N-Player Quantum Games in an EPR Setting

James M. Chappell*, Azhar Iqbal, Derek Abbott

School of Electrical and Electronic Engineering, University of Adelaide, Adelaide, South Australia, Australia

Abstract

The N-player quantum games are analyzed that use an Einstein-Podolsky-Rosen (EPR) experiment, as the underlying physical setup. In this setup, a player's strategies are not unitary transformations as in alternate quantum-game-theoretic frameworks, but a classical choice between two directions along which spin or polarization measurements are made. The players' strategies thus remain identical to their strategies in the mixed-strategy version of the classical game. In the EPR setting the quantum game reduces itself to the corresponding classical game when the shared quantum state reaches zero entanglement. We find the relations for the probability distribution for N-qubit GHZ and W-type states, subject to general measurement directions, from which the expressions for the players' payoffs and mixed Nash equilibrium are determined. Players' $N \times N$ payoff matrices are then defined using linear functions so that common two-player games can be easily extended to the N-player case and permit analytic expressions for the Nash equilibrium. As a specific example, we solve the Prisoners' Dilemma game for general $N \geq 2$. We find a new property for the game that for an even number of players the payoffs at the Nash equilibrium are equal, whereas for an odd number of players the cooperating players receive higher payoffs. By dispensing with the standard unitary transformations on state vectors in Hilbert space and using instead rotors and multivectors, based on Clifford's geometric algebra (GA), it is shown how the N-player case becomes tractable. The new mathematical approach presented here has wide implications in the areas of quantum information and quantum complexity, as it opens up a powerful way to tractably analyze N-partite qubit interactions.

Introduction

The field of classical game theory began around 1944 [1–3] and dealt with situations involving strategic interdependence between a set of rational participants. Following this, several situations in quantum theory were found to have connections to game theory. Blaquiere [4] found that the saddle-point condition, on which optimality of game strategies is based, is an extension of Hamilton's principle of least action. Wiesner's work [5] on quantum money from 1983 is widely accepted to have started the field of quantum cryptography, and cryptographic protocols can be written in the language of game theory. In 1990 Mermin [6] reported in which players share Greenberger-Horne-Zeilinger (GHZ) states and W states [10,26,50], with analysis showing the benefits of players forming coalitions [20,36] and also the effects of noise [25,39]. Such games can be used to describe multipartite strategic situations, such as in the analysis of secure quantum communication [63].

The usual approach to implementing quantum games involves players sharing a multi-qubit quantum state with each player having access to an allocated qubit upon which they perform local unitary transformations. A supervisor then submits each qubit to measurement in order to determine the outcome of the game. An alternative approach in constructing quantum games uses an Einstein-Podolsky-Rosen (EPR) type setting [27,30,37,48,64–71], based on a framework developed by Mermin [9] in 1990. In this approach, quantum games are constructed using an EPR apparatus, with the players' strategies now being the classical choice between two possible measurement directions implemented when measuring their qubit. This thus becomes equivalent to the standard arrangement for playing a classical mixed-strategy game, in that in each run a player has a choice between two pure strategies. Thus, as the players' strategy sets remain classical, the EPR type setting avoids a well known criticism [13] of conventional quantum games, stemming from the fact that typically, in quantum game frameworks based on Eisert et al's formalism, players are given access to extended strategy sets consisting of local unitary transformations that can be interpreted as fundamentally changing the underlying classical game.

Recently [47,49,50] the formalism of Clifford's geometric algebra (GA) [72–76] has been applied in the analysis of quantum games. These works demonstrate that the formalism of GA facilitates analysis and gives a geometric visualization of the game. Multipartite quantum games are usually found significantly harder to analyze, as we are required to define an $N \times N$ payoff matrix and calculate measurement outcomes over N-qubit states. In this regard, GA is identified as the most suitable formalism in order to...
allow ease of analysis. This becomes particularly convincing in the case where \(N \to \infty \), where matrix methods become unworkable. As we will later show, an algebraic approach such as GA is both elegant and tractable as \(N \to \infty \).

Using an EPR type setting we firstly determine the probability distribution of measurement outcomes, giving the player payoffs, and then determine constraints that ensure a faithful embedding of the mixed-strategy version of the original classical game within the corresponding quantum game. We then apply our results to an \(N \) player prisoner dilemma (PD) game.

EPR Setting for Playing Multi-player Quantum Games

The EPR setting [27,37,48] for a multi-player quantum game assumes that players \(P \) are spatially-separated participants of a non-cooperative game, who are located at the \(N \) arms of an EPR system [10], as shown in Fig. 1. In one run of the experiment, each player chooses one out of two possible measurement directions. These two directions in space, along which spin or polarization measurements can be made, are the players’ strategies. As shown in Fig. 1, we represent the \(i \)th players’ two measurement directions as \(k_i^1,k_i^2 \), with a measurement returning \(+1\) or \(-1\).

Over a large number of runs consisting of a sequence of \(N \)-particle quantum systems emitted from a source, upon which measurements are performed on each qubit, subject to the players choices of measurement direction, a record is maintained of the experimental outcomes from which players’ payoffs can be determined. These payoffs depend on the \(N \)-tuples of the various players’ strategic choices made over a large number of runs and on the dichotomic outcomes (measuring spin-up or spin-down) from the measurements performed along those directions.

Clifford’s Geometric Algebra (GA)

Typically in a quantum game analysis the tensor product formalism along with Pauli matrices are employed, however matrices become cumbersome for higher dimensional spaces, and so GA is seen as an essential substitute in this case, where the tensor product is replaced with the geometric product and the Pauli matrices are replaced with algebraic elements. The use of GA has also previously been developed in the context of quantum information processing [77].

To setup the required algebraic framework, we firstly denote \(\{e_i\} \) as a basis for \(\mathbb{R}^3 \). Following [49,50], we can then form the bivectors \(e_ie_j \), which are non-commuting for \(i \neq j \), with \(e_ie_j = -e_je_i \) but if \(i=j \) we have \(e_i^2 = e_ie_i = 1 \). We also have the trivector

\[
t = e_1e_2e_3,
\]

finding \(t^2 = e_1e_2e_3e_1e_2e_3 = -1 \) and furthermore, that \(t \) commutes with each vector \(e_i \), thus acting in a similar fashion to the unit imaginary \(\sqrt{-1} \). We have \(e_1e_2 = e_1e_2e_3e_1 = e_3 \) and so \(e_ie_i = \epsilon e_i \) for cyclic \(i,j,k \). We can therefore summarize the algebra of the basis elements \(\{e_i\} \) by the relation

\[
e_ie_j = \delta_{ij} + \epsilon e_je_i,
\]

which is isomorphic to the algebra of the Pauli matrices [74], but now defined as part of \(\mathbb{R}^3 \).

In order to express quantum states in GA we use the one-to-one mapping [74,76] defined as follows

\[
|\psi\rangle = z|0\rangle + \beta|1\rangle =
\begin{bmatrix}
a_0 + i a_3 \\
-a_2 + i a_1
\end{bmatrix}
\leftrightarrow
\hat{\psi} = a_0 + a_1 e_1 + a_2 e_2 + a_3 e_3,
\]

where \(a_i \) are real scalars and \(i = \sqrt{-1} \).

Symmetrical \(N \) Qubit States

For \(N \)-player quantum games an entangled state of \(N \) qubits is prepared, which for fair games should be symmetric with regard to the interchange of the \(N \) players, and it is assumed that all information about the state once prepared is known by the players. Two types of entangled starting states can readily be identified which are symmetrical with respect to the \(N \) players. The GHZ-type state

\[
|\text{GHZ}\rangle_N = \cos \gamma_2 |000\ldots0\rangle + \sin \gamma_2 |111\ldots1\rangle,
\]

where we include an entanglement angle \(\gamma \in [\frac{-\pi}{2},\frac{\pi}{2}] \) and the \(W \)-type state

\[
|W\rangle_N = \frac{1}{\sqrt{N}} (|1000\ldots00\rangle + |0100\ldots00\rangle + |0010\ldots00\rangle + \ldots + |0000\ldots01\rangle).
\]

To represent these in geometric algebra, we start with the mapping for a single qubit from Eq. (3), finding

\[
|0\rangle \leftrightarrow 1, |1\rangle \leftrightarrow -i e_2,
\]

so that for the GHZ-type state in GA we have

\[
\psi_{\text{GHZ}} = \cos \gamma_2 |\cdot\cdot\cdot\rangle + \sin \gamma_2 \frac{\epsilon}{2} e_1 e_2 e_3 \ldots e_N.
\]
where the superscript on each bivector indicates which particle space it refers to. Also for the W-type state we have in GA

$$\psi_{w_N} = -\frac{1}{\sqrt{N}}(te_1^1 + te_2^2 + \ldots + te_N^N).$$ \hspace{1cm} (8)

Unitary Operations and Observables in GA

General unitary operations on a single qubit in GA can be represented as.

$$R(\theta_1, \theta_2, \theta_3) = e^{-i\theta_3 e_2^2} e^{-i\theta_1 e_1^1} e^{-i\theta_2 e_3^3},$$ \hspace{1cm} (9)

which is the Euler angle form of a rotation that can completely explore the space of a single qubit, and is equivalent to a general local unitary transformation. We define $$U^i = R(x_1, x_2, x_3)$$ for a general unitary transformation acting locally on each qubit i, which the supervisor applies to the individual qubits that gives the starting state

$$\langle U^1 \otimes U^2 \otimes \ldots \otimes U^N \rangle |\psi\rangle,$$ \hspace{1cm} (10)

upon which the players now decide upon their measurement directions.

The overlap probability between two states $|\psi\rangle$ and $|\phi\rangle$, in the N-particle case [74], is.

$$P(|\psi\rangle, |\phi\rangle) = 2^{N-2}\langle \psi | E \psi^\dagger E \phi^\dagger \rangle\gamma_0 - 2^{N-2}\langle \psi | J \psi^\dagger J \phi^\dagger \rangle\gamma_0,$$ \hspace{1cm} (11)

where the angle bracket $\langle \rangle$ indicates that we retain only the scalar part of the product, and where

$$E = \prod_{k=1}^{N} \frac{1}{2} (L - we_1^k) = \frac{1}{2^{N-1}} \left(1 + \sum_{r=1}^{N} (-1)^r C_N^r (we_1^r)\right),$$ \hspace{1cm} (12)

where $\lfloor x \rfloor$ returns the nearest integer less than or equal to a given number x, and where we define $C_N^r (we_1^r)$ to represent all possible combinations of N items taken r at a time, acting on the object inside the bracket. For example $C_3^1 (we_1^1) = we_1^1we_1^2 + we_1^1we_1^3 + we_1^2we_1^3$.

The number of terms produced being given by the standard combinatorial formula

$$C_N^r = \frac{N!}{r!(N-r)!}.$$

We also have

$$J = E \ni = \frac{1}{2^{N-1}} \sum_{r=1}^{\lfloor N/2 \rfloor} (-1)^{r+1} C_N^r (we_1^r),$$ \hspace{1cm} (13)

where for simplicity, we initially assume that N is odd, which simplifies our derivation, and our results can easily be generalized later for all N.

The supervisor now submits each qubit for measurement, through N Stern-Gerlach type detectors, with each detector being set at one of the two angles chosen by each player. As mentioned, each player’s choice, is a classical choice between two possible measurement directions, and hence each player’s strategy set remains the same as in the classical game, with the quantum outcomes arising solely from the shared quantum state.

In order to calculate the measurement outcomes, we define a separable state $\phi = A_1 A_2 \ldots A_N$, to represent the players directions of measurement, where A_i is a rotor defined in Eq. (9), with probabilistic outcomes calculated according to Eq. (11). The use of Eq. (11) gives the projection of the state $|\psi\rangle$ onto ϕ, and thus returns identical quantum mechanical probabilities conventionally calculated using the projection postulate of quantum mechanics. The set of $|0\rangle$ and $|1\rangle$ outcomes obtained from the measurement of each of the N qubits gives a reward to each player p according to a payoff matrix G^p. The expected payoff for each player then calculated from.

$$\Pi_p = \sum_{i}^{N} P_{i_j} P_{i_j} = f(P_{i_j}),$$ \hspace{1cm} (14)

where P_{i_j} is the probability of recording the state $|i_j\rangle |i_j\rangle \ldots |i_j\rangle$ upon measurement, where $i_j \in \{0, 1\}$, and $G_{i,j}$ is the payoff for this measured state. For large N it is preferable to calculate the payoff as some function f of the measured states, to avoid the need for large $N \times N$ payoff matrices, as developed in the following section.

Results

GHZ-type state

Firstly, we calculate the probability distribution of measurement outcomes from Eq. (11), from which we then calculate player payoffs from Eq. (14). For the GHZ-type state we have the first observable given by Eq. (12) producing.

$$\psi J \psi^\dagger = \frac{1}{2^{N-1}} \left(\prod_{i=1}^{N} U^i\right) \left(1 + \sum_{r=1}^{N} (-)^r C_N^r (V^r_\gamma)\right) \left(\prod_{i=1}^{N} U_i^\dagger\right),$$ \hspace{1cm} (15)

where we define $V^r_\gamma = iU^r U^\dagger$, and

$$\psi J \psi^\dagger = \frac{1}{2^{N-1}} \left(\prod_{i=1}^{N} U^i\right) \left(1 + \sum_{r=1}^{\lfloor N/2 \rfloor} (-)^r C_N^r (V^r_\gamma)\right) \left(\prod_{i=1}^{N} U_i^\dagger\right),$$ \hspace{1cm} (16)

For the measurement settings with a separable wave function $\phi = \Pi, A'$, we deduce the observables by setting $\gamma = 0$ in Eq. (15) and Eq. (16) to be

$$\phi J \phi^\dagger = \frac{1}{2^{N-1}} \left(\prod_{i=1}^{N} U^i\right) \left(1 + \sum_{r=1}^{\lfloor N/2 \rfloor} (-)^r C_N^r (M^r_\gamma)\right)$$ \hspace{1cm} (17)

$$\phi E \phi^\dagger = \frac{1}{2^{N-1}} \left(\prod_{i=1}^{N} U^i\right) \left(1 + \sum_{r=1}^{\lfloor N/2 \rfloor} (-)^r C_N^r (M^r_\gamma)\right),$$ \hspace{1cm} (18)

Remains the same as in the classical game, with the quantum outcomes arising solely from the shared quantum state.
where $M_k = A^j e_k A^j$. For $A^j = e^{-i\theta_j^2/2}$ that allows a rotation of the detectors by an angle κ, we find

$$\phi J^\phi = \frac{1}{2N-1} \sum_{r=1}^{N-1} \left((-)^{r+1} C_{2r-1}^N \left(i e^{i\theta_j^2} \right) \right)$$

$$\phi E^\phi = \frac{1}{2N-1} \left(1 + \sum_{r=1}^{N} (-)^r C_{2r}^N \left(i e^{i\theta_j^2} \right) \right).$$

(18)

It should be noted in Eq. (18) that we have defined the measurement angles with a simplified rotor, $e^{-i\theta_j^2/2}$, and we assume no loss of generality, which is in accordance with the known result [10] that Bell’s inequalities can still be maximally violated when the allowed directions of measurement are located in a single plane, as opposed to being defined in three dimensions.

So, referring to Eq. (11), we find, through combining Eq. (15) and Eq. (18),

$$2^{N-2} \langle \psi E^\psi | \phi J^\phi \rangle_0 = \frac{1}{2N} \left(\sum_{r=1}^{N} (-)^r C_{2r}^N (V_j^2) \right)$$

$$= \frac{1}{2N} \left(1 + \sum_{r=1}^{N} C_{2r}^N (K^j) \right),$$

where $K^j = V_j^2 e^{i\theta_j^2} = \cos \kappa \cos x_j + \sin \kappa \sin x_j \cos x_j$, using the standard results listed in Eq. (56). The cross terms in the expansion of the brackets in Eq. (19), do not contribute because we only retain the scalar components in this expression. We also have for the second part of Eq. (11), through combining Eq. (16) and Eq. (18)

$$-2^{N-2} \langle \psi J^\psi | \phi J^\phi \rangle_0 = \frac{1}{2N} \cos \gamma \sum_{r=1}^{N} \sin \gamma \sin \Omega,$$

(20)

where we define

$$\Omega = \sum_{r=0}^{[N/2]} (-)^r C_{2r}^N \left(x_1 x_2 \ldots x_r \right)$$

$$X_1^j = V_j^1 e^{i\theta_j^2} = (- \sin \kappa (\cos z_1 \cos z_2 \cos z_3 - \sin z_2 \sin z_3) + \sin z_1 \cos z_2 \cos \kappa)^j$$

$$X_2^j = V_j^2 e^{i\theta_j^2} = (\sin \kappa (\cos z_2 \sin z_3 + \sin z_2 \cos z_3 \cos z_1) - \sin z_1 \sin z_2 \cos \kappa)^j,$$

also referring to Eq. (56).

Probability amplitudes for N qubit state, general measurement directions. So combining our last two results from Eq. (19) and Eq. (20) using Eq. (11), we find the probability to find any outcome after measurement, which can be shown to be valid for all N not just N odd as initially assumed, is

$$P_{k^j, k^N} = \frac{1}{2N} \left(1 + \sum_{r=1}^{[N/2]} C_{2r-1}^N (e^j K^j) + \cos \gamma \sum_{r=1}^{[N/2]} C_{2r}^N (e^j K^j) + e^{-j \gamma} \Omega \sin \gamma \right),$$

(22)

where we have included $e^j (-)^j \epsilon^j \in \{+1, -1\}$, to select the probability to measure spin-up or spin-down on a given qubit.

If we take $\gamma = 0$, describing the classical limit, we have from Eq. (22)

$$P_{k^j, k^N} = \frac{1}{2N} \left(1 + \sum_{r=1}^{[N/2]} C_{2r-1}^N (e^j K^j) + \sum_{r=1}^{[N/2]} C_{2r-1}^N (e^j K^j) \right)$$

$$= \frac{1}{2N} \left(1 + \sum_{r=1}^{N} C_{2r}^N (e^j K^j) \right),$$

(23)

which shows that for zero entanglement we can form a product state as expected. Alternatively with general entanglement, but only for operations on the first two qubits, we have

$$P_{k^j, k^N} = \frac{1}{8} \left(1 + e^j \cos \gamma \right) \sum_{r=1}^{[N/2]} C_{2r}^N (e^j K^j) (1 + e^j K^j) (1 + e^j K^j),$$

(24)

which shows that for the GHZ-type entanglement that each pair of qubits is mutually un-entangled, a well-known result for GHZ-type states.

Player payoffs. In general, to represent the permutation of signs introduced by the measurement operator we can define for the first player, say Alice,

$$\Pi_A(k^j) = \sum_{j=0}^{[N/2]} C_{2j}^N (e^j K^j)$$

+ $\cos \gamma \sum_{r=1}^{[N/2]} C_{2r}^N (e^j K^j) + e^{-j \gamma} \Omega \sin \gamma$

(26)

and similarly for the second player, say Bob, where we would use Bob’s payoff matrix in place of Alice’s.

Mixed-strategy payoff relations. For a mixed strategy game, players choose their first measurement direction k^j_1, with probabilities x^j, where $x^j \in (0,1)$ and hence choose the direction k^j_2 with probabilities $(1-x^j)$, respectively. Then Alice’s payoff is now given as
\[
\Pi_d(x^1, x^2, \ldots, x^N) = x^1 \ldots x^N \sum_{i,j,k=0}^1 P_{\beta_{i,j,k}}(\kappa_1^1, \kappa_1^2, \kappa_2^1, \kappa_2^2) G_{\beta_{i,j,k}} \quad (27)
\]

\[
+ \ldots + x^1(1-x^2) \ldots x^N \sum_{i,j,k=0}^1 P_{\beta_{i,j,k}}(\kappa_1^1, \kappa_1^2, \kappa_2^1, \kappa_2^2) G_{\beta_{i,j,k}} \\
+ \ldots + (1-x^1)(1-x^2)x^3 \ldots \\
x^N \sum_{i,j,k=0}^1 P_{\beta_{i,j,k}}(\kappa_1^1, \kappa_1^2, \kappa_2^1, \kappa_2^2) G_{\beta_{i,j,k}} \\
+ \ldots + (1-x^1)(1-x^2)x^3 \ldots \\
(1-x^N) \sum_{i,j,k=0}^1 P_{\beta_{i,j,k}}(\kappa_1^1, \kappa_1^2, \kappa_2^1, \kappa_2^2) G_{\beta_{i,j,k}}.
\]

Embedding the Classical Game

If we consider a strategy N-tuple \((x^1, x^2, x^3, \ldots, x^N) = (0, 1, 0, \ldots 0)\) for example, at zero entanglement, then the payoff for Alice is obtained from Eq. [28] to be

\[
\Pi_d(x^1, x^2, \ldots, x^N) = \frac{1}{2^N} [G_{0000} \ldots (1 + K_1^2)(1 + K_2^2) \ldots (1 + K_2^N)] \\
+ G_{0100} \ldots (1 - K_2^1)(1 + K_1^2) \ldots (1 + K_2^N) \\
+ G_{0010} \ldots (1 + K_2^1)(1 - K_1^2) \ldots (1 + K_2^N) \\
+ G_{0001} \ldots (1 - K_2^1)(1 - K_1^2) \ldots (1 - K_2^N).
\]

Hence, in order to achieve the classical payoff of \(G_{0011}\), we can see that we require \(K_1^3 = -1\), \(K_1^2 = +1\) and \(K_2^3 \ldots K_2^N = -1\).

This shows that we can select any required classical payoff by the appropriate selection of \(K_1^3 = \pm 1\). We therefore have the conditions for obtaining the classical mixed-strategy payoff relations as

\[
K_1^3 = \cos x_1^3 \cos x_2^3 + \sin x_1^3 \cos x_3^3 \sin x_2^3 = \pm 1.
\]
and punishes a majority one. Hence we are led to define the following general payoff function Eq. (14). The simplest approach is to define linear functions over some functional form of the measurement outcomes, as shown in specific games for large N. which involves the situation where the player that does not yield to a a defined as the player who chooses their first measurement direction and for the defecting player achieves a higher payoff, is essential feature that a defecting player.

In the EPR setting for the quantum game, a cooperating player is which gives us the typical payoff matrix for two-player PD game. and for the defecting player

\[a_{0,0} = \frac{1}{4}(N(c+a) - p_2 + 2(b+d)) \]
\[a_{10,0} = -\frac{1}{4}((N-1)(c-a) + 2(d-(a+b))) \]
\[a_{110,0} = c-a = -\frac{p_2}{4} \]
\[a_{1110,0}, a_{11110,0}, \ldots = 0 \]

If required, Eq. (37) can be extended with quadratic terms in n to allow a greater variety of PD games to be defined, and we find that if this is done that one extra term is added to the series in (40) and Eq. (41).

Fitney and Hollenberg [40], define slightly different linear functions for the prisoner dilemma game, including a special case at $m=1$, as follows:

\[s_{C} = 0 \quad \text{if } m=1 \]
\[= 3 + 4(m-2) \quad \text{if } m>1 \]

and for the defecting player

\[s_{D} = 5 + 4(m-1), \]

where m is the number of players cooperating. We find that the advantage of this definition is that the phase diagram has entanglement transitions that are independent of N, but with the disadvantage that we need to administer this special case at $m=1$ in the calculations. Also we found with our definition in Eq. (37), that this definition the PD game is selected if $p_1 > 0$ and $p_2 \geq 0$ and the minority game with $p_1 < 0$ and $p_2 > 0$ for example.

It should be noted that while the definition in Eq. (37) can generally define an infinite set of PD games through simply putting conditions on p_1 and p_2, it is still only a subset of the space of all possible PD games defined over $N \times N$ payoff matrices.

Using the linear functions defined in Eq. (37) we find

We can see that as $N \to \infty$, that we need to define an infinite number of components of the payoff matrix as shown by Eq. (25). Hence in order to proceed to solve specific games for large N, we need to write the payoff matrix as some functional form of the measurement outcomes, as shown in Eq. (14). The simplest approach is to define linear functions over the set of player choices, as developed in [40], defining the following general payoff function

\[s_0 = an + b, \quad s_1 = cn + d, \]

where s_0 is the payoff for players which choose their first measurement direction and s_1 is the payoff for the players which choose their second measurement direction, and where n is the number of players choosing their first direction and $a,b,c,d \in \mathbb{R}$.

This approach enables us to simply define various common games. For example the prisoner dilemma (PD), which has the essential feature that a defecting player achieves a higher payoff, is represented if we have $c \geq a, b > a+b$. These conditions ensure that if a cooperating player decides to defect, then his payoff rises as determined by Eq. (37). For example for $a = 3, b = -3, c = 4, d = 1$ we have defined an N player PD, and for $N = 2$ we find

\[N \quad \text{Player Quantum Games} \]

\[G_y^4 = \begin{bmatrix} 3 & 0 \\ 5 & 1 \end{bmatrix}, \]

which gives us the typical payoff matrix for two-player PD game.

In the EPR setting for the quantum game, a cooperating player is defined as the player who chooses their first measurement direction and a defecting player as one who chooses their second measurement direction.

For the Chicken game (also called the hawk-dove game) [3], which involves the situation where the player that does not yield to the other is rewarded, but if neither player yields then they are both severely penalized, in this case we require $c \geq a, d < a+b, a > 0$ and for the minority game, an implementation would be $c = -a, a < 0$ and $d = b + aN$ which rewards a minority choice and punishes a majority one. Hence we are led to define

\[p_1 = d - (a+b), \quad p_2 = c - a, \]

as two key determinants of quantum games, and we will find that the NE is indeed a function of p_1 and p_2 alone, see Eq. (44). With
\[(x^1 - x^2)\left(p_2 \sum_{i=2}^{N} (1 - 2x^i) - \cos \gamma i((N-1)p_2 + 2p_1)\right) \geq 0 \tag{44}\]

and similarly for the other \(N-1\) players, which thus determines the available NE for all games, defined as linear functions, in terms of the two parameters \(p_1\) and \(p_2\).

The payoff can then also be simplified for the first player to

\[
\Pi_i = \frac{1}{4} (2(b + d) - p_2 + (c + a)N - \cos \gamma \sum_{i=2}^{N} (1 - 2x^i)) + (1 - 2x^1) (\cos \gamma i((N-1)p_2 + 2p_1) - p_2 \sum_{i=2}^{N} (1 - 2x^i)). \tag{45}\]

For the minority game defined previously, we find \((N-1)p_2 + 2p_1 = 0\), which gives an interesting result for this game that both the NE and the payoff are unaffected by the entanglement of the state.

Prisoner dilemma (PD). For the PD, having \(p_2 \geq 0\) and \(p_1 > 0\), and we find from the equation for Nash equilibrium in Eq. (44) that in order to produce the classical outcome we require

\[
\cos \gamma > \frac{N-1}{N-1 + 2p_1/p_2}
\]

and hence the phase transitions, in terms of \(\cos \gamma\), are given by

\[
\frac{N-1 - 2n}{N-1 + \delta} < \cos \gamma < \frac{N+1 - 2n}{N+1 - \delta} = \lambda_n, \tag{46}\]

where \(\delta = \frac{2p_1}{p_2}\), and with the PD \(\delta \in (0, \infty)\), and hence the above inequality will hold for \(N \geq 2\). So in summary, at the classical limit we have all players defecting, and then we have the transition to the non-classical limit at \(\lambda_1\) and then we have equally spaced transitions as entanglement increases down to maximum entanglement where we have the number of players cooperating \(n = \lfloor N/2 \rfloor\). That is, we always have the same number of transitions for a given number of players, but they concertina closer together as the first transition \(\lambda_1\), moves towards zero, through changing the game parameters, \(p_1\) and \(p_2\).

The maximum payoff, close to maximum entanglement, can be found from Eq. (45) as

\[
\Pi_i = \frac{1}{4} (2(b + d) + (c + a)N + (c-a)_N)_{\text{Odd}} \tag{47}\]

where the final \((c-a)_N\) term only occurs for odd \(N\). So for \(N\) even the payoffs are equal, but for odd \(N\), the cooperating player receives a higher or equal payoff to the defecting player. The payoff rises linearly with \(N\), whereas without entanglement, we have the payoff fixed at \(d\) units from Eq. (37).

The conventional prisoner dilemma (PD) game for all \(N\). For the special case with the PD settings shown in Eq. (38), which gives the conventional PD for two players, we find from Eq. (39), \(p_1 = 1\) and \(p_2 = 1\), and so we can then simplify the general NE conditions in Eq. (44), for the first player to

\[
(1-x) (p_2 \sum_{i=2}^{N} (1 - 2x^i) - \cos \gamma ((N-1)p_2 + 2p_1)) \geq 0 \tag{48}\]

and similarly for the other \(N-1\) players. The left and right hand edges of the boundaries each form an inverted parabola in \(\cos \gamma\) given by Eq. (51).

\[
(1-x) \left(\sum_{i=2}^{N} (1 - 2x^i) - (N+1) \cos \gamma\right) \geq 0
\]

and similarly for the other \(N-1\) players. The left and right hand edges of each NE zone, shown in Fig. 2, can now be written from Eq. (46) as

\[
\frac{N-1 - 2n}{N+1} < \cos \gamma < \frac{N+1 - 2n}{N+1}. \tag{49}\]

In each zone we find the payoff for cooperation and defection, from Eq. (45), now given by

\[
\Pi_i = \frac{1}{2} (4N-2-n-(4+4N-7n) \cos \gamma)
\]

\[
\Pi_i = \frac{1}{2} (3N-2+n-(4-3N+7n) \cos \gamma), \tag{50}\]

which defines the payoff diagram for an \(N\) player PD, and which produces the classical PD at \(N=2\) at zero entanglement.

At each left hand boundary, for the defecting player, we have from Eq. (49),

\[
\frac{N-1 - 2n}{N+1} = \cos \gamma \text{ or } n = \frac{1}{2} (N-1-(N+1) \cos \gamma).
\]

Substituting this into the defecting player payoff in Eq. (50), we find

\[
\Pi_i = -3 + \frac{7}{4} (N+1)(1- \cos^2 \gamma) = -3 + \frac{7}{4} (N+1) \sin^2 \gamma, \tag{51}\]

for the defecting players’ payoff. We thus see that the payoff at each boundary follows a downwards parabolic curve in \(\cos \gamma\), if drawn on Fig. 2. If we allow \(N\) to increase without limit, then the boundaries would concertina infinitesimally close together, and in the limit as \(N \to \infty\), the payoff’s would form a continuous
downward parabolic curve in \(\cos \gamma \) given by Eq. (51). The special case of the PD selected here with \(p_1 = 1 \) and \(p_2 = 1 \) forms a parabola, whereas for the general case of a PD game with \(p_2 \geq 0 \) and \(p_1 > 0 \) from Eq. (39), we will produce a quadratic curve in \(\cos \gamma \) for the payoff. We can also see that this will be a general feature for all games defined using linear functions as both the NE typically producing a payoff diagram quadratic in \(\cos \gamma \).

We can also note that Eq. (50) indicates a different payoff for the defecting and cooperating player at the NE. If a player decides to try to change their choice in order to improve their payoff, often a lower payoff will be the outcome, because overall the player’s choices have now moved away from the NE. This then illustrates the value of coalitions and in aligning one’s choices with the coalition with the higher payoff [20,36].

W entangled State

Following the same procedure as used for the GHZ-type state, we find the probability distribution for the W-type state

\[
P_{k_{1..N}} = \frac{1}{N^{2N}} (N + \sum_{r=1}^{N} (N - 2r) \mathcal{C}_r^{N} (\epsilon' K')) + 2 \sum_{r=2}^{N} \mathcal{C}_r^{N} (\epsilon' \epsilon'^{(k_1 X_1' + k_1 X_1') K^k)}).
\]

(52)

We can then find the payoff function for the first player, Alice

\[
\Pi_A(k^1, \ldots, k^N) = Na^{d \kappa_{0,0}} + \sum_{r=1}^{N} (N - 2r) \mathcal{C}_r^{N} (d K^r) + 2 \sum_{r=2}^{N} \mathcal{C}_r^{N} (d_{r}^{(k_1' X_1') + k_1' X_1'} K^k)\]

(53)

and similarly for other players. However with the W-type state it is impossible to turn off the entanglement, and so it will not be possible to embed the classical game, as we have done with the GHZ-type state. Hence we will not proceed any further except to show the result of maximizing the payoff function in Eq. (53) for the PD.

Prisoner Dilemma (PD). For the PD we can maximize the payoff function, and we find that we require all players to defect, for all \(N \) and the resultant payoff for the first player Alice and hence all players is

\[
\Pi_A = c + d - \frac{c + d - (a + b)}{N}.
\]

(54)

So as \(N \to \infty \), then the payoff approaches \(c + d \) from below.

Discussion

Using Clifford’s geometric algebra, the probability distribution is found for general measurement directions on a general \(N \) qubit entangled state, for the GHZ-type state shown in Eq. (22) and for the W-type state shown in Eq. (52).

References

