

The University of Adelaide

The School of Mechanical Engineering

Image Processing and Analysis for Autonomous Grapevine Pruning

by

Ming GAO

Thesis submitted for the degree of Master of Engineering Science on 07/2011

Abstract	III
List of Figures	V
List of Tables	VI
Statement of Originality	VII
Acknowledgements	IX
Publications	XI
Chapter 1 Introduction	1
1.1 Motivation	1
1.2 Introduction of Vine Pruning	2
1.2.1 The Grapevine	2
1.2.2 The Annual Growth Cycle	3
1.2.3 Reasons for Grapevine Pruning and Automated Pruning	4
1.2.4 Two-Bud Spur Pruning	8
1.3 Autonomous Grape Pruning	11
1.4 Outline	12
Chapter 2 Literature Review	15
2.1 Image Processing	15
2.2 Image Analysis	17
2.3 Stereo Vision	19
2.4 Relevant Projects	21
2.5 Aim of This Research	22
Chapter 3 Obtaining 2D Cutting Positions	25
3.1 Introduction	25
3.2 Image Processing	26
3.2.1 RGB image to Gray-Scale Image	27
3.2.2 Analysing the Image	29
3.2.3 Gray-Scale Image into Binary Image	32
3.3 Image Analysis	35
3.3.1 Locating the Cordon	36
3.3.1.1 Procedures	37
3.3.1.2 Results	39
3.3.1.3 Discussion	39
3.3.2 Locating the Branches	41
3.3.2.1 Method One-Segmentstion the Brasnch	41
3.3.2.2 Method Two-Moving the Branch	43
3.3.2.3 Method Three-sloping Changing	45
3.3.2.4Results and Discussions	47
3.3.3 Locating the Nodes	49
3.4 Conclusion	50
Chapter 4 Experiments on Obtaining Two-Dimensional Pruning Positions	51

Table of Contents

51
51
58
59
61
61
61
63
64
65
68
72
72
76
77
78
83
85
85
86
90
95
100

Abstract

In recent years, efforts are made to automate vineyard operations to cap the ever increasing labour cost. However, one of the operations that have not been completely automated is grapevine pruning. A robotic machine for grapevine pruning needs to respond to the changing physical characteristics of the environment, and to date, no algorithm can accurately identified appropriate positions for grapevine pruning in a variety of environmental conditions. The aim of this research was therefore to develop a new algorithm using image processing, image analysis and stereo vision system to determine pruning positions and making automatic grapevine pruning possible.

In order to get the pruning positions accurately and automatically, images taken from two cameras are processed and analysed. Utilizing the latest computer vision techniques, the algorithm takes three steps before the final cutting positions are derived. First, the uploaded images are pre-processed by the so called image processing phase during which binary image is obtained from the original image. Second, image analysis technique is employed to identify different parts of grape vine and obtain the 2D positions of the cutting points. Novel algorithms are proposed to locate the cordon, the branch and finally the nodes step by step with high accuracy. Both the locating precision and computing complexity of the algorithms are considered, so that the images could be processed incessantly. Finally, cameral calibration and stereo vision were also performed after that to determine the 3D pruning point, so the system can inform the robotic machine to perform the pruning.

For the experiments, images were taken from the vineyard which located in the Adelaide National Wine Centre and the University of Adelaide Waite Campus. Ten images full of canes were analysed, and an 85% success rate for pruning positions was achieved. 85% of the cutting positions found by the proposed

method were consistent with those found by experts, while the rest 15% of the cutting positions found by the proposed method would not affect the growth of the grapevine significantly in the next year although they don't match the positions found by experts perfectly. The experiment verified the accuracy and application potential of proposed algorithm.

The contribution of this research has three folds:

a) The latest research and application of automatic grapevine pruning is reviewed;

b) A novel automatic grapevine pruning algorithm using computer vision technique to automatically identify important grapevine features, locate the pruning points, and derive their three dimensional coordinates is proposed, researched and developed;

c) The proposed algorithm can be also applicable to other agricultural operation automation other than grapevine pruning.

List of Figures

Figure 1-1: Structure of a grapevine [Crossen97]	3
Figure 1-2: Annual growth cycle of a grapevine [Svensson02]	4
Figure 1-3: Two typesof secateurs	5
Figure 1-4: The second generation of pruning machine	7
Figure 1-5: Two-bud spur pruning	9
Figure 1-6: Spur pruning. In the pruning, the mature shoot which is most	
distant from the permanent cordon is generally removed and the closest	
one is cut back to a 2 node spur [Ludvigsen07]	10
Figure 1-7: Flowchart of proposed approach	11
Figure 2-1: Thermal image of agrapefruit	17
Figure 2-2: From two-dimensional to three-dimensional	20
Figure 3-1: The flow chart to get the two-dimensional pruning positions	26
Figure 3-2: The RGB colour space model [Gonzalez04]	27
Figure 3-3: Image (No. 002) (a) RGB image. (b) Gray-scale image	29
Figure 3-4: (a) Image viewer window. (b) Pixel region window	30
Figure 3-5: (a) Image viewer window. (b) Pixel region window	31
Figure 3-6: The histogram of the RGB image in Figure 3-3 (a)	32
Figure 3-7: Comparison of the original image and image after thresholding	34
Figure 3-8: Black and white image	35
Figure 3-9: The flow chart of the three steps in image analysis	36
Figure 3-10: Flowchart of the cordon determining	38
Figure 3-11:Bottom of the cordon	39
Figure 3-12: Locating the cordon	39
Figure 3-13: Image (No.061)	41
Figure 3-14: The cordon	42
Figure 3-15: Parts of the branch	42
Figure 3-16: (a) Locating the branches; (b) The distance from Y1 to Y2	42
Figure 3-17: The flow chart of locating the branch	43
Figure 3-18: Three steps to locate the branch	45
Figure 3-19: From RGB to black and write	47
Figure 3-20: Part of the cane and its slope, a) Part of a cane, b) Slope	
changing of this cane	47
Figure 3-21: The workflow for method two	48
Figure 4-1: Original RGB image	52
Figure 4-2: From RGB to black and white image	52
Figure 4-3: The iterative process of locating the nodes	57

Figure 5-1: Example for a perspective projection [Thomas03]	62
Figure 5-2: Geometry of the pinhole camera model [Thomas03]	62
Figure 5-3: Geometry of the linear camera model [Thomas03]	63
Figure 5-4: Simplified linear camera model for determination of the	
horizontal view angle	64
Figure 5-5: Checking parallel and frontal view of the two cameras	
[Thomas03]	67
Figure 5-6: An exemplary object that meets the conditions listed above	67
Figure 5-7: Before calibration	68
Figure 5-8: After calibration	68
Figure 5-9: Perspective transformation model of the camera	70
Figure 5-10: Frame of reference for space co-ordinate calculation on pinhole	
camera model [Thomas03]	73
Figure 5-11: Relation between the two camera co-ordinate systems	
[Thomas03]	73
Figure 5-12: Frame of Reference for Space Coordinate Calculation on	
Linear Camera Model [Thomas03]	77
Figure 5-13: Flow chart of the 3D position calculation	78
Figure 5-14: a) Left image, b) Right image	80
Figure 5-15: The procedure of cutting the whole four branches	83

List of Tables

Table 3-1: The attribute of RGB and gray-scale images	29
Table 4-1: Precision of 2D positioning	53
Table 5-1: Outcome of the software calibration	71
Table 5-2: Actual values (Unit: mm)	
Table 5-3: Calculated values by the program (Unit: mm)	
Table 5-4: ErrorPrecision (Unit: %)	

Statement of Originality

Name: Ming GAO

Program: Master by Engineering Science

This work contains no material which has been previously accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in this text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital vision of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the university to restrict access for a period of time.

Signature:

Date:

Acknowledgements

I would like to acknowledge the effort of colleagues and staff in the School of Mechanical Engineering, the University of Adelaide, who have made it possible to do this research and helped in some way during my studies.

In particular, I wish to express sincere appreciation to Dr. Tien-Fu Lu for his supervision, guidance and encouragement in this research and preparation of this thesis.

I am also grateful for the assistance and encouragement provided by Dr. Milton Woods. Special thanks are also extended to Mr Chao Wang for his dedicating works in language assistance.

Last but not the least, I would like to thank my beloved parents who have given me a great deal of support and encouragement to conquer the problems I experienced during my academic and personal life while studying and living in Australia.

Publications

- Ming Gao and Tien-Fu Lu, "Image Processing and Analysis for Autonomous Grapevine Pruning", proceedings of the 2006 IEEE International Conference on Mechatronics and Automation June 25 - 28, Luoyang, China.
- Ming Gao and Tien-Fu Lu, "Autonomous Grapevine Pruning- A Computer Vision Approach", February 2011 submitted to Australian Journal of Agricultural Engineering