repeated for every single time interval of the simulation horizon.  

It follows that for every node l that is upstream of i the maximum time the water 

takes to flow from l to i over all time intervals is considered. If that maximum is 

smaller than the maximum time span maxt  then node l is observed by node i. Let n be 

the number of nodes and V be a binary ( )nn× -matrix. The element (i,l) of V is set to 

1 if node l is observed by node i otherwise it is set to 0. By doing this we trim the 

area observed by a quality sensor at node i to a minimal set of nodes that is moni-

tored around the clock. Thus, we ignore those nodes, which are observable only for 

some time span during the cycle of a day.  

The matrix V is used for the formulation of the following ILP. Let k be the maximum 

number of sensors, let x be a binary vector of dimension n where ix  is 1 if a sensor is 

placed at node i and 0 otherwise. Let b be a binary vector of dimension n where ib is 

1 if node i is observable by the sensor configuration in x and 0 otherwise. Let c be a 

vector of dimension n where every entry is 1. Then we can formulate the task of find-

ing best locations for sensors as an Integer–Programming–Problem as follows: 
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x is the binary vector of possible sensor locations, b is the binary vector of observed 

nodes. 

The product xV
n

T1
 results in a vector, whose entries are all between 0 and 1, since 

xV
T  counts for every node i how many sensors of configuration x observe i. This 

count is normalized by multiplying by 
n

1
 because no node can be monitored by more 

than the number of nodes in the network. Furthermore, one entry i of xV
Tλ  is 

greater than 0 if and only if the current configuration of x provides at least one sensor 

which observes node i. Therefore, the first constraint (Eq. 2) ensures that if the con-

figuration of sensors x observes node i the i-th entry of vector b is 1. The second con-

straint (Eq. 3) guarantees that if a configuration of sensors x does not observe node i 

the i–th entry of b is 0. 

Using these two constraints we force b to include all nodes that are observed by con-

figuration x. Additionally, we prohibit b from including anything that is not observed 

by x. Constraint three (Eq. 4) assures that we do not employ more sensors than we 

agreed upon before. To solve this problem usually algorithms like branch and bound 

or Gomory Chvatal cutting planes are used. In this case the package LPsolve (Berke-

laar 2010) which uses branch and bound approach has been chosen. 

In contrast to TEVA – SPOT we compute for every time interval during a day a BFS 

for every node in the network in order to find the nodes upstream of a given node 

within the aforementioned time span maxt . The results of these computations are dis-

tilled down to matrix V. As a consequence we do not have to handle vast amounts of 

data. Furthermore, the computational complexity of a BFS run is O(n²) in a graph 

with n nodes. The computational complexity of the computation of matrix V is there-

fore O(dn³) since we compute the BFS for every node and d time intervals of a day.  

In TEVA – SPOT s arbitrarily chosen extended period water quality calculations 

have to be carried out for. In contrast, the approach presented above is based on one 

single extended period simulation resulting in much shorter calculation time. How-

ever, the reaction kinetics are not considered.  



GREEDY ALGORITHM FOR MAXIMUM COVERAGE 

Since solving large ILP problems is very time consuming, we formulated a Greedy 

algorithm which computes an approximation to the ideal cover of measurement loca-

tions. For this Greedy algorithm, we use the same precomputation of matrix V as in 

the ILP–approach above. Then, we make the Greedy assumption that we find the best 

coverage of nodes in the network using k nodes by iteratively following a simple 

scheme: find that row r of V that has the most 1 entries. That row corresponds to the 

node r that monitors the most nodes. Mark all those nodes, which are monitored by 

node r and neglect them in the following computations. Find in the resulting matrix 

V’ that row r’ with the most 1 entries, mark the corresponding nodes, so that they are 

ignored in future computations and iterate. Finding the row with the most 1 entries is 

an O(n²) task, and therefore the Greedy algorithm is of O(dn³)+O(kn²)=O(dn³) com-

plexity. 

As will be seen in later parts of this paper, the Greedy algorithm for maximum cov-

erage works very fast and produces, at least in the four test cases we considered, so-

lutions which are only slightly worse than the ideal answer of the aforementioned 

ILP–approach. Since it is faster than the ILP–approach and only slightly worse, we 

propose to use this algorithm for bigger networks (10,000 nodes or more). 

GREEDY ALGORITHM FOR FINDING PRESSURE SENSITIVE LOCA-

TIONS 

Observation of pressure in a water distribution network can support the detection of 

line breaks in real time. Using a calibrated numerical model, the results of hydraulic 

steady-state calculations can be compared to online measurement data. If at some 

locations the pressure in the physical system suddenly drops below the results of the 

computation, this can be an indication for the existence of a new leak in the system. 

The comparison of measured data and data predicted by the hydraulic model can be 

done more efficiently by an artificial neural network (ANN) that has been trained in 

advance by numerous simulation results of a number of leakage scenarios. Based on 

these training data sets the artificial neural network is able to predict the location and 

size of the leakage. For this, we need measurements in highly sensitive places. The 

more the measured value of a chosen location reacts to changes in the model parame-

ter, the more valuable are the measurements. 

In the following the sensitivity of nodal pressure as to changes in demands or other 

outflows like leakage is considered as an example.  

The hydraulic steady-state can be formulated as a nonlinear optimization problem 

(e.g. Todini 1987). Using sensitivity results of nonlinear programming the sensitivity 

of the nodal heads H as to a change in withdrawals at the nodes Q can be computed 

by 
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where A is the (m x n)- incidence matrix of the graph (n: number of nodes, m: num-

ber of pipes), α is the exponent of the hydraulic headloss equation and D is a diago-



nal matrix, whose entries are the derivatives of the hydraulic head-loss equations of 

the pipes. 

HQ∇ is the ( )nn ×  sensitivity matrix. The entry ijQ H∇ at position ji,  represents 

how sensitive the pressure at node i is to a change in outflow at node j. 

The sensitivity of the pressure at node i against outflow changes at any other node in 

the network can be estimated by ∑
=

∇
n

j

jiQ H
1

, . The node that maximizes that sum is the 

most sensitive. So far we have been considering just one node. Usually for a meas-

urement program a limited number of sensors are available. The calculation of the 

most sensitive node can be generalized by the following iterative approach: 

Firstly, we compute the sensitivity matrix for the entire system and search for the 

row i that has the biggest row sum value. In the next step “infinity” is added to the  

i–th diagonal element of the matrix ADAT 1− . This sets the sensitivity of node i to 

zero for the next inversion of the matrix. With this modified sensitivity matrix the 

second most sensitive node is determined. The procedure is repeated until the maxi-

mum number of sensors available is reached. Doing this, we iteratively set the sensi-

tivity of the most sensitive nodes and their neighbors to zero and make sure, that the 

result of our computations is a set of nodes which are spread all over the network. 

Since we have to invert a matrix for every step of our search, this algorithm has 

O(kn³) complexity in every step where n is the number of nodes and k is the number 

of sensors.  

We developed this program to find good locations for multi-parameter sensors. The 

ILP–approach and the Greedy algorithm for maximum coverage compute sensor 

locations which monitor the quality of the water in wide areas of the network, 

whereas this program computes the best locations in order to monitor the hydraulics 

of the network. 

 

COMPARISON OF OUR ALGORITHMS WITH NSGA II  

In this section a comparison is made of the ILP–approach and the Greedy algorithm 

for maximum coverage with NSGA II based on consideration of their running time 

for the coverage problem. We applied each of the algorithms to four real case net-

works. The size of the networks ranges from about 300 nodes up to 5,000 nodes. 

 

Table 1: Comparison of computation time for the ILP - approach, the proposed 

Greedy–algorithm for maximum coverage and NSGA II 

 ILP Greedy NSGA II 

Town_300 1s 1s 1560s 

Town_1000 4s 1s 3760s 

Town_2000 17s 1s 10640s 

Town_5000 111s 5s 60210s 

 



Since both, the Greedy algorithm for maximum coverage and the ILP–approach only 

produce a single solution they cannot be compared directly to NSGA II. NSGA II 

determines a so called Pareto front which is a set of solutions which do not dominate 

each other. Thus we will only compare the results from the Greedy algorithm and the 

ILP–approach directly in the following table. We want to compare the number of 

nodes that are covered by the computed sensor network. 

 

Table 2: Comparison of the ILP-approach and the Greedy-algorithm for maxi-

mum coverage concerning how many nodes a computed sensor network layout 

can monitor 

 

 Number 

of nodes 

Number 

of sen-

sors 

ILP 

number 

of cov-

ered 

nodes 

ILP per-

centage of 

coverage 

Greedy 

number 

of cov-

ered 

nodes 

Greedy 

percentage 

of cover-

age 

Town_300 339 5 160 47,2% 158 46,6% 

Town_1000 1261 8 679 53,8% 679 53,8% 

Town_2000 2146 12 1293 60,3% 1286 59,9% 

Town_5000 4923 21 2011 40,8% 2002 40,7% 

 

 

From both tables 1 and 2, we can deduce that the Greedy algorithm works faster than 

the ILP–approach. Recall that the results from the ILP–approach are the optimal so-

lutions. Thus the Greedy algorithm produces solutions that are very close to the op-

timal solutions. 

We can conclude that for networks of less than 5,000 nodes that there is no need to 

use the Greedy algorithm since the computational effort for computing the solution 

using the ILP–approach is not much more than for the Greedy algorithm. Since the 

result of the ILP–approach is always optimal it is superior to the Greedy algorithm 

which will only approximate the real optimal solution. The proposed Greedy algo-

rithm for maximum coverage may be used only for large networks. 

Using NSGA II (Deb, 2001), we considered two conflicting objective functions: the 

first one produces its minimal value when the genome contains exactly the number of 

sensors we want to install, whereas the second objective function simply counts the 

number of nodes which are not covered by the sensor network which is coded in the 

genome. Both functions are to be minimized. Thus a sensor network configuration is 

sought that covers as many nodes as possible for the maximum number of sensors 

selected. 

The following table contains the parameters used for the NSGA II computations: 

 



Table 3: Settings for NSGA II 

 

In the following we compare the results of the Greedy algorithm for maximum cov-

erage, the ILP-approach and the Pareto Front produced by NSGA II: 
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Figure 1: Comparison of results of Greedy-, ILP- and NSGA II-approach considering maximum 

coverage; Town_300 
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Figure 2: Comparison of results of Greedy-,  ILP- and NSGA II-approach considering maxi-

mum coverage; Town_1000 

 Number of 

individuals 

Number of 

generations 

Crossover 

probability 

Mutation 

probability 

Town_300 100 100 0.5 0.0025 

Town_1000 150 150 0.5 0.0007 

Town_2000 250 150 0.5 0.00035 

Town_5000 350 350 0.5 0.00015 
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Figure 3: Comparison of results of Greedy-, ILP- and NSGA II-approach considering maximum 

coverage; Town_2000 
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Figure 4: Comparison of results of Greedy-, ILP- and NSGA II-approach considering maximum 

coverage; Town_5000 

 

In the Fig. 1 to 4 above, we can compare the quality of the computed solutions of the 

Greedy algorithm and the ILP–approach to the output of NSGA II considering 

maximum coverage. We see in all figures that NSGA II did not produce any solution 

that is able to monitor as many nodes as for the the Greedy algorithm or the ILP– 

approach for a small number of sensor nodes. 

One might propose extending the number of individuals or number of generations (or 

both) so that NSGA II has an increased chance of finding improved solutions, but 

this will result in increased computation time. 



CONCLUSIONS 

In this paper, we have presented three algorithms for computing an optimal sensor 

network layout. These included an Integer Linear Programming approach and two 

Greedy algorithms. We compared these algorithms considering time for computation 

and the quality of the solution. We conclude, that each proposed algorithm produces 

good solutions within reasonable time.  

For the comparison of the Greedy algorithm and ILP we chose a very specific objec-

tive function for both algorithms: that is to maximize that part of the network that can 

be observed by a fixed number of sensors. In future work, one has to develop objec-

tive functions with several aims: one aim might be to maximize security for civil and 

state – owned property, another aim might be, that every node that is visible by one 

sensor is at least visible by another one, so that every piece of information can be 

triangulated in the network. 
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