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Abstract 

In military operations research the term shoot-look-shoot (SLS) describes 

repetitive shots at a target until the target is hit.  A many-on-many SLS 

engagement involves multiple targets.  The expected number of targets hit is of 

interest when the maximum number of shots is limited.  For the homogeneous 

case an algebraic expression for expected hits is known.  The expression was 

derived indirectly as a limited expected value function applied to a binomial 

distribution.  For the case when shots are heterogeneous expected hits can be 

calculated from a known set of recursive equations. 

This thesis explicitly constructs a homogeneous SLS probability space using a 

hybrid of the binomial and negative binomial distributions.  Expected hits is then 

calculated directly as the expected number of successes.  Similarly an explicit 

heterogeneous SLS probability space is constructed and used to derive an 

algebraic expression for expected hits.  The many-on-many SLS model is then 

enhanced to explicitly include weapons, where each weapon is characterised by its 

maximum number of shots and stochastic availability rate in addition to the single 

shot probability of a hit.  Both the homogeneous and heterogeneous cases are 

considered.   

A generalised result concerning constrained optimisation of concave 

functions was proved and applied to show that in the homogeneous case the 

expected number of hits is maximised when shots are evenly distributed amongst 

weapons.  A similar tendency for the heterogeneous case has been successfully 

applied in the Air Defence Command Post Automation (ADCPA) software 

package to optimise the deployment of surface-to-air missile fire units.   

Three other noteworthy results are as follows.  A continuous function is 

derived that coincides with expected hits for homogenous SLS distributions as the 

number of targets and maximum number of shots varies.  Secondly for any 

distribution based on a sequence of Bernoulli trials it is shown that the expected 

number of successes, failures and trials have common ratios determined by the 

single trial probability of success.  Finally a hybrid of the gamma and Poisson 

distributions is presented as a limiting case of the homogeneous SLS distribution. 
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Chapter One 

1    Introduction 

1.1 Shoot-look-shoot (SLS) processes 

The need to quantify the combined defence effectiveness provided by mixed 

collections of weapons motivated the development and analysis of the 

mathematical models presented in this thesis.  Intuitively it is desirable that a 

measure of effectiveness be able to quantify the benefits of both a large number of 

available shots, and the degree of distribution of those shots amongst several 

weapons, that is overlap of coverage.  Excess capability is of no value and so 

diminishing returns for increased capability should also be a feature. 

Using the total number of shots fails to reward overlapping coverage of 

weapons, while using the total number of weapons fails to reward total shots, and 

neither measure concedes diminishing returns. 

Many-on-many engagements involving several attackers and several targets 

are considered by Przemieniecki (pp 154-161), who in turn references Bexfield 

and Thomas.  The targets do not shoot back.  This local asymmetry is not unusual 

when specific weapons are developed for specific targets.  Rock-paper-scissors is 

a simple analogous game.  In the primary application domain for this thesis the 

attackers are surface-to-air missile units defending against enemy aircraft that 

have themselves become the targets.  Shoot-look-shoot (SLS) is a term used to 

describe assignment of weapons to targets in which the outcome of each shot is 

assessed and successive shots are then fired at surviving targets, so that no shots 

are wasted.  Other allocation schemes are compared to SLS in Section 3.5.  

Przemieniecki gives an expression for h , the expected number of targets 

destroyed, or mnemonically hit, for a many-on-many SLS engagement, where 

single shots have a fixed probability of hit.  The measure h  offers an 

improvement over the total number of shots because it does incorporate 

diminishing returns as the number of shots increases. 
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Anderson and Miercort (pp V-18 – V-22) give recursion relations for 

computation of h  for a many-on-many SLS engagement in which the shots are 

heterogeneous, in the sense that single shot hit probabilities may vary. 

This thesis extends the engagement models mentioned above to 

many-on-many-by-many shoot-look-shoot (M3SLS) engagements by explicitly 

considering weapons, characterised by availability rates and a maximum number 

of shots.  Shots can only be fired from weapons that are stochastically found to be 

available or serviceable.  In this sense the single shot hit probabilities are now 

conditional probabilities.  Both homogeneous and heterogeneous cases are 

considered. 

The homogeneous and heterogeneous SLS and M3SLS engagements are 

treated as stochastic processes, and the taxonomy of processes is represented as a 

Venn diagram in Figure 1.1.  Chapters 3 to 6 consider each of the processes in 

turn.  The variables appearing in the parameter lists are explained in the respective 

chapters. 

It will be shown that the measure h  for M3SLS engagements adds a reward 

for overlapping coverage.  The flawed measures, total shots and total weapons, are 

compared to h  for the homogeneous case in Section 5.4, and h  is shown to be a 

unified measure, in the sense that in extreme cases it degenerates to the simpler 

measures.  For a heterogeneous M3SLS engagement h  successfully 

accommodates all of the competing requirements laid out in the first paragraph.  

Heterogeneous
weapons and shots

M3SLSHn,R,U,ps,phL

Homogeneous
weapons and shots
M3SLSHn,r,u,ps,phL

Heterogeneous
shots

SLSHn,m,pL

Homogeneous
shots

SLSHn,m,pL

 

Figure 1.1 Taxonomy of shoot-look-shoot processes 
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This could be summarised in a slogan that triumphantly presents the expression 

for h  given by (6.3) as “a measure of sufficient distributed combined firepower”, 

where the words are intended to reflect diminishing returns, overlap, mixed 

weapons and number of shots, respectively.  Note that h  has a sound physical 

interpretation, it is not merely a convenient abstract heuristic. 

The M3SLS process may be applicable to other systems.  For example it may 

be applicable to certain types of logistical problems involving the delivery of 

goods or services.  The essential characteristics for this type of application are that 

a pre-determined finite demand exists for goods or services from a number of 

servers, where each server can provide only up to a limited number of goods or 

services, and the effectiveness or acceptability of goods or services, and 

availability of servers, is stochastic.  This translates to the domain of many 

weapons faced with many targets as follows.  Weapons and shots are examples of 

servers and services, respectively, while the finite demand for goods or services 

corresponds to the number of targets.   

Indeed new light is shed on the old adage “don't put all of your eggs in one 

basket”.  The following conclusions follow with mathematical rigour from the 

properties of h  given in Chapter 5 for a homogeneous M3SLS process.  Consider 

the expected number of delivered and usefully employed eggs.  If there are no 

spare eggs then there is nothing to lose by placing all of the eggs in one basket.  

For a large enough excess of eggs it is best to distribute them as evenly as possible 

amongst the baskets.  For intermediate cases a more complex criterion is given by 

Theorem 5.2.    

1.2 Air Defence Command Post Automation (ADCPA) 

The measure h  for a heterogeneous M3SLS process has been implemented as the 

objective function in an optimisation algorithm which assists in planning the 

deployment of surface-to-air missile fire units.  The optimisation algorithm forms 

part of an Australian Army command support system known as Air Defence 

Command Post Automation (ADCPA) which was developed at the Defence 

Science and Technology Organisation.  The measure h  captures and quantifies 

the qualitative objectives stipulated for commanders in the military doctrinal 

publications MLW II-4-1, MLW II-4-2 and RAA CTN 4-3.  Use of the 

optimisation algorithm in ADCPA increases the effectiveness of air defence 

assets. 

An earlier air defence software package developed for the UK Royal Air 

Force is described by Thomas and Palmer.  It has been compared with ADCPA 

(Bourn, 1993 and 1994). 

A brief Australian history will now be given, starting with precursors to 

ADCPA, of computer assisted assessment of surface-to-air missile fire unit 
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deployments, or “site assessment” as it is commonly known.  Computer assisted 

site assessment began in Australia in 1983 with an undergraduate project 

undertaken by Mark Nicholas, a student at Duntroon (Nicholas).  Site assessment 

was subsequently selected as the first specialist application to exploit the 

emergence of portable computers, and by 1984 Tim McKenna and Hugh Graham 

were working on the task while serving in Development Wing at the School of 

Artillery.  After one year McKenna was posted elsewhere, but Graham continued.  

The assessment software for the Rapier missile system was in its final form 

by 1986.  In that same year Graham also produced assessment software for the 

RBS 70 missile system by modifying the Rapier software.  D. J. P. Tier, a retired 

army officer, provided some necessary data specific to the RBS 70 system.  The 

capabilities of the assessment software are described in a Corps Training Note 

(RAA CTN 5-16). 

Efforts at the Defence Science and Technology Organisation on ADCPA 

began in 1990.  The initial user requirements were drafted by Graham and Glen 

Cooper, both of whom were serving at the time in 16 Air Defence Regiment.  

Three versions of ADCPA were released in 1991, 1992 and 1993 respectively.  

User guides were written (Gabrisch, 1992 and 1993) as well as a general 

introduction (Bourn, 1994).  Useful feedback on early versions of ADCPA was 

received from John Gunn, then serving at the regiment.  The optimisation 

capability, which had been requested by Graham, had its debut in the 1993 release.  

The author of this thesis translated the user requirements into a system design and 

developed the objective function and search strategies (Bourn, 1995) for the 

optimisation module.  Prior to this, commencing in 1988, the author had gained 

experience through membership of the Exercise Analysis Group at DSTO, led by 

Michael Gorroick, through participation in the evaluation of a number of military 

exercises.  The bulk of the ADCPA software code was written by Carsten 

Gabrisch, the other contributors being David Jacobs and Noel Hayden. 

In 1994 Clint Wright, the Staff Officer-Science at Land Headquarters, 

organised a conference to gain consensus on a plan of actions required to 

formalise the status of ADCPA within the Australian Army.  In 1995 the software 

was documented to commercial standards by Andrew Hall and Andrew Pope, 

working for the contractor Honeywell (ADCPA Design Description, ADCPA 

Programmers Manual, ADCPA Requirements Specification, ADCPA Test 

Procedures).  In 1997 ADCPA was formally accepted into service (APDR, p 12). 

Further upgrading of ADCPA was considered in 1998 (Petrusma et al.). 

ADCPA 4.0, which dropped Rapier and introduced surveillance radar alerting 

for RBS 70, was released in 2004, with further minor enhancements in 2005.  The 

developer was Matthew Christie.  Further minor enhancements were done in 2009 

by Nick McEvoy and Barney Wrightson, working under contract for DSTO. 

The thesis contains new potentially more efficient forms of expressions and 

new proven properties that were not known when the ADCPA optimisation 
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algorithm was first developed.  Exploitation of the new expressions and properties 

could significantly increase the execution speed of the software.  As a practical 

benefit, this would allow a more thorough search for the optimum deployment, for 

more complex, but nevertheless realistic, scenarios. 

1.3 Chapter organisation and major results 

A summary of the major results by chapter is given in this section.  As already 

stated Chapters 3 to 6 are dedicated to the four SLS processes represented in 

Figure 1.1.  They are preceded by the supporting material collected in Chapter 2, 

much of which could have broader applications. 

Much notation is gathered in the first section for ease of reference, beginning 

with general notation in Subsection 2.1.1. 

Multi-index notation is introduced in the next subsection.  This is a compact 

subscriptless notation used for operations on vectors and has been extended to 

represent operations required in this thesis.  The benefits of the notation are well 

worth the initial familiarisation effort.  This will be quite apparent by the time the 

reader reaches for example (2.5). 

Subsection 2.1.3 introduces terminology and notation relating to probability 

distributions.  Features of conventional notation and syntax are conflated, 

resulting in a minimal number of symbols required for compact, unambiguous and 

context independent reference to the large number of distributions that are used or 

introduced in the thesis. 

The final subsection defines the notation to be used for anonymous functions 

or λ-expressions which are used in this thesis to express random variables without 

the unnecessary introduction of additional symbols.  Also λ-expressions are 
essential for the construction of concise expressions for expectation of random 

variables for two stage stochastic processes as given in (5.3) and (6.3).  The latter 

example is the culminating expression of the thesis.  The two expressions are also 

examples of the use of the multi-index and probability theory notation, and so are 

unfettered by subscripts and minimise the need for external function and symbol 

definitions.  A simpler example is (2.7). 

Subsection 2.2.1 gathers a number of identities for ease of reference from 

later in the thesis.  These include some new identities involving binomial 

coefficients. 

The next subsection applies recursion to evaluate probabilities and 

expectations for distributions based on sequences of Bernoulli trials.  This leads to 

Theorem 2.1 that relates the ratios of the expected number of succeses, failures 

and trials to the respective probabilities for a single trial.  It is a very basic and 

useful result, and with the wisdom of hindsight seems completely intuitive.  



6     Chapter One 

   

   

Nevertheless, remarkably, this seems to be the first time that it has been 

expressed.  Expectations for the binomial, negative binomial and gambler’s ruin 

problem are trivial corollaries.  Theorem 2.1 is applied in Chapter 3 to generate 

alternative expressions for h  for an SLS engagement.  In Subsection 3.4.2 an 

analogous result is shown to be true for the Poisson, gamma and yet to be 

introduced GP distributions. 

Subsection 2.2.3 presents some known and some novel identities regarding 

limited expected values.  These are used in Chapters 3 and 4 to give more efficient 

expressions for h  for SLS engagements. 

In the final section of Chapter 2, Lemma 2.1 and Theorem 2.2 concern a 

novel type of constrained optimisation of concave functions.  This lemma and 

theorem are in a sense the most important results in the thesis, because they 

encapsulate the fundamental mathematical properties that lead to the reward for 

overlapping coverage.  The properties are applied in Subsection 5.3.8 to give 

rigorous expression to the intuitive notion that overlapping coverage of weapons 

is generally desirable.  The comments made above about baskets of eggs follow on 

from this. 

The remaining Chapters 3 to 6 consider the SLS, heterogeneous SLS, M3SLS 

and heterogeneous M3SLS processes respectively.  Each chapter includes a 

description of the respective parameters and processes.  Distributions are defined 

by deciding how outcomes will be aggregated to form the elements of the sample 

spaces.  Aggregation is done when order is not important or objects are to be 

treated as indistinguishable.  The pmf are then derived, enabling h  to be 

expressed straightforwardly in each case as the expectation of an appropriately 

defined random variable, and properties given for h  for the respective processes. 

It is not just the M3SLS and heterogeneous M3SLS distributions that are 

novel.  Although Przemieniecki for the homogeneous case, and Anderson and 

Miercort for the heterogeneous case, did give methods for computing h  for SLS 

engagements, their approaches were indirect, and so the homogeneous and 

heterogeneous SLS distributions themselves are novel. 

Chapter 3 includes additional related material as follows.  The SLS 

distributions are shown to be hybrids of binomial and negative binomial 

distributions.  This is clearly represented by the example of Figure 3.3.  SLS 

distributions can also be represented as steps between points on surface plots of 

regularized incomplete beta functions as shown by the example of Figure 3.4. 

Many alternative algebraic expressions are given for h , some offering more 

efficient computation, others allowing a smooth extension to a function of 

continuous arguments in place of the discrete numbers of targets and shots, as 

shown in Figures 3.5 and 3.6.  In particular the expressions for h  in terms of 

regularized incomplete beta functions, which are commonly implemented in 
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numerical software libraries because of their relations to beta distributions, 

provide both benefits. 

Two other methods, namely recursion and Markov chain transition probability 

matrices, are given for calculating both SLS probabilities and h . 

GP distributions are defined in Section 3.4 as hybrids of gamma and Poisson 

distributions, analogous to the definition of SLS distributions.  The expected 

number of arrivals for a GP distribution is shown to be a tight lower bound for h  

for a family of SLS distributions, with an example shown in Figure 3.7. 

Chapter 3 ends with a comparison of SLS target allocation with uniform and 

random allocation, and discussion of the practicality of achieving SLS allocation. 

As stated above, Chapter 4 introduces the heterogeneous SLS distribution 

together with expressions and properties for h .  Some alternative expressions are 

given for h  that may offer more efficient computation. 

One of the properties deserves special mention.  It concerns constrained 

optimisation but, unlike Section 2.3, the constraint is on the sum of the single shot 

hit probabilities.  It is shown that if this is constant then h  is minimised when the 

single shot hit probabilities are all equal, in which case the process degenerates to 

a homogeneous SLS process, and so as already mentioned the expected number of 

arrivals for a GP distribution provides a lower bound. 

Non-random firing sequences, which do not affect h , are discussed in 

Section 4.3.  Anderson and Miercort’s recursion relations assume a fixed firing 

sequence.  A bound is given to improve the efficiency of Anderson and Miercort’s 

relations by preventing unnecessary branching. 

A summary of the main contents of Chapters 5 and 6 is scattered above.  

Recapitulating the chapters introduce the M3SLS and heterogeneous M3SLS 

distributions respectively, and include concise expressions for h  using 

λ-expressions.  In addition Chapter 5 includes a proof that h  increases with 

overlapping coverage, and shows that h  is a superior unified measure of 

effectiveness in comparison to some simpler candidates. 

An earlier paper has been written (Bourn, 1997) which gives an overview of 

some of the material in this thesis, including the four SLS distributions, the 

binomial/negative binomial and gamma/Poisson hybrid distributions, and the 

comparison with simpler measures of effectiveness.
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Chapter Two 

2    Preliminaries 

2.1 Notation 

2.1.1 General 

For ease of reference this subsection summarises some of the basic notation to be 

used, including notation for some special operators and functions.  For 

completeness definitions of some common abbreviations and symbols are 

included. 

The symbols ℤ  and ℝ  represent the integers and real numbers respectively.  

The floor and ceiling functions are represented by x    and x    respectively.  The 

modulo operation is abbreviated to modx n .  The proportional symbol ∝ is used 
for vectors, in which case it indicates that the vectors are scalar multiples of each 

other.  Mnemonics relating to the shoot-look-shoot application are given in later 

chapters for the use of the letters a, c, f, g, m, n, s, r, u and v as the basis for 

variables.  The mnemonic for h has already been given in Chapter 1. 

In this thesis the notation 

 
!

!( )!

mm
h h m h

  = 
− 

 

is used for binomial coefficients.  This notation is common but not universal.  For 

example different notations are given by Vilenkin (p 26), David and Barton (p 23), 

Comtet (p 8) and Pochhammer (Knuth citing Pochhammer).  A subset of h 

elements chosen from a set of m elements is sometimes called an h-combination, 

and the number of h-combinations is given by the above equation.  The 

relationship symbol 

 h⊂  

is introduced for an h-combination.  The symbol s⊂  is also used for an s-sublist 

to be introduced in Section 2.3. 
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The notation 

  ( ) ( 1) ( 1)hm m m m h= − − +⋯ , and 

 ( 1) ( 1)hm m m m h= + + −⋯  

is used in this thesis for falling factorial and rising factorial respectively.  It is 

common in modern usage for the Pochhammer symbol ( )hm  to represent falling 

factorial in the field of statistics but rising factorial when dealing with 

hypergeometric series.  Knuth advocated the use of hm  for rising factorial and 
hm  for falling factorial (Knuth, p 414).  This thesis is more closely related to 

statistics and so ( )hm  is used in preference to hm  for falling factorial.  There are 

other notations used in the literature, for example see Comtet (p 6), Riordan 

(1958, p 9) or Vilenkin (p 19). 

The gamma function is represented by ( )xΓ .  If n∈ℤ  then ( ) ( 1)!n nΓ = −  

and this relationship can be used to effectively extend the factorial function to 

non-integer arguments.  Similarly 
m
h

 
 
 

, ( )hm  and hm  can be extended to non-

integer arguments. 

The beta function is given by 

 
1 1 1

0

( ) ( )
( , ) (1 )

( )

a b a b
B a b t t dt

a b

− − Γ Γ
= − =

Γ +∫ . 

Similarly denote the incomplete beta function 

 1 1

0
( , ) (1 )

x a b
xB a b t t dt− −= −∫  

and the regularized incomplete beta function 

 
( , )

( , )
( , )

x
x

B a b
I a b

B a b
= . 

Use the abbreviation cdf for the cumulative distribution function.  The function 

( , )xI a b  is often implemented in numerical computing libraries because it is the 

cdf of the beta distribution (Grother and Phillips). 

The hypergeometric function is denoted by 

 2 1
0

( , ; ; )
!

s s s

s
s

a b z
F a b c z

sc

∞

=

= ∑ . 
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The sign function 

 

1 if 0,

sgn( ) 0 if 0,

1 if 0

x

x x

x

− <
= =
 >

 

is used as a Boolean function to enable some compact expressions in 

Sections 5.3.9 and 6.3.9. 

The notation 

 maxIP( , )m u  

is used to represent the set of all possible partitions of the integer m into a 

maximum of maxu  integer parts.  This is used in Section 5.3.8 where an example 

is given to clarify the definition. 

The abbreviations lhs and rhs are used for left hand side and right hand side of 

equations respectively. 

Lists of values are represented by bold italic lower case characters, for 

example 1( , , )vm m= ⋯m .  Lists of lists are represented by bold uppercase 

characters.  For example 1,1 1, ,1 ,1
(( , , ), , ( , , ))c v v cv

r r r r= ⋯ ⋯ ⋯R  where v is the 

number of lists and ic , 1, ,i v= ⋯ , are the lengths of the component lists.  The 

matrix like form is 

 
1,1 1, 1

,1 , ,

c

v v cv

r r

r r

 
 =
 
  

R

⋯

⋮

⋯

 

however, unlike a rectangular matrix, the row lengths of R may vary. 

Write m objects or m objects by type to mean a collection of v types of 

objects with im , where 1, ,i v= ⋯ , objects of type i.  Similarly write R objects to 

mean a collection of objects which can be classified by two categorical variables, 

with categories indexed by i and j, and with ,i jr , where 1, , ij c= ⋯  for each 

1, ,i v= ⋯ , objects with categories corresponding to indices i and j. 

2.1.2 Multi-index notation 

Multi-index notation is used to write compact expressions involving lists of 

variables.  If 1( , , )vp p= ⋯p  and 1( , , )vh h= ⋯h  then define 

 1
1

v

i v
i

h h h

=

Σ = = + +∑ ⋯h , and 
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 1 2
1 2
h h hv

vp p p= ⋯
h

p . 

Reed and Simon (p 2) give similar definitions, but use | |h  instead of Σh .  Olver 

uses | |h  and #h  on pp 101 and 229 respectively.  These authors restrict the ih  to 

non-negative integers.  In this thesis Σh  is preferred because the meaning extends 

naturally to negative and non-integer ih . 

Let 1( , , )vm m=m ⋯ .  Saint Raymond (pp 2-3) gives the following additional 

multi-index notation definitions 

 1 2! ! ! !vh h h= ⋯h , 

 ≤h m  if i ih m≤  for all i, and 

 1 2

1 2

!

!( )!
v

v

mm m
h h h

     = =      
−      

⋯
mm

h h m h
. 

Call a subset of h elements chosen from a set of m-elements an h-combination.  If 

the number of subset elements is specified by type as h then call the subset an 

h-combination.  The number of h-combinations is given by the above equation. 

Olver (p 101) defines the multi-index falling factorial as 

 1 21 2
( ) ( ) ( ) ( )h h v hv

m m m= ⋯hm . 

For this thesis several other multi-index notation definitions are useful.  

Define 

 1 2 hh h vp p p p pΣ= =⋯
h h . 

Write 

 h≤h m  

to mean i ih m≤  for all i, and hΣ =h .  If 

 

1,1 1, ,1 ,1

1,1 1, 1

,1 ,

(( , , ), , ( , , ))

, and

c v v cv

c

v v cv

u u u u

u u

u u

=

 
 =
 
  

U ⋯ ⋯ ⋯

⋯

⋮

⋯
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1,1 1, ,1 ,1

1,1 1, 1

,1 ,

(( , , ), , ( , , ))c v v cv

c

v v cv

s s s s

s s

s s

=

 
 =
 
  

S ⋯ ⋯ ⋯

⋯

⋮

⋯

 

write 

 ≤S U  if , ,i j i js u≤  for all i and j, 

and define 

 
,

,
,

i j

i j
i j

u

s

   =      
∏U

S
 

where 1, , ij c= ⋯  for each 1, ,i v= ⋯ .  Write 

 0 ≤ h   and 0 ≤ S  

if 0 ih≤  and ,0 i js≤  respectively for all i and j. 

In Mathematica, a commercial computer algebra system, listable is an 

attribute than may be explicitly assigned to functions or operators (Wolfram).  

Listable functions are automatically threaded over, that is applied in parallel to, 

each element in a list.  A listable binary operator is automatically threaded over 

corresponding elements in a pair of lists.  If one argument is a scalar, and the other 

a list, then the scalar is repeated as necessary.  Listable functions and operators are 

also threaded over the elements in nested lists, for example matrices.  This is 

analogous to the common meaning given to negation of elements in a vector, 

vector and matrix addition, and scalar multiplication of vectors and matrices. 

Define multiplication to be listable.  If 1( , , )cr r= ⋯r  and 1( , , )cu u= ⋯u  then 

 1 1( , , )c cr u r u= ⋯r u . 

Let multiplication take precedence over summation when evaluating expressions 

like Σ r u .  There may be any number of factors in such expressions.  When there 

are only two factors the more compact dot product ⋅r u  can be used.  Define 

subtraction to be listable, then 

 11 (1 , ,1 )vp p− = − −p ⋯ . 

Define Σ  and dot product to be listable, then 

 ΣU  
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comprises the row sums of U, and 

 ⋅R U  

comprises the pair wise dot products of the rows of R and U.  Precedence is 

defined to be lower for Σ  so 

 Σ ⋅R U  

means (Σ ⋅R U) .  Example applications appear in Section 6.1.  Define sgn to be 

listable, then 

 sgn( )r  and sgn( )R  

can be written to represent application of sgn to each element or r and R 

respectively. 

Define 

 
,

,

si j
i

i j

p=∏S
p . 

Combining some of the definitions already given above the rhs of this equation 

could have been written as ΣSp .  The definition of Sp  gives a further 

compaction.  It is applied in the expression of product binomial probabilities 

below.    

Special meaning is also given to the symbol 

 ∪  

and to expressions of the form 

 1∪U u , −p , −
U  and maxIP( , )m u . 

The symbol ∪  is used to represent concatenation of lists.  Unlike sets, lists may 

contain repeated values and order is important, and so concatenation is similar but 

not identical to union of sets.  The expression 1∪U u  represents appending u to 

the first row of U.  The superscript −  applied to −p  and −
U  indicates dropping 

the first element or sublist respectively.  This is used in Section 6.3.10.  Let m be 

as given above and max max max1
( , , )

v
u u= ⋯u .  The expression maxIP( , )m u  is 

used in Section 6.3.8 to represent the combinatorial product of the sets 

maxIP( , )i i
m u , 1, ,i v= ⋯ . 
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In this thesis there are many summations of the form 

 
. .s t

h≤

∑ ⋯

h
h m

, 

where h and m are non-negative integer valued and s.t. is the abbreviation for such 

that.  The optional inclusion of “ . .s th ” emphasises which is the bound variable.  

Whilst this form is concise it gives no guidance regarding enumeration of valid 

values of h to be used for computation.  An equivalent nested summation that 

implicitly specifies a procedural method of computation is 

 

min( , ( ))min( , ) 1 11

max(0, ( )) max(0, ( )1 2 1 1
( ))1

m h h hm h i i

h h m m h h h hv i i
m mi v

− + + −

= − + + = − + + −
− + ++

∑ ∑
⋯

⋯ ⋯
⋯

⋯ ⋯  . (2.1) 

It is assumed in this expression that once a valid value for 1h  is fixed, then the 

valid range for 2h  is determined, and so on.  The final innermost summation is 

over the valid range of values for 1vh − .  After valid values have been fixed for 

each of 1 1, , vh h −⋯  in turn, then vh  must have the value 1 1( )v vh h h h+ + −= − ⋯ .  

The range of values which may be assumed by ih , 2, , 1i v= −⋯ , is explained as 

follows.  Clearly 0 i ih m≤ ≤ .  At the time of selecting a value for ih , the sum of 

the values already chosen is 1 1ih h+ + −⋯ , and the sum of the values remaining to 

be chosen is equal to 1 1( )ih h h+ + −− ⋯ , which is the other upper bound for ih .  

The sum of values to be chosen after ih  cannot exceed 1i vm m+ ++ ⋯ .  The sum of 

all values eventually chosen must be equal to h, and this can only be achieved if 

) ( )1 1 1( h h m m hi i i vh + + + + + + ≥− +⋯ ⋯ .  Rearranging this inequality gives the other 

lower bound for ih .  The bounds for 1h  are determined by similar but simpler 

reasoning because no other values have yet been chosen. 

2.1.3 Probability theory notation 

The abbreviation cdf is defined above in Section 2.1.1.  Other abbreviations to be 

used are pdf for probability density function and pmf for probability mass 

function. 

In some texts the title distribution is restricted to probability measures whose 

sample space is ℝ  or a subset of ℝ .  Rosenthal (p 67) gives a formal definition of 

distribution using the measure theoretic approach to probability theory.  Other 

texts use the title distribution more generally, for example by referring to the 

multinomial distribution.  In this thesis the title distribution will be used 

synonymously with the title probability measure, and with no restriction regarding 

the sample space. 
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The general form of notation to be used for probability spaces and measures, 

and where applicable their associated pdf or pmf, and cdf will be introduced by 

two examples.  The first example is a discrete distribution.  Define the notation 

 bin( , )( ) , 1h m hm
m p h p q q p

h
− = = − 

 
.  (2.2) 

In this context bin( , )m p  represents the pmf for a binomial distribution, less 

commonly known as a Bernoulli distribution (Kreyszig, p 731), with parameters 

m, the number of Bernoulli trials, and p, the probability of success for each trial, 

and where the argument or outcome h is the number of successes.  Denote the 

sample space by 

 bin( ) {0, , }m m= ⋯ . 

Let A bin( )m⊂  be an event, then define the notation 

 

A

bin( , )(A) bin( , )( )

h

m p m p h

∈

= ∑ , 

and not equal to {bin( , )( ) | A}m p h h∈  which is a conventional interpretation of 

the application of a function to a set.  In the context of the lhs of the above 

definition the notation bin( , )m p  represents a probability measure.  In the special 

case when A {0, , } { | 0 }h x x h= = ∈ ≤ ≤⋯ ℤ  abbreviate the notation to 

 bin( , )(# )m p h≤   (2.3) 

which is the value of the cdf at h.  Similarly write  

 bin( , )(# )m p h>  

to represent the value of the survival function. 

The special symbol # is also used for λ-expressions introduced in the next 
section. 

Strict adherence to the rhs of (2.2) for the definition of bin( , )m p  may require 

evaluation of the indeterminate value 00 .  This can be avoided by adopting the 

conventions  

 

0 0

0

0

1,

, and

.

m m

m m

p q

p q q

p q p

=

=

=
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Using notation which includes a name related to the distribution, bin in the 

above example, avoids confusion when many different distributions are being 

discussed. 

Instead of bin( , )( )m p h  the notation bin( , , )m p h  could have been used.  In 

many texts the distribution parameters are separated from the outcome by a 

semi-colon, as in bin( , ; )m p h  or bin( ; , )h m p , for example Feller (p 148) uses 

b( ; , )h m p .  The preferred notations bin( , )( )m p h , bin( , )(A)m p  and 

bin( , )(# )m p h≤  are a loose application of the concepts of partial function 

application or currying.  Currying is described in Glaser et al.  In these expressions 

bin may be regarded as a function of two variables that returns a function of one 

variable.  The evaluation commences with application of bin to m and p, thereby 

generating a pmf or probability measure which is subsequently applied to h, A or 

{ | 0 }x x h∈ ≤ ≤ℤ  respectively, thereby producing a probability.  By convention 

the order of evaluation is as described, but could be emphasised by adding 

redundant brackets and writing (bin( , ))( )m p h .  A benefit of the curried notation 

is that bin( , )m p  is meaningful and useful when written in isolation.  Since the 

pmf and probability measure are each uniquely determined by the other it is not 

disadvantageous that the meaning of bin( , )m p  is overloaded and may represent 

either in the appropriate context. 

The symbol bin is itself overloaded, with its meaning in the contexts 

bin( , )m p  and bin( )m  distinguished by the number of parameters.  The notation 

bin( )m  has already been defined to represent a sample space.  In this thesis 

bin( )m  does not represent a further partial function application.  Distinguishing 

the sample space by the parameter list only works for distributions where the 

sample space depends on fewer parameters.  This can be used for bin, negbin and 

ruin defined below, and for SLS and M3SLS in later chapters, but not for 

hypgeom defined below. 

Olofsson (p 115) writes ~bin( , )X m p  to indicate a random variable X  that 

has a binomial distribution with parameters m and p, but does not use or give 

meaning to bin( , )m p  in any other context.  Olofsson as well as other authors use 

similar constructs, including a related name, for many distributions.  Olofsson 

(p 82) defines the cdf of X to be the function ( ) ( )F x P X x= ≤  where P is the 

probability measure.  The preferred notation bin( , )( )m p h  and bin( , )(# )m p h≤  

eliminates the need to introduce the symbols X, P and F, or symbols p or f for pmf 

or pdf respectively.  If the symbols X, P, F and p or f were used then they would 

have to be redefined each time a different distribution was referred to. 

The second example demonstrates the notation to be used for continuous 

distributions.  Define 

 1gamma( , )( ) e
( 1)!

k
k tk t t

k

λλ
λ − −=

−
. 
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The rhs is indeterminate for 1k =  and 0t =  so for completeness define 

gamma(1, )(0)λ λ= .  The parameter λ is the inverse of the scale factor which 
some authors use to define the gamma distribution.  In this context gamma( , )k λ  

represents the pdf for a gamma distribution.  Define 

 
0

gamma( , )(# ) gamma( , )( )
T

k T k t dtλ λ≤ = ∫  

which is the value of the cdf at T.  The meaning of gamma( , )k λ  is overloaded 

and dependent on context.  It represents either the pdf or probability measure, each 

of which is uniquely determined by the other. 

Notwithstanding the defence made above regarding the overloading of 

bin( , )m p  and gamma( , )k λ , to avoid ambiguity assume that they represent the 

probability measures or distributions rather than the pmf or pdf respectively, 

unless otherwise stated or inferred by context. 

In the special case when k is a positive integer then gamma( , )k λ  is an Erlang 

distribution and if 1k =  then it is an exponential distribution. 

In Section 2.1.1 the common notation ( , )xI a b  was introduced.  It would be 

consistent with the notation established above in this section to write 

 beta( , )(# ) ( , ), 0 1xa b x I a b x≤ = ≤ ≤ , 

and this clarifies that a and b are parameters of a beta distribution while x is the 

outcome variable.  Nevertheless the common standard notation ( , )xI a b  will 

continue to be used. 

The notation established in this section will now be used to introduce several 

other distributions that are to be used in this thesis.  Denote the pmf of a Poisson 

distribution by 

 Poisson( )( ) e
!

h

h
h

β β
β −= . 

Denote the pmf of a negative binomial distribution by 

 

1
negbin( , )( )

1

bin( , )( ).

n g ng
n p g p q

n

n
g p n

g

−− =  − 

=

 (2.4) 

Denote the sample space by 

 negbin( ) { , 1, }n n n= + ⋯ . 
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Some authors refer to the distribution of f g n= −  as a negative binomial 

distribution.  The distributions are related by a simple change of variable.  The 

distribution of f is sometimes referred to as a Polya distribution.  When n is a 

positive integer Feller (p 166) calls the distribution of f a Pascal distribution and 

(2.4) is the probability that the n
th
 success occurs on the g

th
 trial in a sequence of 

Bernoulli trials with probability of success p for each trial.  When n=1 the 

distributions of g and f are both known as geometric distributions. 

For integer n the factor /n g  occurring in (2.4) may be interpreted as follows.  

Arbitrarily, when constructing a permutation of the successes and failures, the last 

outcome in the sequence may be written down first.  For the binomial distribution, 

the last outcome may be of either type and can be chosen in g ways, whereas for 

the negative binomial distribution, the last outcome must be a success, and this 

can only be chosen in n ways.  This argument provides a non standard derivation 

of the negative binomial distribution.  A similar argument is used in Section 4.1.3 

to explain the factor /n Σ g  in (4.3). 

The observation that the last trial of the sequence is a success is reminiscent 

of the author’s favourite lament, “I found it in the last place that I looked!” 

Denote the pmf of a multiple hypergeometric distribution by 

 hypgeom( , )( )h

 
 
 =
Σ 
 Σ 

m
h

m h
m
h

. 

The sample space comprises all non-negative integer valued h such that h≤h m .  

This is the probability that the number of objects by type is h when h objects are 

drawn without replacement from a collection of m objects.  When m is a 2-tuple 

then hypgeom( , )h m  is the hypergeometric distribution.  When m is a longer list 

then the distribution is called a multiple or generalized hypergeometric 

distribution by Feller (p 504) and Epstein (p 19) respectively.   

Next a number of generalizations of the binomial distribution will be 

introduced.  Denote the pmf of a product-binomial distribution (Imrey, p 417, 

Wickens, p 199, Sen and Singer, p 248) by 

 bin( , )( ) , 1− = = − 
 

h m hm
m p h p q q p

h
. 

This gives the probability of h successes by type from m trials by type, where the 

success of each type of trial is given by p.  In the extreme case when each trial has 

a different probability they are known as Poisson trials (Feller, p 218).  Define 

 bin( , )( ) , 1p p q q p− = = − 
 

h m hm
m h

h
. 
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This could be considered to be a generalisation of a binomial distribution where 

trials are classified by type.  Alternatively this could be considered to be a special 

case of a product binomial distribution where ip p=  for all i.  Define 

 bin( , )( ) , 1− = = − 
 

p p q q p
S U SU

U S
S

. (2.5) 

In this variation trials are classified by two categorical variables, indexed by i and 

j, and the first index i determines the probability of success.  The four types of 

distribution sharing the common label bin are differentiated by the type of 

parameters.  The sample space for both bin( , )m p  and bin( , )pm  will be denoted 

 bin( ) { | 0 }v= ∈ ≤ ≤m h h mℤ . 

The sample space for bin( , )pU  will be denoted 

 ,bin( ) { , 0 }i js= ∈ ≤ ≤U S | S Uℤ . 

The next distributions to be introduced have no application to the combat 

models which are the main theme of this thesis, but do provide another example to 

demonstrate the application of Theorem 2.1 in Section 2.2.2 below.  Let h, f and g 

represent the number of successes, failures and trials respectively in a sequence of 

Bernoulli trials.  Let z be a fixed positive integer.  Let p be the single trial 

probability of success, 1q p= − , and p q≤ .  Consider a process in which the 

sequence of Bernoulli trials continues until f h z− = .  Define the sample space 

 ruin( ) { , 2, }z z z= + ⋯  

and for g in the sample space define 

 2 2ruin( , )( )

2

g z g zg
z

g zz p g p q
g

− + 
 +=
 
 

. 

This is the pmf for the number of trials g (Feller, p 352).  The probability measure 

ruin( , )z p  is known as a gambler’s ruin distribution.  In the application to 

gambling z represents the gamblers initial capital, and the net loss is given 

by f h− .  The same distribution, when applied to random walks, describes the 

time of first passage through z. 

The sample spaces for binomial, negative binomial and gambler’s ruin 

distributions can be conveniently represented in a single diagram as shown in 

Figure 2.1.  The figure emphasizes their similarities and differences.  Binomial 

and negative binomial probabilities could easily be deduced from a diagram such 

as this augmented with the binomial coefficients of Pascal’s triangle.  Ruin 

probabilities are not so easily deducible because the specific order of successes 
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and failures must not cross the ruin boundary.  Tennis games and sets, and 

table tennis are other Bernoulli trial based distributions whose sample spaces 

could be represented in the form of Figure 2.1.  These distributions have been 

considered by Neuts (1973), Cooper and Kennedy, and Epstein.  Epstein (p 136) 

gives tables of coefficients within the sample space boundaries for tennis games 

and sets.  Figure 2.1 also shows the sample space SLS(3,7)  that will be defined in 

Chapter 3.  This anticipates the SLS distributions as hybrids of binomial and 

negative binomial distributions.  Similarly tennis is in a sense a hybrid. 

For completeness within this section, notation for distributions to be 

introduced in later chapters will be summarised here.  The notation 

 PH( )τ,T  

is introduced in Section 3.3.2 for discrete phase-type distributions.  The other tags 

for novel distributions defined in later chapters are 

 SLS, M3SLS and GP. 

The homogeneous and heterogeneous SLS and M3SLS distributions are each 

covered in their own chapters.  The GP distributions are introduced in 

Section 3.4.1. 

Let X be a random variable and P a probability measure or distribution.  The 

expected value of X over the sample space of P will be denoted 

 E( , )X P , (2.6) 

negbin(3)ruin(6)

bin(7)

tennis

SLS(3,7)

hf

 

Figure 2.1 Sample spaces represented on Pascal’s triangle 
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and taken to mean the sum or integral of X, weighted by P, over the sample space.  

This variation of defining the expectation of a random variable is similar to the 

definition given by Golberg (p 302) for denumerable probability spaces. 

In this thesis the random variable is often denoted by the overloaded symbol 

h, and so explicit inclusion of the distribution as a parameter is required to avoid 

ambiguity or context dependence.  Another symbol commonly used in this thesis 

for a random variable is g.  The symbols  

 h  and g  

will often be used to represent E( , )h P  and E( , )g P  respectively.  Use of h  and 

g  in this way is context dependent but expedient because h , and to a lesser 

extent g , are used so frequently. 

2.1.4 Anonymous functions 

Anonymous functions, also known as pure functions or λ-expressions, are 
functions without names.  They are used in the λ-calculus (Glaser et al.) as well as 
many programming languages.  They are useful in this thesis to write the 

specification for a random variable directly as the first parameter in an expression 

in the form of (2.6). 

The syntax to be used will be introduced by the simple example 

 2# (3) 9= . 

The λ-expression is 2#  and it defines the square function.  When the function is 

applied the formal parameter # is replaced by the argument 3 which follows the 

λ-expression in enclosing parentheses. 

In this thesis the presence of the special symbol # indicates a λ-expression 
except in contexts such as (2.3). 

If P is a distribution whose sample space is ℝ , or contained in ℝ , then the 

mean can be expressed by 

 E(#, )P , 

where # is the λ-expression representing the identity function.  This is a trivial 
example.  Non-trivial applications, where the λ-expression itself is a nested 
expected value, appear in Sections 5.2 and 6.2. 

In a λ-expression # is not restricted to representing a scalar argument, for 

example 

 ( #)( )Σ = Σh h . 
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In this example the extra parentheses clarify the extent of the λ-expression.  Thus 
the expected number of successes in a product binomial distribution can be written 

as 

 E( #,bin( , ))Σ m p . (2.7) 

This is a succinct, unambiguous and context independent expression. 

2.2 Identities 

2.2.1 Useful identities 

In this section several identities are listed for ease of future reference.  The identity 

 1( , )=1- ( , )x xI a b I b a−  

(Olver et al., 8.17.4) is well known.  The identities 

 ( , - 1)= bin( , )( )
m

p
h n

I n m n m p h

=

+ ∑ , and (2.8) 

 ( - , )= negbin( , )( )q
g m

I m n n n p g
∞

=
∑  (2.9) 

are equivalent to well known identities in Olver et al. (8.17.5) and Abramowitz 

and Stegun (26.5.26, with the upper bound n corrected to infinity), respectively.  

From the above it is easily derivable that 

 bin( , )( ) ( - , 1) - ( - 1, )q qm p h I m h h I m h h= + + , and (2.10) 

 negbin( , )( ,() , ) 1 )(q qn p g I g n n I g n n− − − += . (2.11) 

The identities 

 

0

bin( , )( ) 1
m

h

m p h

=

=∑  (2.12) 

 
. .

bin( , )( ) 1
s t

p

≤

=∑
h
h m

m h  (2.13) 

 
. .

bin( , )( ) 1
s t
≤

=∑ p

U

U S
S

S

 (2.14) 
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all follow from the observation that the lhs in each case represents the sum of 

probabilities over the entire respective sample space.  Similarly the identity 

 
. .s t

h

h

≤

Σ   =   
   

∑
h

h m

m m
h

 (2.15) 

is easily verifiable by considering the sum of hypgeom( , )( )h m h  over the entire 

sample space.  An identity equivalent to (2.15) appears in Vilenkin (p 39).  When 

2v = , the identity is commonly known as the Vandermonde convolution, which 

appears in many text books, for example Comtet (p 44), Feller (p 46), 

Riordan (1968, p 8), and Vilenkin (p 38).  Greene and Knuth (p 9) give a different 

form replacing the binomial coefficient convolution with the hypergeometric 

function and use the term Vandermonde’s theorem.  A 1772 paper by 

Vandermonde is cited by Rahman and Askey.  Many authors (Askey, Rahman, 

Roy, Strehl) refer to hypergeometric function forms as Chu-Vandermonde 

identities, sums or convolutions in recognition of a 1303 paper by Chu cited by 

Askey and Rahman.  Rahman draws attention to limits on the parameters for the 

hypergeometric form of the identity.  The hypergeometric form of Chu-

Vandermonde identities are special cases of Gauss’s summation formula 

(Rahman). 

The expected number of successes or mean of a binomial distribution 

 E(#,bin( , ))m p m p=  (2.16) 

is well known.  The expected number of successes for a product binomial 

distribution 

 

E( #,bin( , ))

( ) bin( , )( )

≤

Σ

= Σ

= ⋅

∑
h m

m p

h m p h

m p

 (2.17) 

is a special case of the expected number of successes for Bernoulli trials with 

variable probabilities given by Feller (p 231).  Most authors use the same 

approach as Feller (Wang).  Wang gives an alternative proof.  A direct algebraic 

proof is also possible. 

The means 

 E(#,Poisson( ))β β= , and (2.18) 

 E(#,gamma( , ))
k

k λ
λ

=  (2.19) 
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for Poisson and gamma distributions respectively are well known. 

The identity 

 
m m h m r
h r h r h

−       =       −       
 (2.20) 

where h ≤ r ≤ m (see eg Vilenkin p 39) is a simple property of binomial 

coefficients. 

Consider the binomial coefficients laid out as Pascal’s triangle.  Alternating 

partial row sums give an element in the row above, that is expressed algebraically 

 

0

1
( 1)

h
h i

i

m m
h i

−

=

+   = −   
   

∑  

(Olver et al. 26.3.10).  Applying this repeatedly a sum of alternating partial row 

sums gives an element two rows above, or algebraically 

 

0 0

2
( 1)

h i
h j

i j

m m
h j

−

= =

+   = −   
   

∑ ∑ . 

Changing the order of summation and collecting like terms gives 

 

0

2
( 1) ( 1)

h
h i

i

m m
h i

h i
−

=

+   = − − +   
   

∑ . (2.21) 

Symmetrical results apply for partial row sums beginning at the last row element 

rather than the first, as a result of the symmetry of binomial coefficients. 

The identity 

 
. .

1
1

s t

h

h

≤

Σ −   =   −   
∑

h
h m

m m
h m

h
 (2.22) 

can be proved algebraically using (2.15) but instead a much shorter proof will be 

given based on a combinatorial argument.  The lhs of (2.22) tallies the objects by 

type for all possible h-combinations chosen from m objects.  Each distinguishable 

object should be tallied once for all possible ( 1)h − -combinations of the 

remaining 1Σ −m  objects, that is 
1

1h
Σ − 
 − 

m
 times.  Grouping distinguishable 

objects by type gives the rhs of (2.22). 
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The identity 

 
1

1

1
, 1

1

m
h m h m

h

m
p q p p q p

h

−
−

=

−  = − = − − 
∑ , (2.23) 

can be proved by adding mp  to both sides and then dividing both sides by p, 

thereby obtaining an expression equivalent to (2.12). 

2.2.2 Recursion and expectation ratios for Bernoulli trial sequences 

This section presents some general techniques and results that apply to all 

distributions based on sequences of Bernoulli trials. 

Firstly the application of recursion to evaluate pmf is considered.  Let φ 
represent any distribution or pmf based on a repeated Bernoulli trial process.  Let 

ω be an outcome in the sample space.  Let p and q be the probabilities of success 

and failure, respectively, for a single trial.  Denote by 
p

φ , 
q

φ , 
p

ω  and 
q

ω  the 

residuals after the first Bernoulli trial is determined to be a success or failure, 

respectively.  Then the general recursion relation can be written as 

 ( ) ( ) ( )
p p q q

p qφ ω φ ω φ ω= + , (2.24) 

and is equivalent to an application of the law of total probability.  In addition 

boundary conditions are required. 

For clarification consider a binomial distribution as an example.  The general 

recursion relation is  

 bin( , )( ) bin( 1, )( 1) bin( 1, )( )m p h p m p h q m p h= − − + − , 

and possible boundary conditions are 

 
bin(0, )( ) 0, and

bin(0, )(0) 1.

p h

p

=
=

 

With these boundary conditions the recursion call tree would be equivalent to the 

entire event tree for a sequence of Bernoulli trials.  Additional boundary 

conditions could be used to prune the tree. 

This approach is applied in Chapter 3 for the SLS distribution.  Figure 3.2 

shows the event tree for an SLS process.  Section 3.3.1 gives the recursion relation 

and several options for boundary conditions. 

Feller (pp 349-350) gives the recursion relation and boundary conditions for a 

variation of the gambler’s ruin distribution in which both players have finite initial 

capital.  Feller used the equations to derive generating functions, but with the 

advent of modern computers recursion relations can be evaluated directly. 
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Next consider the application of recursion to evaluate the expected number of 

successes, failures and trials for a general Bernoulli trial based process.  Use the 

symbols h, f and g for both simple variables representing the number of successes, 

failures and trials respectively, as well as the corresponding random variables.  

There is no ambiguity because the symbols are used in different contexts.  Use the 

shorthand notation 

 E(( , , ), ) (E( , ),E( , ),E( , ))h f g h f gφ φ φ φ= . 

Consider an arbitrary node in the event tree that occurs after h successes and f 

failures with probability h fp q .  This node represents a trial that will contribute an 

additional success, failure and trial to E(( , , ), )h f g φ  with conditional probabilities 

( , ,1)p q  respectively and absolute probabilities ( , ,1)h fp q p q .  Summing over the 

entire event tree gives 

 ( , ,1)=E(( , , ), )h fp q p q h f g φ∑ . (2.25) 

The general recursive expression is 

 E(( , , ), ) ( , ,1) E(( , , ), ) E(( , , ), )
p q

h f g p q p h f g q h f gφ φ φ= + + . (2.26) 

For a binomial distribution example the general recursive expression is 

 

E(( , , ), bin( , ))

( , ,1) E(( , , ), bin( 1, )) E(( , , ), bin( 1, ))

h f g m p

p q p h f g m p q h f g m p= + − + −
 

and the boundary condition is 

 E(( , , ), bin(0, )) (0,0,0)h f g p = . 

The SLS example is given in Section 3.3.1.  Feller (p 348) gives the recursion 

relation and boundary conditions for g only, for the variation of the gambler’s ruin 

distribution mentioned above. 

Equation (2.25) states that E(( , , ), )h f g φ  is a sum of vectors that are all 

proportional to ( , ,1)p q .  It follows that the ratios of expected number of 

successes to failures to trials equals the ratios : :1p q .  This is stated as a theorem. 

Theorem 2.1 

For any distribution φ based on Bernoulli trials, 

 E(( , , ), ) ( , ,1)h f g p qφ ∝ , 

as long as the expected values are finite. 
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A corollary is that any extension to a repeated Bernoulli trial process 

increases E(( , , ), )h f g φ  in proportion to ( , ,1)p q . 

The theorem seems to be novel even though it states an elementary, intuitive 

and useful result.  It is used in this thesis in Section 3.2.   The theorem can also be 

applied to give simple alternative derivations of the means of the binomial, 

negative binomial and gambler’s ruin distributions as follows.  Clearly  

 

E( ,bin( , )) ,

E( , negbin( , )) , and

E( , ruin( , ))

g m p m

h n p n

f h z p z

=

=

− =

 

 therefore, applying Theorem 2.1,  

 

E( , bin( , )) ,

E( , negbin( , )) , and

E( , ruin( , )) .

h m p m p

n
g n p

p

z
g z p

q p

=

=

=
−

 

Another corollary of Theorem 2.1 is that a similar principle applies to 

repeated independent trials with more than two possible outcomes, for example 

the multinomial distribution. 

There is a relation to a published result concerning betting systems.  Epstein 

(p 52) considers repeated plays in a game with three outcomes: win, lose or draw.  

A betting system allows the wager to be varied depending on the history.  This is 

equivalent to assigning an additional weighting at each node of the event tree.  

Epstein states that the expectation of gain per unit amount wagered is the same for 

all betting systems. 

There is no similar theorem for sequences of trials with varying probabilities.  

For example see Section 4.3 where the expected number of shots fired depends on 

the order of the shots. 

2.2.3 Limited expected value 

A limited expected value is normally defined by 

 E(min( , ))X n  

where X is a random variable and the limit n is a constant, for example see 

Bean (p 294).  In Chapters 3 and 4 it will be applied to SLS distributions.  Some 

other fields of application are insurance contracts with caps and deductibles 



Preliminaries     29 

   

   

(Bean, pp 294) and censored or truncated data (Quigley and Walls).  Limited 

expected value is also related to mean excess functions (Burnecki et al., p 14).  

Using the notation established in previous sections X is replaced by a λ-expression 
and the distribution is explicitly named, for example 

 E(min(#, ), bin( , ))n m p , or 

 E(min( , ), bin( , ))nΣ# m p . 

Limited expected values are increasing and concave as functions of the limit 

(Bean, p 297). 

Let f and p represent distributions and pdf or pmf respectively where the 

sample space is ℝ  or a subset of ℝ , then 

 E(min(#, ), ) E(#, ) ( ) ( )
n

n f f x n f x dx
∞

= − −∫ , (2.27) 

 E(min(#, ), ) ( ) ( )
n

n f n n x f x dx
−∞

= − −∫ , (2.28) 

 E(min(#, ), ) E(#, ) ( ) ( )

x n

n p p x n p x

>

= − −∑ , and (2.29) 

 E(min(#, ), ) ( ) ( )

x n

n p n n x p x

<

= − −∑ . (2.30) 

Derivations begin with   

 

E(min(#, ), ) min( , ) ( )

( ) ( ) .
n

n

n f x n f x dx

x f x dx n f x dx

∞

−∞

∞

−∞

=

= +

∫

∫ ∫
 

Adding and subtracting ( )
n

x f x dx
∞
∫  leads to the known result (2.27) (Bean, 

p 295).  Adding and subtracting ( )
n

n f x dx
−∞∫  instead leads to the novel 

result (2.28).  The last two equations (2.29) and (2.30) are the discrete analogues.  

2.3 Concave functions 

In this section some results concerning constrained optimisation of concave 

functions will be proved.  In the literature it is common to present definitions and 

properties for convex rather than concave functions.  It is a simple matter of 

reversing signs or inequalities to adapt definitions and results from convex to 

concave or vice versa.  In this thesis definitions and results taken from the 
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literature will be adapted to the concave case, and new results presented for the 

concave case.  The concave case results are used to prove some important 

properties for the homogeneous M3SLS distribution in Chapter 5. 

A continuous function is said to be concave if 

 ( (1 ) ) ( ) (1 ) ( )b d b dφ θ θ θ φ θ φ+ − ≥ + −  

for all b, d and θ such that 0 1θ≤ ≤ .  Graphically, a concave function bends 

down, and chords always lie below the function.  A function is strictly concave if 

the strict inequality holds.  The definitions can be extended to integer domain 

functions using finite differences, see for example Denardo (pp 204-206). 

Let φ be a concave function, b d<  and 0 d bδ< < − , then  

 ( ) ( ) ( ) ( )a b a bφ δ φ δ φ φ+ + − ≥ + . (2.31) 

The converse is not necessarily true (Roberts and Varberg, p 224).  This is 

equivalent to the concave adaptation of the definition for convexity adopted by 

Wright.  For strict concavity the strict inequality holds. 

Let 1( , , )um m=m ⋯  be a list of u integers.  As mentioned in Section 2.1.2, 

lists may contain repeated values and order is important, unlike sets.  Define an 

s-sublist of m to be a list 
1

( , , )
s

m mσ σ=a ⋯  where the set 

1{ , , } {1, , }s s uσ σ ⊂⋯ ⋯ , that is a comprises the values chosen from s positions 

in m.  Overload the operator s⊂  without causing ambiguity by writing 

 s⊂a m . 

The optimisation of 

 ( )

s

φ
⊂

Σ∑
a m

a  (2.32) 

is of interest, subject to the constraint mΣ =m  where m is constant.  By definition 

the summation is over the values of a arising from the 
u
s

 
 
 

 s-combinations of 

positions in m, and may include repeat values of a.  A permutation of the elements 

of a or m does not change the sum (2.32). 

A list m subject to the constraint mΣ =m  will be said to be balanced if the 

values are as equal as possible.  If the list is not balanced then there must be two 

elements in the list whose values differ by a magnitude of at least two.  Taking 

two elements as just described, and reducing the magnitude of the larger element 

by one, and increasing the value of the smaller element by one, will be called a 

gap reducing unit reallocation.  Note that this does not alter the list sum.  A 

sequence of gap reducing unit reallocations will terminate with a balanced list. 
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Let m be unbalanced and consider the effect of a gap reducing unit 

reallocation on the sum (2.32).  Without loss of generality suppose that 

1 21 1m m+ ≤ −  and the reallocation replaces 1m  and 2m  with 1 1m +  and 2 1m −  

respectively.  The s-sublists can be partitioned into the following three cases. 

(i) Neither 1m  nor 2m  is in a, and so ( )φ Σa  is unchanged. 

(ii) Both 1m  and 2m  are in a, and so ( )φ Σa  is unchanged. 

(iii) Either 1m  or 2m  is in a but not both.  Pair the s-sublists so that all 

other elements are identical.  For each ( 1)s − -combination 2{ , , }sσ σ⋯  

of {3, , }u⋯  it follows from (2.31) that 

 

1 22 2

1 22 2

( 1 ) ( 1 )

( ) ( )

s s

s s

m m m m m m

m m m m m m

σ σ σ σ

σ σ σ σ

φ φ

φ φ

+ + + + + − + + +

≥ + + + + + + +

⋯ ⋯

⋯ ⋯

 

with strict inequality if φ is strictly concave. 

It follows that the sum (2.32) is greater or strictly greater respectively.  This will 

be stated formally as a lemma. 

Lemma 2.1 

If φ is Wright concave and u∈m ℤ , then a gap reducing unit reallocation of m 

does not reduce 

 ( )

s

φ
⊂

Σ∑
a m

a  

and for strict concavity the sum increases.  

The following Theorem follows from the above discussion. 

Theorem 2.2 

If φ is Wright concave, m∈ℤ  and u∈m ℤ , then 

 
argmax

. . ( )

s

s t
m

φ
⊂

Σ
Σ =

∑
a m

m a
m

 

includes balanced m, and for strict concavity balanced m is the arg max. 

The theorem also holds when m is a list of non-negative integers. 

When 1s =  the sum (2.32) reduces to 
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1

( )
u

k
k

mφ
=
∑ . (2.33) 

The constrained arg min for this expression for non-negative integers km  and 

convex φ is given by Gross (p 9) and appears as an exercise in Saaty (p 186), 
although the distinction between convexity and strict convexity is absent.  Criteria 

have also been given for the constrained optimisation of 

 

1

( )
u

k k
k

mφ
=
∑  (2.34) 

where each kφ  is convex for both non-negative real km  (Saaty, p 36, attributed to 

Josiah Willard Gibbs) and non-negative integer km  (Gross, p 2, reproduced in 

Saaty, p 184) respectively. 

The values in m can be tallied resulting in a list of distinct elements 

1( , , )cr r=r ⋯  and a list of corresponding multiplicities 1( , , )cu u=u ⋯ .  Then the 

sum (2.32) equals 

 ( )

s

φ
≤

  ⋅ 
 

∑
s u

u
r s

s
 (2.35) 

and the search space { | }mΣ =m m  corresponds to {( , ) | , }m u⋅ = Σ =r u r u u . 
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Chapter Three 

3    The Many-on-many 

Shoot-look-shoot (SLS) Process 

3.1 Description of the SLS process 

3.1.1 Introduction to the SLS process 

The many-on-many shoot-look-shoot (SLS) process is defined as follows.  Up to 

m shots or, mnemonically, missiles, are fired at n targets, where p is the 

probability of a single shot destroying a single target, 1q p= − , and shoot-look-

shoot tactics are used to assign shots to targets.  This means that the shots are fired 

in a manner which allows the consequences of each shot to be correctly assessed, 

so that subsequent shots are assigned to surviving targets.  Shooting ceases either 

when all n targets are destroyed or when all m shots have been expended, 

whichever occurs first. 

Figure 3.1 is an illustration representing 18m =  shots and 4n =  targets. 

The maximum number of shots m could be a consequence of literally the 

number of shots available.  Alternatively, if the window of opportunity were a 

short time interval, then m could be the maximum number of shots which could be 

completed in the limited time available.  This could be the limiting factor with fast 

moving or fleeting targets. 

The SLS process is equivalent to conducting a series of Bernoulli trials, where 

the trials cease either after m trials, or after n successes, whichever occurs first.  If 

m n≤  then this degenerates to simply a fixed number, m, of Bernoulli trials and 

the corresponding event tree would be a complete binary tree.  Figure 3.2 is a tree 

diagram representing an SLS process with 6m =  and 3n = .  The paths in the tree 

give a complete representation of all the possible outcomes.  An outcome is 

characterised by the number of successes and failures, and the order in which they 

occur. 

The probability of an outcome or path depends only on the number of 

successes and failures, and is independent of their order.  The probability of a path 
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representing h successes or hits in some particular order, from g trials or missiles 

fired, or mnemonically, gone, is given by 

 h g h h fp q p q− = , 

where f g h= −  is the number of failures. 

The SLS process is more or less described in Feller (p 164) as an apparently 

accidental by-product of his approach to introducing the negative binomial 

distribution.  In the description that follows the symbols have been changed, from 

those chosen by Feller, to be consistent with the symbols used in this thesis.   

Feller asks the reader to consider m Bernoulli trials and inquires how long it will 

take for the n
th
 success.  He then notes that the total number of successes may of 

course fall short of n.  This describes the SLS process, but Feller does not dwell 

on this, instead he continues and supposes that trials are continued for as long as 

necessary until n successes do occur. 

3.1.2 The SLS sample space 

The order of successes and failures is of no practical interest and so outcomes with 

identical numbers of successes, failures and trials may be aggregated to form the 

 

 

Figure 3.1 Four targets and up to 18 shots 
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elements of a sample space which will be called the many-on-many 

shoot-look-shoot sample space and will be denoted by SLS( , )n m . 

This aggregation can be represented diagrammatically by distorting or 

redrawing the tree representation in Figure 3.2 with overlaying branches to give 

the form shown in Figure 3.3.  The two figures represent the same tree with 42 

paths.  Within the 7 groups of closely adjacent leaf nodes in Figure 3.3 the 

numbers of successes and failures is identical.  The 7 groups of leaf nodes 

correspond to the elements of SLS(3,6) . 

In general if m n≤ , then the sample space SLS( , )n m  can be represented by 

1m +  possible outcomes, or sample points, as follows:  all shots are fired, that is 

g m= , and 0, ,h m= ⋯  targets are destroyed.  For m n≥  the sample space can 

again be represented by 1m +  possible outcomes, but in two distinct groups, of 

sizes 1m n− +  and n, respectively.  For the first group , ,g n m= ⋯  shots are fired, 

destroying all targets, that is h n= , with the final shot destroying the final target.  

For the second group all shots are fired, that is g m= , destroying 0, , 1h n= −⋯  

targets.  In summary, the sample points are fully characterised by the values of g 

and h, and the sample space is given by 

q

q

q p

p

q p

p

q

q p

p

q p

 

Figure 3.2 Tree diagram representing an SLS process with three 

targets and up to six shots 
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{ }

{ } { }

SLS( , ) ( , ) | ( ) ( ) or ( ) ( )

( , ) | ( , ) | .

n m g h h n n g m g m h n

g n n g m m h h n

= = ∧ ≤ ≤ = ∧ <

= ≤ ≤ ∪ <
 

This is a hybrid of the negative binomial and binomial sample spaces. 

3.1.3 The SLS distribution 

Denote both the pmf giving the probability of ( , )g h  and the corresponding 

distribution by SLS( , , )n m p .  This notation will cause no ambiguity because the 

argument lists or context will differentiate between the sample space, the pmf and 

the distribution.  It will be shown that SLS distributions are hybrids of binomial 

and negative binomial distributions. 

When m n≤ , all shots are fired, that is g m= .  In this case the SLS process is 

equivalent to conducting a sequence of m Bernoulli trials.  Destroying h targets in 

the SLS process corresponds to achieving h successes from m Bernoulli trials, and 

it follows that 

 ( ) ( ) ( ) ( )SLS , , , bin , for ,n m p m h m p h h m m n= ≤ ≤ . (3.1) 

Now consider the case where m n≥  and all n targets are destroyed, with the 

final shot destroying the final target.  This is equivalent to conducting a succession 

q p

q p

q p

q p

q p

q p

q p

q p

q p

q p

q p

q p

q p

q p

q p

q6 6pq5
15p2q4

p3

3p3q

6p3q2

10p3q3

binHm,pLHhL

negbinHn,pLHgL

 

Figure 3.3 Tree diagram redrawn with overlaying branches 
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of Bernoulli trials, continuing until the nth success occurs, which is the process on 

which the negative binomial distribution is based.  It follows that 

 ( ) ( ) ( ) ( )SLS , , , negbin , for ,n m p g n n p g n g m m n= ≤ ≤ ≥ . (3.2) 

Now consider the case where m n≥ , all m shots are fired, but the number of 

targets destroyed is less than n.  This is equivalent to conducting m Bernoulli trials 

and it follows that 

 ( ) ( ) ( ) ( )SLS , , , bin , for 0 ,n m p m h m p h h n m n= ≤ < ≥ . (3.3) 

When m n=  there is overlap in the applicability of (3.1) and the pair (3.2) 

and (3.3).  This is obvious when h m n< = .  When m n=  then 

( ) ( ) ( ) ( )negbin , bin , nn p g m p h p= = . 

The probability of the entire sample space is 

 
1

0

bin( , )( ) negbin( , )( ) 1
n m

h g n

m p h n p g
−

= =

+ =∑ ∑ . 

x

y

1

0

5 8
 

Figure 3.4 Plot of 0.6 ( , )I x y  and representation of SLS(3,7,0.4)  
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Using equations (2.10) and (2.11) this can be represented on a plot of ( , )qI x y  as 

shown in the example of Figure 3.4.  This representation suggests a continuous 

analogue of the SLS distribution. 

3.2 Expected number of targets destroyed 

Define the random variable h by (( , ))h g h h= , which gives the number of targets 

destroyed.  The symbol h is used in this definition to represent both the random 

variable or function name, and the second bound variable.  There is no ambiguity 

because the symbols are used in different contexts.  The expected number of 

targets destroyed is given by 

 

( , )

E( ,SLS( , , ))

SLS( , , )( , )

g h

h h n m p

h n m p g h

=

= ∑
 

where the sum is over all ( , )g h  in the sample space SLS( , )n m .  The result 

 forh m p m n= ≤  (3.4) 

follows immediately from (2.16) and (3.1).  The result 

 
1

0

bin( , )( ) negbin( , )( )
n m

h g n

h h m p h n n p g
−

= =

= +∑ ∑  (3.5) 

applies for all values of m and n and results from applying (3.1), (3.2) and (3.3) 

and factorizing. 

Figure 3.5 is an example plot showing h  as a function of m.  A line has been 

drawn through the plot points for 0 m n≤ ≤ .  The curve passing through all plot 

points is defined by any one of the many expressions given below that are equally 

well defined for non-integer values of m.  Combining the line for 0 m n≤ ≤  and 

the curve for m n≥  gives a continuous increasing function with the distinctive 

shape of a fishing rod and line.  Clearly h  is a linear function of m for m n≤ , but 

yields ever diminishing returns for m n> , and eventually converges h n→  as 

m →∞ .  The convergence happens much more suddenly as 1p → .  Indeed, in the 

extreme case, when 1p = , 

 E( ,SLS( , ,1)) min( , ),h n m n m=  (3.6) 

and in the trivial case when, in addition, 1n = , 

 E( ,SLS(1, ,1)) min(1, ) sgn( )h m m m= = . (3.7) 
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For m n≥  the finite differences 

 

1

E( ,SLS( , 1, )) E( ,SLS( , , ))

negbin( , )( )

( 1, ).

g m

q

h n m p h n m p

p n p g

p I m n n

∞

= +

+ −

=

= − +

∑  

This can be derived easily using the form given in (3.10) below to simplify 

E( ,SLS( , 1, )) E( ,SLS( , , ))g n m p g n m p+ −  and then multiplying by p in 

accordance with Theorem 2.1.  The final expression follows from (2.9).  It follows 

that E( ,SLS( , , ))h n m p  is a strictly concave function of m for m n≥ .  This 

property will be exploited in Section 5.3.8. 

Figure 3.6 is an example plot showing h  as a function of n.  A line has been 

drawn through the constant value h m p=  for n m≥ .  The curve passing through 

all plot points is defined by any one of the many expressions given below that are 

equally well defined for non-integer values of n.  The distinctive shape of a fishing 

rod and line can also be seen in Figure 3.6.  For n m<  the finite differences 

1 2 3 4 5 6 7
m

1

2

3

 

Figure 3.5 Plot of E( , SLS(3, ,0.85))h m  
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1

E( ,SLS( 1, , )) E( ,SLS( , , ))

bin( , )( )

( 1, ).

m

h n

p

h n m p h n m p

m p h

I n m n

= +

+ −

=

= + −

∑  (3.8) 

This can be derived easily using the form given for h  in (3.9) below and (2.8).  It 

follows that E( ,SLS( , , ))h n m p  is a strictly concave function of n for n m≤ .  The 

analogous heterogeneous result is given in Section 4.4.5. 

In the remainder of this section a number of alternative approaches and 

expressions will be given for h . 

Define the random variable g by (( , ))g g h g= , which gives the number of 

shots fired.  The expected number of shots fired is given by 

 

( , )

E( ,SLS( , , ))

SLS( , , )( , ).

g h

g g n m p

g n m p g h

=

= ∑
 

It follows trivially from the definitions that 

 forg m m n= ≤ . 

For all values of m and n it similarly holds that 

1 2 3 4 5 6

n

1

2

3

 

Figure 3.6 Plot of E( , SLS( ,3,0.85))h n  
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1

0

bin( , )( ) negbin( , )( )
n m

h g n

g m m p h g n p g
−

= =

= +∑ ∑ . 

Now h p g=  in accordance with Theorem 2.1. 

It is possible to derive h  indirectly as the limited expected value 

 

0

1

0

E(min(#, ), bin( , ))

min( , ) bin( , )( )

bin( , )( ) bin( , )( ).

m

h

n m

h h n

h n m p

h n m p h

h m p h n m p h

=

−

= =

=

=

= +

∑

∑ ∑

 (3.9) 

This is equivalent to the approach taken by Przemieniecki (pp 158-159).  Similarly 

 

1

E(min(#, ), negbin( , ))

min( , ) negbin( , )( )

negbin( , )( ) negbin( , )( ).

g n

m

g n g m

g m n p

g m n p g

g n p g m n p g

∞

=

− ∞

= =

=

=

= +

∑

∑ ∑

 (3.10) 

Many more alternative expressions may be derived for h .  Some offer more 

efficient computation depending on the relative sizes of n and m.  Others are of 

interest because they can be extended smoothly to functions of continuous 

arguments n and m.  The expressions in terms of the regularized incomplete beta 

function ( , )xI a b , which is the cdf of the beta distribution, are useful because 

( , )xI a b  is often efficiently implemented in numerical software libraries.  The first 

group of expressions all contain the common term n, so for compactness 

expressions for the difference are listed. 

 E( ,SLS( , , ))n h n m p−  (3.11) 

 

1

( - ) negbin( , )( )

g m

p g m n p g
∞

= +

= ∑  (3.12) 

 
1

0

( - ) bin( , )( )
n

h

n h m p h
−

=

= ∑  (3.13) 
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1

( - ( - )) bin( , )( )
m

h m n

h m n m q h

= − +

= ∑  (3.14) 

 
1

( - ) negbin( , )( )
m

g m n

q m g m n q g
−

= −

= −∑  (3.15) 

 1

1

( 1) ( )
2
1

1
m

m n k k

k m n

k m
m n

q
k

− +

= − +

−  
  − − 

−


= −∑  (3.16) 

 1
1

2

1

0

1
( )

(
( 1)

!1) ( 1 )!

kn
km n

n

k

m q
m n

q

k n kk

−
+

−

=

+=
− + + −

−
−∑  (3.17) 

 
1 1

1
0

( 1)( )
( 1)!

n m n
k

n
k

p q
k m k q

n

+ − + ∞

−
=

= + +
− ∑  (3.18) 

 2
2 1bin( , )( 1) (2, 1; 2; )p m p n F m m n q= − + − +  (3.19) 

 ( ) ( 1, ) ( 1) ( 2, 1)q qp n q I m n n p m n I m n n= + − + − − + − + −  (3.20) 

The second group of expressions all contain the common term m p , so again for 

compactness expressions for the difference are listed. 

 E( ,SLS( , , ))m p h n m p−  (3.21) 

 

1

( - ) negbin( , )( )

g m

q g m m n q g
∞

= +

= −∑  (3.22) 

 
1

0

(( - ) - ) bin( , )( )
m n

h

m n h m q h
− −

=

= ∑  (3.23) 

 

1

( - ) bin( , )( )
m

h n

h n m p h

= +

= ∑  (3.24) 

 
1

( - ) negbin( , )( )
m

g n

p m g n p g
−

=

= ∑  (3.25) 

 1

1
1

1)
2

( ( 1)
m

n k k

k n

p
k m
n k

+

= +

−= − −   
  −  ∑  (3.26) 
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 1
1

2

1

0

( 1)
1

( )
( 1) ( 1 )! !

km n

m

k

n
n

km p
n k m

p

n k k

+
− +

− −

=

=
+ + − − −

−∑  (3.27) 

 
1 1

1
0

( 1)( )
( 1)!

n m n
k

m n
k

p q
k m k p

m n

+ − + ∞

− −
=

= + +
− − ∑  (3.28) 

 2
2 1bin( , )( 1) (2, 1; 2; )q m q m n F m n p= − − + +  (3.29) 

 ( ( ) ) ( 1, ) ( 1) ( 2, 1)p pp m n q I n m n q n I n m n= − + + − − + + − −  (3.30) 

Derivations of the expressions (3.12)-(3.20) and (3.22)-(3.30) will now be 

given.  Firstly observe that the substitutions n m n→ −  and p q↔  transform the 

expressions (3.12)-(3.20) to and from the expressions (3.22)-(3.30) respectively.  

The related pairs of expressions will be called dual.  It is sufficient to derive just 

one expression from each dual pair. 

Expression (3.12) follows from the application of (2.29) to negbin( , )n p  with 

limit m, followed by multiplication by p.  Expression (3.13) follows from the 

application of (2.30) to bin( , )m p  with limit n.  Expression (3.24) follows from 

the application of (2.29) to bin( , )m p  with limit n.  Expression (3.25) follows 

from the application of (2.30) to negbin( , )n p  with limit m, followed by 

multiplication by p. 

Expression (3.26) can be derived as follows.  Begin with (3.24), expand each 

of the (1 )m h m hq p− −= −  and collect coefficients of kp  to obtain 

 

1 1

( )( 1)
m

k
k

n h

k

k n

h m m h
h n

h k
p

h
−

+ = +=

−  −   −  
−∑ ∑ . 

Apply (2.20) and factorize to get 

 

1 1

() 1) )( 1 (
m

k k h
k

h nk n

m k
h n

k
p

h
= += +

− −   −   
   ∑ ∑ . 

Finally apply an equivalent identity to (2.21), allowing for symmetry of binomial 

coefficients, and rearrange to get (3.26). 

Next consider (3.17).  This expression cannot be evaluated when m n=  to 

avoid division by zero.  For m n>  it can be shown that (3.16) and (3.17) are term 

wise identical.  Similarly (3.27) cannot be evaluated when 0n = . 

Expressions (3.18) and (3.19) can both be verified by confirming that they are 

termwise identical to (3.12). 
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Expression (3.20) can be derived from (3.19) as follows.  Take the contiguous 

function identity 

 
2 1 2 1

2 1

( ) ( 1, ; ; ) (2 ( ) ) ( , ; ; )

( 1) ( 1, ; ; ) 0

c a F a b c x a c b a x F a b c x

a x F a b c x

− − + − + −

+ − + =
 

(Olver et al. 15.5.11), let 1a = , then 2 1( 1 0, ; ; ) 1F a b c x− = =  and rearranging gives 

 2 1
2 1

( 1) (2 ( 1) ) (1, ; ; )
(2, ; ; )

1

c c b x F b c x
F b c x

x

− + − + −
=

−
. (3.31) 

The hypergeometric function is symmetric with respect to its first two arguments, 

and so the identity 

 2 1
(1 )

( , ) ( ,1; 1; )
a b

x
x x

B a b F a b a x
a

−
= + +  

(Olver et al. 8.17.8) can be used to substitute for 2 1(1, ; ; )F b c x  in (3.31) to get 

 
1 1

2 1
( 1) (2 ( 1) )( 1) (1 ) ( 1, 1)

(2, ; ; )
1

c c b
xc c b x c x x B c b c

F b c x
x

− − −− + − + − − − − − +
=

−
. 

Use this identity to substitute for 2 1(2, 1; 2; )F m n p+ +  in (3.19).  Apply 

1
( 1)

1 ( 1, )

m
m n

n B m n n

  − + = − − + 
 and 

( 1, )
( 1, )

( 1, )

q
q

B m n n
I m n n

B m n n

− +
= − +

− +
, 

substitute bin( , )( 1) ( 1, ) ( 2, 1)q qm p n I m n n I m n n− = − + − − + − , factorize and 

simplify to get (3.20) as required. 

The above is sufficient to derive all of the expressions (3.12)-(3.20) and 

(3.22)-(3.30).  An additional relationship between the expressions is that (3.13) 

and (3.14) comprise the same terms in reverse order, following from the symmetry 

of the binomial coefficients.  Similarly for (3.23) and (3.24). 

The expressions (3.13)-(3.17) all comprise n terms, while (3.23)-(3.27) all 

comprise m n−  terms.  For efficient computation choose an expression from the 

group with the smallest number of terms. 

Expressions (3.16)-(3.17) and (3.26)-(3.27) are of interest because they are 

polynomials in q and p respectively. 

The expressions (3.18)-(3.20) are all well defined for non-integer values of n 

and m.  So too is (3.12) if the summation is interpreted to be over the values 

1, 2,g m m= + + ⋯ .  Indeed as long as n∈ℤ  then (3.13)-(3.15) and (3.17), with 
similar interpretations of the summations for m∉ℤ , evaluate to the same values.  

Only (3.16) cannot be evaluated when the exponent of 1( 1)m n− +−  is non-integer. 
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For n∉ℤ  the summation in (3.17) can be extended to infinity giving 

 1
1

20

( 1)
1

( )
( ) ( 1 )! !

k
n

n
k

k

mm n q
m n k n kk

q−
+

∞

=

+−
− + − −

−∑  (3.32) 

which is equivalent to (3.12) and (3.18)-(3.20) for both integer and non-integer 

values of m.  The expression (3.32) can be derived as the power series for (3.20) 

taken as a function of q. 

The equivalent dual results corresponding to the preceding two paragraphs are 

as follows.  The expressions (3.28)-(3.30) are all well defined for non-integer 

values of n and m.  So too is (3.22) if the summation is interpreted as above.  If 

m n− ∈ℤ  then (3.23)-(3.25) and (3.27), with similar interpretation of the 

summation, also evaluate to the same values.  Expression (3.26) cannot be 

evaluated when the exponent of 1( 1)n+−  is non-integer. 

For m n− ∉ℤ  the summation in (3.27) can be extended to infinity giving 

 1
1

20

1
( )

( ) ( 1
( 1

!)!
)

k
kn

k

m nn p
p

kn k m n k

∞
+

=
− + + − − −

−∑  (3.33) 

which is equivalent to (3.22) and (3.28)-(3.30).  The expression (3.33) can be 

derived as the power series for (3.30) taken as a function of p. 

When m n<  then E( ,SLS( , , ))h h n m p m p= =  so (3.12)-(3.20) are not 

required, nevertheless they do reduce to n m p−  with exceptions for (3.17) which 

is indeterminate for integers m n<  and (3.19) which is indeterminate for integers 

2m n≤ − .  For non-integer m n<  expressions (3.12), (3.18)-(3.20) and (3.32) all 

define the same continuous function. 

For the dual expressions when m n<  then E( ,SLS( , , )) 0m p h n m p− = .  The 

expressions (3.23)-(3.27) degenerate to zero terms.  The expressions (3.22) and 

(3.28)-(3.30) reduce to zero.  More generally those expressions reduce to zero 

whenever m n− ∈ℤ .  For other values expressions (3.22), (3.28)-(3.30) and (3.33) 
all define the same continuous function. 

The dual substitutions n m n→ −  and p q↔ , when applied to (3.11) or 

(3.21), leads to the identity 

 E( ,SLS( , , )) E( ,SLS( , , ))h n m p h m n m q n m q− − = − . 
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3.3 Other computational methods 

3.3.1 Recursion 

Recall the general recursion relation (2.24) for any distribution based on Bernoulli 

trials.  The relation for the SLS distribution is given by 

SLS( , , )( , ) SLS( , 1, )( 1, ) SLS( 1, 1, )( 1, 1)n m p g h q n m p g h p n m p g h= − − + − − − − . 

Three alternative sets of additional relations will be given, beginning with 

 

SLS(0, , )(0,0) 1,
SLS(0, , )( , ) 0,

SLS( ,0, )(0,0) 1,
SLS( ,0, )( , ) 0.

m p
m p g h

n p
n p g h

=
=

=
=

 

With these four stopping conditions or boundary values the recursion tree is 

equivalent to the entire event tree.  The first two conditions apply to negative 

binomial type leaf nodes, while the second two conditions apply to binomial type 

leaf nodes.  The effect of the stopping relations is to apply a weight of one or zero 

to paths according to whether or not they have the required number of shots and 

hits. 

The second set of additional relations is 

 

SLS(0, , )(0,0) 1,
SLS( , , )( , ) SLS( 1, 1, )( 1, 1),
SLS(1, , )( ,1) SLS(1, 1, )( 1,1),

SLS( ,0, )(0,0) 1,
SLS( , , )( , ) SLS( 1, 1, )( 1, 1),
SLS( , , )( ,0) SLS( , 1, )( 1,0).

m p
n m p n n p n m p n n

m p g q m p g

n p
n m p m m p n m p m m
n m p m q n m p m

=
= − − − −
= − −

=
= − − − −
= − −

 

With these stopping conditions and non-forking recursion relations the recursion 

tree is equivalent to just those paths of the event tree with the required number of 

shots and hits.  The first three relations apply to negative binomial type outcomes 

while the second three apply to binomial type outcomes.  The second relation 

applies when remaining shots must all be hits.  The third relation applies when 

remaining shots must all be misses until the last hit.  The fifth and sixth relations 

apply to the binomial type case when the remaining shots must be all hits or all 

misses respectively. 



The SLS Process     47 

   

   

The third set of additional relations is 

 

1

SLS( , , )( , ) ,

SLS(1, , )( ,1) ,

SLS( , , )( , ) ,

SLS( , , )( ,0) .

n

g

m

m

n m p n n p

m p g q p

n m p m m p

n m p m q

−
=
=

=
=

 

With these stopping conditions recursion stops as soon as no further forking can 

take place.  It is clear from the rhs expressions how they relate to negative 

binomial type outcomes with all hits, or all misses until the last hit, and binomial 

type outcomes with all hits or all misses, respectively. 

The boundary values or stopping conditions given above assume that the 

initial value of ( , )g h  is in the SLS sample space, otherwise infinite recursion may 

occur.  The recursion relations above could be separated to give recursion 

relations for binomial and negative binomial probabilities respectively. 

Now recall the recursion relation for expected values (2.26).  The relation for 

the SLS distribution is given by 

 

E(( , , ),SLS( , , ))

( , ,1) E(( , , ),SLS( , 1, )) E(( , , ),SLS( 1, 1, )).

h f g n m p

p q q h f g n m p p h f g n m p= + − + − −
 

The boundary values are 

 
E(( , , ),SLS(0, , )) (0,0,0) ,
E(( , , ),SLS( ,0, )) (0,0,0).

h f g m p
h f g n p

=
=  

When this recursion relation is applied to find the expected number of shots and 

the resulting expression is expanded, common factors are collected, but no further 

simplification done, the result is 

 

( , ) ( 1, 1)

g=E( ,SLS( , , )) h g h

g h m n

g
g n m p p q

h
−

≤ − −

 =  
 ∑  

as expected from (2.25). 

Recursion combined with primitive graphics commands was used to construct 

the tree diagrams in Figures 3.2 and 3.3. 

3.3.2 Markov chain model 

Let P be the transition probability matrix for a discrete-time finite Markov chain.  

Denote the ( , ) elementi j −  of mP  by ,
m
i jP .  This is the conditional probability that 

the Markov chain is in state j after m time steps, given that it started in state i, see 



48     Chapter Three 

   

   

for example Neuts (1995, p 136) or Taylor and Karlin (p 101).  Row sums of P 

equal 1.  A state i is described as absorbing if it is impossible to leave, in which 

case , 1i i =P  and , 0i j =P  for i j≠ .  More generally, conditional on starting in 

state i, that state is described as transient when the probability of ever returning to 

i lies strictly between zero and unity, ephemeral if with probability 1 the process 

departs from i immediately never to return, and recurrent if the probability of 

being in state i at some future time is unity. 

Distributions that give the probability of duration until absorption of a 

discrete-time Markov chain with a single absorbing state are called discrete phase-

type distributions, commonly abbreviated to PH distributions (Neuts, 1995, p 137, 

Latouche and Ramaswami, p 47).  For such distributions, if the absorbing state is 

ordered last, then P has the partitioned form 

 
1

 =   
tT

P
0

 

where T is the submatrix of transition probabilities amongst the transient and 

ephemeral states, and (0, ,0)=0 ⋯  and 1= −Σt T  are row and column vectors 

respectively.  The g
th
  power of P can be written in the form 

 1
1

g gg  −Σ=  
 
T TP
0

. (3.34) 

Let n be the number of transient states and denote the initial probability vector by 

1( , )nτ +τ  where 1( , , )nτ τ=τ ⋯  is a row vector and the total initial probability 

1 1nτ +Σ + =τ .  Let PH( )τ,T  denote the PH distribution determined by τ  and T.  

Then the probability mass 1PH( )(0) nτ +=τ,T , and for 0g >  it follows from (3.34) 

that 

 1PH( )( ) gg −=τ, τ tT T , and 

 PH( )(# ) 1 gg≤ = − ⋅Στ, τT T  

(Neuts, 1995, pp 137-138, Latouche and Ramaswami, p 49).  Another expression 

for the cumulative probability, which follows more directly from the definitions, is 

   
1

, 1
1

PH( )(# )
n

g
i i n

i

g τ
+

+
=

≤ =∑τ,T P . 

Negative binomial distributions are discrete phase-type distributions 

(Latouche and Ramaswami, p 47).  Let T be an n by n matrix with leading 

diagonal values all equal to q, values immediately above the leading diagonal all 

equal to p, and zeroes elsewhere, and let (1,0, 0)=τ ⋯ .  Then the states 
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1, , 1i n= +⋯  correspond to the number of successes 0, ,h n= ⋯  in a negative 

binomial process.  The initial state 1i =  represents zero successes and the single 

absorbing state 1i n= +  represents n successes.  The distribution PH( )τ,T  is 

equivalent to negbin( , )n p  and applying the results above gives 

 
1

1,PH( )( ) negbin( , )( )
g
ng n p g p
−= =τ,T T , and 

 1, 1, 1
1

PH( )(# ) negbin( , )(# ) 1
n

g g
i n

i

g n p g +
=

≤ = ≤ = − =∑τ,T T P . 

Furthermore 

 1, 1 1, 1 bin( , )( ), 0, , 1m m
h h m p h h n+ + = = −T = P ⋯ . 

Substituting the expressions above in (3.5) gives 

 1, 1
0

E( ,SLS( , , ))
n

m
h

h

h h n m p h +
=

= = ∑ P . 

For example when 3n =  and 6m =  then 

 

0 0
0 0
0 01
0 0 0 1

q p
q p

q p

 
  = =       

tT
P

0
, and 

 

6 5 2 4 3 3 3 2 3 3

6 5 2 2 2 2 2 3 2 46

6 2 3 4 5

6 15 3 6 10

0 6 2 3 4 5 .
0 0
0 0 0 1

q pq p q p p q p q p q

q pq p p q p q p q p q

q p pq pq pq pq pq

 + + +
 

+ + + + =
 + + + + +
  

P  

The terms in the first row of 6P  correspond to the full set of SLS(3,6, )p  

probabilities shown in Figure 3.3. 

3.4 The gamma/Poisson (GP) process 

3.4.1 The GP sample space and distribution 

In this section a hybrid continuous/discrete distribution based on the Poisson 

process will be presented as an analogue of the SLS distribution which is based on 

a Bernoulli trial process. 
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Consider a Poisson process characterised by the mean arrival rate λ.  The 
probability of h arrivals in time t is Poisson( )( )t hλ  and the probability density 

that the h
th
 arrival occurs at time t is gamma( , )( )h tλ . 

A Poisson distribution is the limiting case of a sequence of binomial 

distributions in the following sense.  Let m p β=  where β is fixed, then   

 
lim lim

bin( , )( ) bin( , / )( ) Poisson( )( )m p h m m h h
m m

β β= =→∞ →∞ , 

(Golberg, p 218, Bean, p 196).  Similarly the gamma pdf can be derived as a 

limiting case of negative binomial probabilities (Bean, p 204).  One form of 

expressing the limiting nature is 

 
lim

negbin( , )( ) gamma( , )( )
g t

n g n t
g t g

λ
λ=→∞ . 

Define the gamma/Poisson (GP) process to be a Poisson process that is 

observed until either a maximum number of arrivals n occurs or a time limit T 

expires.  Such a process is analogous to an SLS process as defined for a sequence 

of Bernoulli trials.  A full description of a GP process outcome would include the 

time of each arrival, but only the final time and number of arrivals is of interest, 

and so the GP sample space is defined to be 

 

{ }

{ } { }

GP( , ) ( , ) | ( ) (0 ) or ( ) ( )

( , ) | 0 ( , ) | .

n T t h h n t T t T h n

t n t T T h h n

= = ∧ ≤ ≤ = ∧ <

= ≤ ≤ ∪ <
 

This is a hybrid of the gamma and Poisson sample spaces.  It is a hybrid 

discrete/continuous sample space.  The ( )GP , ,n T λ  distribution, where λ is the 

mean arrival rate, is given by 

 ( ) ( ) gamma( , )( ), for and 0 , andGP , , ,

Poisson( )( ), for and .

n t h n t Tn T t h

T h t T h n

λλ

λ

= ≤ ≤=


= <

 

The GP distribution as just defined is a hybrid of the gamma and Poisson 

distributions.  Do not confuse it with a gamma mixture of Poisson distributions 

which some authors refer to as a gamma-Poisson (mixture) distribution and can be 

shown to be a negative binomial distribution (Blumenfeld, pp 63-65). 

The probability of the whole sample space is given by 

 
1

0
0

gamma( , )( ) Poisson( )( ) 1
nT

h

n t dt T hλ λ
−

=

+ =∑∫ . 
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A relationship between gamma and Poisson probabilities equivalent to the above 

equality is well known, for example see Bean (p 230) or Golberg (p 402). 

Define the standard GP distribution by 

 ( ) ( )GP , GP ,1,n nβ β= . 

With this notation context must be relied upon to distinguish the standard GP 

distribution from the general GP sample space.  Denote the standard GP sample 

space by 

 { } { }GP( ) ( , ) | 0 1 (1, ) | .n t n t h h n= ≤ ≤ ∪ <  

3.4.2 Expected number of arrivals 

Define a random variable h, given by (( , ))h t h h= , which gives the number of 

arrivals.  The expectation of h for the ( )GP , ,n T λ  distribution is given by 

 
1

0
0

E( ,GP( , , ))

Poisson( )( ) Gamma( , )( ) .
n T

h

h h n T

h T h n n t dt

λ

λ λ
−

=

=

= +∑ ∫

. 

An indirect derivation of h  using a limited expected value is given by 

 

0

1

0

1

0

1

E(min(#, ), Poisson( ))

min( , ) Poisson( )( )

Poisson( )( ) Poisson( )( )

( )Poisson( )( )

( ) Poisson( )( ).

h

n

h h n

n

h

h n

h n T

h n T h

h T h n T h

n n h T h

T h n T h

λ

λ

λ λ

λ

λ λ

∞

=

− ∞

= =

−

=

∞

= +

=

=

= +

= − −

= − −

∑

∑ ∑

∑

∑

 

The first three expressions correspond to (3.9).  The latter two expressions follow 

from the applications of (2.30) and (2.29) respectively, and correspond to (3.13) 

and (3.24) respectively. 
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Similarly define a random variable t, given by (( , ))t t h t= , which gives the 

elapsed time.  The expectation of t for the ( )GP , ,n T λ  distribution is given by 

 
1

0
0

E( ,GP( , , ))

Poisson( )( ) t amma( , )( ) .
n T

h

t t n T

T T h g n t dt

λ

λ λ
−

=

=

= +∑ ∫

 

An indirect derivation of t  using a limited expected value is given by 

 

0

0

0

E(min(#, ),gamma( , ))

min( , ) gamma( , )( )

gamma( , )( ) gamma( , )( )

( - )gamma( , )( )

( - )gamma( , )( )

gamma( 1, )(# ) gamma( , )(# ).

T

T

T

T

t T n

t T n t dt

t n t dt T n t dt

T T t n t dt

n
t T n t dt

n
n T T n T

λ

λ

λ λ

λ

λ
λ

λ λ
λ

∞

∞

∞

=

=

= +

= −

= −

= + ≤ + >

∫

∫ ∫

∫

∫

 

The first three expressions correspond to (3.10).  The next two expressions follow 

from the applications of (2.28) and (2.27) respectively, and correspond to (3.25) 

and (3.12) respectively.  The final expression is equivalent to an expression in 

Burnecki et al. 

Recall Theorem 2.1 which concerned the ratio of the number of successes, 

failures and trials for any distribution based on Bernoulli trials.  Now consider a 

Poisson process with mean arrival rate λ.  Applying (2.18) and (2.19) respectively, 
the ratio of expected arrivals over expected duration is λ for both Poisson( )Tλ  

and gamma( , )n λ , for all values of T and n respectively.  It will be shown that the 

same result applies for ( )GP , ,n T λ , that is h tλ= , and so h  can easily be 

evaluated from any of the expressions given for t  and vice versa. 

The proof that h tλ=  follows by considering the GP( , , )n T λ  process to be 

embedded in a Poisson( )Tλ  process, that is a Poisson process that is observed 

until a time limit T expires.  Equivalently a GP( , , )n T λ  process can be extended to 

a Poisson( )Tλ  process by continuing after the n
th
 arrival occurs at time t, t T≤ , 

with probability density amma( , )( )g n tλ , until a further time interval of duration 

T t−  has elapsed.  The expected number of further arrivals during this further 
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time interval is, applying (2.18), E(#,Poisson( ( ))) ( )T t T tλ λ− = − .  Now equate 

E(#,Poisson( ))T Tλ λ=  with the expected number of arrivals derived by 

considering the GP( , , )n T λ  process extended to a Poisson( )Tλ  process to get 

 
0

E( ,GP( , , )) ( - ) gamma( , )( )
T

T h n T T t n t dtλ λ λ λ= + ∫ . 

This can be rearranged to give 

 
0

E( ,GP( , , )) ( - )gamma( , )( )
T

h n T T T t n t dtλ λ λ = − 
 ∫ . 

The parentheses on the rhs contain one of the expressions given above for t  and 

so this completes the proof. 

The expected number of arrivals E( ,GP( , , ))h n T λ  is a limiting case of 

E( ,SLS( , , ))h n m p  in the sense that if m p Tλ β= =  then 

 
lim

E( ,SLS( , , )) E( ,GP( , , )) E( ,GP( , ))h n m p h n T h n
m

λ β= =→∞ . (3.35) 

Furthermore it will be shown in Section 4.4.6 that E( ,SLS( , , ))h n m p  is strictly 

decreasing as m increases.  It follows that 

 E( ,GP( , )) E( ,SLS( , , )) min( , )h n h n m p nβ β< ≤ . 

Figure 3.7 shows an example of this convergence within the bounds.  

p=1

p=0.7

p=0.4

EHh,SLSHn,m,pLL

EHh,GPHn,bLL

1 2 3 4 5
m p, b

1

2

 

Figure 3.7 Convergence of E(h,SLS( , , ))n m p  to E(h,GP( , ))n β  with 2n =  
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3.5 Other types of allocation of shots to targets 

3.5.1 Random and uniform shot allocation 

This thesis is predominantly concerned with shoot-look-shoot assignment of 

weapons or shots to targets.  Przemieniecki (pp 154-160) covers this type of 

allocation as well as uniform and random assignment.  For uniform assignment, 

shots are allocated to targets as uniformly as possible.  Shots are not reallocated 

upon destruction of their assigned target.  For random assignment, shots are 

allocated randomly to targets, independently of the number of other shots already 

assigned to targets, and without regard to destruction of a target by any other shot. 

For random assignment of shots to targets, the expected number of targets 

destroyed is 

 1 1 E( ,SLS(1, , ))

m
p p

n n h m
n n

   − − =    
 

It follows from the fact that 
p

n
 is the probability that a single shot is assigned to 

and destroys a particular target.  Przemieniecki (p 157) gives an expression for the 

expected number of surviving targets, which is the difference between n and the 

lhs of the above equation.  For a limiting case let m p β=  where β is fixed, then 

 ( )/lim
1 1 1 e

m
np

n n
m n

β−
   − − = − →∞    

. 

A term equivalent to /e nβ−   in the rhs of the above equation is given in 

Przemieniecki (p 157) as the limiting case of the probability of survival of any 

single one of the targets. 

For uniform allocation, if n divides m then the expected number of targets 

destroyed is 

 E( ,SLS(1, , ))
m

n h p
n

, 

otherwise it is   

 ( mod )E( ,SLS(1, , )) ( mod )E( ,SLS(1, , ))
m m

n m n h p m n h p
n n

   − +      
. 

Przemieniecki (p 155) gives an expression for the expected number of surviving 

targets.  It follows from Theorem 2.2 with the degenerate sum (2.33) that uniform 

allocation results in more targets expected destroyed than any other fixed pre-

allocation.  Uniform allocation must also be superior to random allocation. 
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Figure 3.8 compares an example plots of E( ,SLS( , , ))h n m p  with the 

corresponding uniform and random allocations, and the corresponding limiting 

cases.  Przemieniecki (p 160) gives tables comparing target survivability 

probabilities for random, uniform and SLS allocation schemes. 

3.5.2 Practical allocation 

SLS assignment can be achieved by firing shots one at a time, with the 

consequences of each shot being assessed before the next shot is fired.  With a 

short window of opportunity this may not be possible.  If at each fire/assessment 

cycle, a volley of shots is fired, but with no more than one shot being fired at each 

remaining target, then the probability of an outcome with any specified number of 

shots fired and targets hit will be the same as for SLS allocation. 

In Chapters 5 and 6, consideration is given to the weapons firing the shots, 

that is many weapons, each firing many shots, are considered.  In such a case, a 

sequence of volleys may well occur.  The number of shots in a volley could be 

greater than the number of targets.  Even if this were not the case initially, it may 

eventuate as the number of targets progressively decreases. 

Consider the scenario where a number of weapons can each fire a number of 

shots, limited by the time interval during which the targets may be engaged.  Then 

it may be that the number of hits is maximised by a hybrid shoot-look-

shoot/uniform assignment, described as follows.  At each fire/assessment cycle 

every weapon fires.  If at any cycle the number of shots exceeds the remaining 

number of targets, then assign the shots uniformly over those targets. 

EHh,SLSHn,m,pLL

uniform

random

EHh,GPHn,m pLL

nH1-‰-
m p
n L

1 2 3 4 5 6 7

m

1

2

3

 

Figure 3.8 Expected hits for different shot allocation schemes with 0.6p =  
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Compare this scheme to the ideal pure shoot-look-shoot assignment, with the 

same total number of shots available.  The expected number of targets destroyed 

would be less for the hybrid scheme, while the expected number of shots fired 

would be slightly higher.  Nevertheless, with respect to both measures, the hybrid 

scheme would still out perform a pure uniform assignment, with the same total 

number of shots available. 

Consider a second scenario where short windows of opportunity do limit the 

total number of shots from each weapon, but these windows do not coincide 

temporally.  Then for an outcome specified by the number of shots fired and 

number of targets hit it would be possible to achieve the same probability as for 

SLS allocation. 
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Chapter Four 

4    The Heterogeneous SLS Process 

4.1 The heterogeneous SLS process 

4.1.1 Introduction to the heterogeneous SLS process 

In this chapter the SLS process is generalised by allowing shots to be 

heterogeneous in the sense that they may have different single shot hit 

probabilities. 

Suppose that there are v different types or, mnemonically, versions, of shots, 

rounds of ammunition, or missiles.  Let im , 1, ,i v= ⋯ , be the maximum number 

of shots, rounds or missiles of type i.  The im  shots of type i are treated as 

indistinguishable.  Let 1( , , )vm m=m ⋯ .  As before let the number of targets be n.  

Let 1( , , )vp p=p ⋯ , where ip  is the probability of a single shot of type i  

destroying a single target.  Define 1= −q p . 

Figure 4.1 is an illustration representing 3v =  types of shot and 4n =  targets.  

The number of shots by type is (7,3,8)=m .  The total number of shots is the sum 

18m = Σ =m . 

Define the heterogeneous SLS process to be similar to the homogeneous SLS 

process described in the previous chapter with the following addition.  Assume 

that each shot to be fired is selected randomly from the remaining rounds.  

Equivalently the type of shot to be fired has probability equal to the proportion of 

remaining shots that are of that type. 

Figure 4.2 is the event tree representing all of the possible outcomes when up 

to three shots, two of version 1 and one of version 2, can be fired at two targets.  

The expressions adjacent to each branch of the tree represent the conditional 

probability of that branch being taken, given that the node preceding it has been 

reached.  The figures in bold at the leaves of the tree specify the number of targets 

destroyed and the expressions represent the probabilities of those outcomes 

occurring. 
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Let 1( , , )vg g=g ⋯ , where ig  is the number of shots fired of type i.  The 

probability of randomly selecting g shots from m in some particular order is 

 
( )

( )ΣΣ
g

g

m

m
. (4.1) 

Urn models are frequently used as examples in probability theory.  The selection 

of shots is analogous to drawing balls from an urn without replacement, where 

shot type corresponds to ball colour and permutation of the colours is important.  

Parsons (pp 187-189) gives an example equivalent to a specific case of (4.1) in 

which 2v = , (8, 2)=m  and (3,2)=g .  Let 1( , , )vh h=h ⋯ , where ih  is the 

number of hits by shots of type i.  The probability of h hits from g shots in some 

particular order is -h g hp q .  The product of this with (4.1) gives the probability of 

a path representing h hits from g shots, in some particular order of shot types and 

some particular order of hits and misses,  

 -
( )

( )ΣΣ
g h g h

g

m
p q

m
. (4.2) 

 

 

Figure 4.1 Four targets and up to (7,3,8)=m  shots by type 
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Figure 4.2 Possible outcomes for two targets and up to (2,1)=m  shots by type 
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4.1.2 The heterogeneous SLS sample space 

The order of shot types fired and the order of successes and failures is of no 

practical interest and so outcomes with identical values of g and h may be 

aggregated to form the elements of a sample space which will be called the 

heterogeneous SLS sample space, denoted by SLS( , )n m , and given by 

{ }

{ } { }

SLS( , ) ( , ) |( ) ( ) or ( ) ( )

( , ) |( ) ( ) ( , ) |( ) ( ) .

n n n

n n

= ≤ = ∧ Σ < = Σ ∧ ≤ ≤

= ≤ ∧ Σ < ∪ = Σ ∧ ≤ ≤

m g h h g m h h h g m

m h h m h g h h h g m

 

In the first set of outcomes targets remain after all shots are fired.  In the second 

set of outcomes the last shot fired hits the last target, and there may be shots left 

over.  If total shots number less than targets, that is m nΣ = <m , then all 

outcomes are of the first type. 

4.1.3 The heterogeneous SLS distribution 

Denote the pmf giving the probability of ( , )g h  and the corresponding distribution 

by SLS( , , )n m p .  The pmf will be shown to be 

 SLS( , , )( , ) bin( , )( ) for , ,n n= ≤ Σ <p m m h m p h h m h  

 

SLS( , , )( , ) hypgeom( , )( ) bin( , )( )

for , .

n
n

n

= Σ
Σ

≤ ≤ Σ =

p m g h g m g g p h
g

h g m h

 (4.3)

 

For the borderline case when m nΣ = =m  and nΣ =h  then = =h g m  and 

SLS( , , )( , )n p m g h  reduces to bin( , )( )=mp m p m . 

Explanation of the pmf expressions is as follows.  For nΣ <h  all m shots are 

fired and the probability of h hits or successes is given immediately as a multiple 

binomial probability.  For nΣ =h , without the restriction that the last shot fired 

must hit the n
th
 target, then the probability of selecting g shots to fire from m is 

hypgeom( , )( )Σ g m g  and the probability of h hits from g shots fired is 

bin( , )( )g p h .  Take the product of these two probabilities.  Now consider the 

effect of the restriction.  In counting the permutations of shots fired, without the 

restriction, the last shot fired could be chosen first in Σ g  ways.  With the 

restriction the last shot fired should be chosen in only nΣ =h  ways.  Applying the 

correction factor /n Σ g  gives the rhs of (4.3). 

Alternatively the pmf expressions can be derived in a manner more closely 

related to the event tree of Figure 4.2.  For a given value of ( , )g h  multiply the 

path probability (4.2) by the number of paths.  For nΣ <h  all m shots are fired, 

and the number of permutations, where shots of the same type are treated as 
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indistinguishable, is ( )!/ !Σm m .  This is a multinomial coefficient (Comtet, p 28).  

Vilenkin (p 23) refers to this problem as permutations with repetitions.  

Feller (p 37) considers the equivalent problem of partitioning elements into sub-

populations.  For each permutation of the shots, the number of permutations of the 

hits and misses is given by the multiple binomial coefficient 
 
 
 

m
h

.  The total 

number of paths is given by the product 

 
( )!

!

Σ  
 
 

m m
hm

. 

Multiplying this by (4.2) with =g m  gives bin( , )( )m p h  as required. 

For nΣ =h  the number of permutations of g shots is ( )!/ !Σ g g  and for each 

permutation of g fired shots there are  
 
 

g
h

 permutations of h hits.  As argued 

above there must be a correction factor /n Σ g  because the last shot fired must hit 

the n
th
 target and so the total number of paths is given by the product 

 
( )!

!

n Σ  
 

Σ  

g g
hg g

. 

Multiplying this by (4.2) gives the rhs of (4.3) as required. 

The probability of the entire sample space is 

. . , . .

bin( , )( ) hypgeom( , )( ) bin( , )( ) 1
s t s t

nn

n

≤ ≤ ≤
Σ =Σ <

+ Σ =
Σ∑ ∑

h h g
h m h g m

hh

m p h g m g g p h
g

. 

4.2 Expected number of targets destroyed 

Define the random variable h by (( , ))h = Σg h h , which gives the number of 

targets destroyed.  The expected number of targets destroyed is given by 

 

( , )

E( ,SLS( , , ))

( ) SLS( , , )( , )

h h n

n

=

= Σ∑
g h

m p

h m p g h

 

where the sum is over all ( , )g h  in the sample space SLS( , )n m .  When 

m nΣ = ≤m  then applying (2.17) gives 

 E( #,bin( , )) .h = Σ = ⋅m p m p  (4.4) 
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For all values of m and n 

. . , . .

( ) bin( , )( ) hypgeom( , )( ) bin( , )( ).
s t s t

nn

n
h n

≤ ≤ ≤
Σ =Σ <

= Σ + Σ
Σ∑ ∑

h h g
h m h g m

hh

h m p h g m g g p h
g

 

When m n<  the right hand summation is null.  When m n=  the right hand 

summation reduces to the single term = bin( , )( )n nmp m p m . 

For the remainder of this section assume that n < Σm . 

It is possible to derive h  indirectly as the limited expected value 

 

E(min( , ), bin( , ))

min( , ) bin( , )( )

h n

n

≤

= Σ

= Σ∑
h m

# m p

h m p h

 

 
. . . .

( ) bin( , )( ) bin( , )( )
s t s t

n n

n

≤ ≤
Σ < Σ ≥

= Σ +∑ ∑
h h
h m h m

h h

h m p h m p h  (4.5) 

 
. .

( ) bin( , )( )
s t

n

n n

≤
Σ <

= − −Σ∑
h
h m

h

h m p h  (4.6) 

 
. .

( ) bin( , )( )
s t

n

n

≤
Σ >

= ⋅ − Σ −∑
h
h m

h

m p h m p h . (4.7) 

The latter two expressions follow from generalizations of (2.30) and (2.29) 

respectively.  One of the latter two expressions should be the most efficient for 

computation, with the final choice depending on the magnitudes of n and m. 

The value h  can be expressed as a multivariate polynomial function of 

the ip  

 
. .

2
( 1) ( 1)

1
n

s t

n

h
n

≤
Σ >

Σ −  = ⋅ + − −   −  
∑ k k

k
k m

k

k m
m p p

k
 (4.8) 



The Heterogeneous SLS Process     63 

   

   

 
. .1

2
( 1) ( 1) .

1
n k

s tk n

k

k
n

Σ

= +
≤

−   = ⋅ + − −    −   
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k
k m

m
m p p

k
 (4.9) 

The former expression has a concise form.  The later expression is obtained by 

partially specifying the order of summation and factorizing for more efficient 

computation.  The expressions are analogous to (3.26). 

To derive the expressions begin with (4.7), expand each of the 

(1 )− −= −m h m h
q p  and collect coefficients of k

p  to obtain 

 
. . . .

( 1) ( )
s t s t

n n

n−

≤ ≤
Σ > Σ >

−  ⋅ − − Σ −   −  
∑ ∑k k h

k h
k m h k

k h

m m h
m p p h

h k h
.  

Apply (2.20), partially specify the order of summation and extract common factors 

to obtain  
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s t s th n

h
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h n

Σ
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   ⋅ − − − −   
   ∑ ∑ ∑

k
k k

k h
k m h k

k

m k
m p p

k h
. 

Apply (2.15) to reduce the inner summation over h to 
h
Σ 
 
 

k
.  Finally apply an 

equivalent identity to (2.21), allowing for symmetry of binomial coefficients, 

rearrange and factorize to get (4.8) as required. 

Similarly h  can be expressed as a multivariate polynomial function of the iq  
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 (4.10) 
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k m
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q
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These expressions are analogous to (3.16). 

To derive the expressions begin with (4.6), expand each of the (1 )= −h h
p q  

and collect coefficients of k
q  to obtain 
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f mk m
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k ff
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Apply (2.20), partially specify the order of summation and extract common factors 

to obtain 

 
. . . .1

( 1) ( 1) ( )f

s t s tf n

f
n

n n f

Σ

=Σ − +
≤ ≤

Σ >Σ −

   − − − −Σ +   
   ∑ ∑ ∑

k
k k

k fm
k m f k

k m

m k
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Apply (2.15) to reduce the inner summation over f to 
f
Σ 
 
 

k
.  Finally apply an 

equivalent identity to (2.21), allowing for symmetry of binomial coefficients, 

rearrange and factorize to get (4.10) as required. 

The expression (4.9) will have few terms if n is close to Σm  and (4.11) will 

have few terms if n is small. 

4.3 Non random firing sequences 

In this section shoot-look-shoot assignment of up to m shots at n targets is 

considered, but instead of randomly selecting the next shot to be fired, the order of 

the shots is assumed to be fixed in some pre-determined sequence.  The firing 

order can not affect the expected number of targets destroyed, and so h  is the 

same as for the shoot-look-shoot process with random firing order as described in 

Section 4.1.1.  For ease of reference this property will be stated formally as a 

Corollary. 

Corollary 4.1 

The value of h  is independent of firing order. 

This property was recognised by Anderson and Miercort (1989, p V-19).  

Anderson (1989, p 11 and 1993, pp 284-285) gives an indirect proof, the essence 

of which uses the limited expected value approach.  Anderson’s argument can be 

summarised, after translation to notation consistent with this thesis, as follows.  

Let h be a random variable representing the number of targets destroyed when the 

number of targets equals the total number of shots.  The random variable h is 

independent of the order of shots.  Now for some smaller number of targets n the 

number of targets destroyed can be represented by the random variable min( , )n h , 

which must also be independent of the order of shots fired. 
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Having established that h  is independent of the order of fire, Anderson and 

Miercort (1989, p V-19, V-20)) go on to give a set of recursion equations to 

evaluate h .  They remark that “the equations … are not very computationally 

attractive.  Perhaps more tractable formulas can be found” (p V-22).  Such 

formulae have been given in Section 4.2 of this thesis. 

Improvements can also be made to Anderson and Miercort’s recursion 

equations.  In the key recursive equation (p V-20) an upper bound, min( , )it s l+ , 

is given for the summation, where t is the number of targets, is  is the maximum 

number of shots of type i, and l is the number of targets surviving.  This upper 

bound prevents the recursion from exploring paths which would represent more 

successful shots than the actual number of targets.  The lower bound, l, allows 

paths with too few successful shots which are ultimately given a zero weighting.  

Changing the lower bound to 1 1max( , ( ))il t s s −− + +⋯  would prevent such 

pointless branching.  This application of upper and lower bounds at each step of 

the recursion would be analogous to the bounds set in the summation (2.1). 

The value of h  for a fixed firing order can be derived from first principles as 

follows.  Consider an outcome in which not all n targets are destroyed and 

therefore all m shots are fired.  Let h, where n<h , represents the number of hits 

by type of shot.  The probability of such a path in the event tree is -h g hp q  and the 

number of such paths is 
 
 
 

m
h

, giving the probability of that collection of paths 

equal to bin( , )( )m p h .  The result is the same as that obtained in Section 4.1.3 for 

random firing order, but the derivation differs in that the cancelling multinomial 

coefficients ( )!/ !Σm m  do not arise.  For all other outcomes all n targets are hit.  

The expected number of targets destroyed is therefore 

. . . .

( ) bin( , )( ) (1 bin( , )( ))
s t s t

n n

h n

≤ ≤
Σ < Σ <

= Σ + −∑ ∑
h h
h m h m

h h

h m p h m p h  

and simplifies to (4.6), which is one of the expressions for the random firing order 

process. 

Changing the firing order can affect the expected number of shots fired g  

(Anderson and Miercort, 1989, p V-19).  For example if shots are fired in 

decreasing or increasing order of ip  then g  is minimised or maximised 

respectively. 
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4.4 Properties 

4.4.1 An example plot, linearity and asymptotic upper bound 

In this section properties of E( ,SLS( , , ))h h n= m p  will be discussed.  Figure 4.3 

is an example showing h  as a function of 1m  and 2m , the maximum number of 

shots of two types.  It is a linear function for 1 2m m n+ ≤ , but yields ever 

diminishing returns for further increases in 1m  or 2m , and eventually converges 

h n→  as 1 2orm m →∞ .  In general the corresponding results hold for any 

number of shots, that is h  is linear with respect to the im  for nΣ ≤m , and 

h n→  as im →∞  for any shot type i.  The linearity is evident from (4.4). 

4.4.2 Reduction when there are no shots of a given type 

Consider the example 1 2 3E( ,SLS( , (2,0,3), ( , , )))h h n p p p′ ′ ′ ′ ′= = =m p  in which 

there are 2 0m =  shots of type 2i = .  Leaving out the type for which there are no 

shots reduces the expression for h  to 1 3E( ,SLS( , (2,3), ( , )))h n p p′ ′= =m p .  In 

general if ′m  includes zeroes, then the 0im =  values and the corresponding ip  

values can be dropped from the argument lists. 

4.4.3 Aggregation of indistinguishable shot types 

This section considers the case when multiple shot types have the same probability 

of hit.  Let the argument list ′m  include the values m′  and m′′  and suppose that 
the corresponding single shot hit probabilities in ′p  identically equal the 

duplicated value p.  Consider a second argument list †
m , similar to ′m  but with 

m′  and m′′  replaced by the single value †m m m′ ′′= + .  Let †p  be similar to ′p  

but with the non duplicated value p representing the single shot hit probabilities of 

the †m  shots.  Since the total number of shots and corresponding single shot hit 

probabilities has not changed the expected number of targets destroyed, h , must 

remain unchanged.  This property is restated as a corollary as follows. 

Corollary 4.2 

The value of h  is invariant under aggregation of indistinguishable types of shots. 

Proof (algebraic) 

An optional alternative proof is given here.  Let the symbol ∪  represent 

concatenation of lists.  Without loss of generality suppose that the arguments are 

ordered such that they can be described by ( , )m m′ ′ ′′= ∪m m , ( , )p p′ = ∪p p , 

† †( )m= ∪m m  and † ( )p= ∪p p .  When † n′Σ = Σ ≤m m  then clearly 

† †h ′ ′= ⋅ = ⋅m p m p .  When † n′Σ = Σ >m m  use the expression for h  given 

by (4.6).  Partially specifying the order of summation gives 
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and 
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Figure 4.3 Plot of 1 2E( ,SLS(3, ( , ), (0.8,0.4)))h m m  
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The inner summation of (4.13) 

† † †

. . . .
( , ) ( , )† †

( , )
bin(( , ), ( , ))( ) h m h

s t s t
m m m m

h h

m m
m m p p p q −

′′′ ′′′
′′′ ′ ′′ ′′′ ′ ′′≤ ≤

′ ′′ ′ ′′ ′′′ =  ′′′ ∑ ∑
h h

h h

h
h

 

and applying (2.15) reduces this to † †bin( , )( )m p h , the final factor of (4.12).  

Hence (4.12) and (4.13) are equal.  This completes the proof. ♦ 

If all shot types have the same probability of hit then the heterogeneous case 

reduces to the homogeneous case  

 E( ,SLS( , , ( , , ))) E( ,SLS( , , ))h h n p p h n p= = = Σm p m⋯ . 

4.4.4 Degeneracy for perfect hit rate  

If the single shot hit probability equals one for some shots then the computation of 

h  can be reduced as follows.  Without loss of generality suppose that 1 1p = .  

Denote 2( , , )vp p− =p ⋯  and 2( , , )vm m− =m ⋯ .  Then 

 
1 1 1

1

E( ,SLS( , , )), for
E( ,SLS( , , ))

, for .

m h n m m n
h n

n m n

− − + − <
= 
 ≥

m p
m p  

This expression clearly applies if the shots with perfect hit rate are fired first, and 

by Corollary 4.1 the order of firing does not change h . 

4.4.5 Concavity with respect to the number of targets 

Recall Figure 3.6 and (3.8) for the homogeneous case.  For the heterogeneous case 

E( ,SLS( , , ))h n m p  is a strictly concave function of n for n ≤ Σm  and the finite 

differences are given by 
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. .

E( ,SLS( 1, , )) E( ,SLS( , , )) bin( , )( )
s t

n

h n h n

≤
Σ >

+ − = ∑
h
h m

h

m p m p m p h . (4.14) 

This can be derived easily using the form given for h  in (4.5). 

4.4.6 Bounds and constrained minima and maxima 

Consider the range of values that E( ,SLS( , , ))h n m p  may take when n is fixed and 

m and p vary subject to the constraints that maxmΣ ≤m  and β⋅ =m p  for fixed 

maxm  and β, where maxmβ ≤ .  It will be shown that 

max
max

E( ,GP( , )) E( ,SLS( , , )) E( ,SLS( , , )) min( , )h n h n m h n n
m

β
β β< ≤ ≤m p . (4.15) 

The last inequality is easily deducible from the limited expected value 

expression for h  given in Section 4.2.  Equality is achieved if β is concentrated in 
shots with hit probability equal to 1, and for non integer β an additional shot with 
hit probability equal to the fractional part of β. 

The middle inequality of (4.15) follows from the following lemma showing 

that h  is reduced if two shots with different single shot hit probabilities are 

replaced by two shots with the mean value.  Without loss of generality assume that 

the arguments are ordered with the two shots to be replaced represented last.  

Let 2δ  be the difference in hit probabilities.  

Lemma 4.1 

2

. .

1

E( ,SLS( , (1,1), ( , ))) E( ,SLS( , (2), ( )))

bin( , )( ).
s t

n

h n p p h n pδ δ

δ

≤ −

∪ ∪ − + − ∪ ∪

= ∑
h

h m

m p m p

m p h

 

Proof 

Let two shots have single shot hit probabilities p′  and p′′ .  By Corollary 4.1 an 

expression for h  that explicitly represents the contribution of those two shots is 

 

E( ,SLS( , (1,1), ( , )))

E( ,SLS( , , )) ( )(1 E( ,SLS( 1, , )))

(2 E( ,SLS( 2, , ))).

h n p p

q q h n q p p q h n

p p h n

′ ′′∪ ∪

′ ′′ ′ ′′ ′ ′′= + + + −

′ ′′+ + −

m p

m p m p

m p

 

Applying this twice to the lhs of Lemma 4.1 and simplifying gives 
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 2 ( E( ,SLS( 2, , )) 2E( ,SLS( 1, , )) E( ,SLS( , , )))h n h n h nδ − − + − −m p m p m p . 

Applying (4.14) twice to this expression gives the rhs of Lemma 4.1.  This 

completes the proof. ♦ 

Equality of the middle inequality of (4.15) is achieved when β is distributed 
evenly over maxm  shots.  There is a connection between this property and a result 

in Feller (p 231) equivalent to the statement that the variance of bin( , )m p  is 

maximised when the ip  are all identical.  Using the limited expected value 

approach, the difference between min( , )nΣh  and Σh  has a larger effect when the 

variance is larger. 

The first inequality of (4.15) will now be proved.  The strict inequality 

 E( ,SLS( , 1, )) E( ,SLS( , , ))
1

h n m h n m
m m

β β
+ <

+
 

follows from the middle inequality of (4.15).  This combined with (3.35) gives the 

required result. 
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Chapter Five 

5    The Many-on-many-by-many 

Shoot-look-shoot (M3SLS) Process 

5.1 Description of the M3SLS process 

The SLS process will now be extended by considering the weapons firing the 

shots.  This chapter will deal with the homogeneous case, that is when all weapons 

and shots have the same availability rates and single shot hit probabilities 

respectively.  The heterogeneous case will be presented in Chapter 6. 

Let the list 1( , , )um m=m ⋯  be the maximum number of shots that can be 

fired by each of u weapons.  The definition of m in this chapter differs from that 

of the previous chapter.  Here the indices 1, ,u⋯  identify individual weapons, 

whereas previously the indices 1, ,i v= ⋯  identified the type of shots.  The values 

in m can be tallied resulting in a list 1( , , )cr r=r ⋯  of distinct maximum number 

of shots and a list 1( , , )cu u=u ⋯  of the corresponding number of weapons, where 

uΣ =u  and m⋅ = Σ =r u m  the total number of possible shots.  The indices 

1, ,j c= ⋯  will be said to identify the class for the maximum number of shots.  

The ju  weapons of shots class j are treated as indistinguishable.  As before let the 

number of targets be n.  The conditional probability of a single shot destroying a 

single target, assuming that the weapon firing the shot is serviceable, will be 

denoted by hp , and define 1h hq p= − .  Let sp  be the serviceability or 

availability rate of the weapons, that is the independent probability that a single 

weapon is serviceable.  It is assumed that with probability sp  a weapon can fire 

any or all of its shots, for a weapon of shots class j that is up to jr  shots.  With 

probability 1s sq p= −  no shots can be fired.  Mnemonics for r, u, and the 

subscripts c, h and s are repeats, fire units, class, hit and serviceable respectively. 

Figure 5.1 is an illustration representing 6u =  weapons and 4n =  targets.  

The maximum number of shots by weapon is (5, 2,3,4,1,3)=m  and tallying gives 

5c =  shot classes, (5,2,3,4,1)=r  and (1,1,2,1,1)=u .  The total maximum 

number of shots is 18m = Σ =m . 
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Figure 5.1 Four targets and up to (5, 2,3,4,1,3)=m  shots by weapon 
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The many-on-many-by-many shoot-look-shoot process, abbreviated by 

M3SLS, can now be described.  The M3SLS process is a two stage process as 

follows.  In the first stage the serviceability status is determined stochastically and 

independently for each weapon.  Let a, a sublist of m, comprise the maximum 

number of shots for the serviceable, or mnemonically available, weapons.  Let 

1( , , )cs s=s ⋯  be the number of serviceable weapons by shots class.  The 

probability of s serviceable weapons is bin( , )( )spu s . 

The scalar product ⋅r s  is the maximum number of shots available from s 

serviceable weapons.  In the second stage the ⋅r s  shots from the serviceable 

weapons are fired at the n targets using the homogeneous SLS process described 

in Section 3.1, but with m replaced by ⋅r s .  This is equivalent to the shots from 

the serviceable weapons being pooled and then fired sequentially using shoot-

look-shoot tactics.  Shooting ceases either when all n targets are destroyed, or all 

available shots have been expended, whichever occurs first. 

Let g be the number of shots fired, and let h be the number of hits.  If all 

targets are destroyed, that is if h n= , then n h g= ≤ ≤ ⋅r s .  If one or more targets 

remain, that is if h n< , then h g≤ = ⋅r s .  Denote by M3SLS( , , , )n r u  the sample 

space comprising the values of ( , , )g hs  satisfying the constraints described above.  

Denote both the pmf giving the probability of ( , , )g hs  and the corresponding 

distribution by M3SLS( , , , , )s hn p pr u .  Then 

 M3SLS( , , , , )( , , ) bin( , )( ) SLS( , , )( , )s h s hn p p g h p n p g h= ⋅r u s u s r s . 

The elements of the M3SLS( , , , )n r u  sample space are not necessarily 

uniquely characterised by the exponents of sp , sq , hp  and hq  in their probability 

expressions.  This is because the exponents of sp  and sq  depend on the sum Σ s  

rather than the individual js  values. 

Doubly stochastic processes are discussed by Cox and Isham (p 10) and 

compound distributions or finite mixture distributions with their components and 

mixing weights are defined in Everitt and Hand (p 4) and Titterington et al. (p 1).  

The M3SLS process could be regarded as an example of a doubly stochastic 

process and the M3SLS distribution is similar to a compound distribution or finite 

mixture distribution with components SLS( , , )hn p⋅r s  and mixing weights 

bin( , )( )spu s  for ≤s u . 

The validity of the assumption that shots from serviceable weapons are 

pooled and then fired using shoot-look-shoot tactics must be assessed on a case by 

case basis for real world applications.  Some general observations will be made 

here.  If more than one weapon engages the same target simultaneously, while 

other targets remain, then shots could be wasted.  Wastage can be minimised by 

real time coordination of the assignment of weapons to targets, or by procedural 

rules which minimise the likelihood of weapons engaging the same target.  If the 



74     Chapter Five 

   

   

number of shots which can be fired is limited by a short temporal window of 

opportunity, rather than by the actual number physically present, rounds may be 

fired unnecessarily, but the expected number of targets destroyed may not be 

diminished.  Refer also to the discussion in Section 3.8.4. 

5.2 Expected number of targets destroyed 

Let h be a random variable representing the number of targets destroyed.  

Formally ( , , )h g h h=s .  Here the symbol h has been used to represent both the 

random variable name and one of the bound variables, but the context provides 

freedom from ambiguity.  The expected number of targets destroyed is 

 

( , , )

( , , )

E( , M3SLS( , , , , ))

M3SLS( , , , , )( , , )

bin( , )( ) SLS( , , )( , )

s h

s h
g h

s h
g h

h h n p p

h n p p g h

h p n p g h

=

=

= ⋅

∑

∑

s

s

r u

r u s

u s r s

 (5.1) 

where the sum is over all ( , , )g hs  in the sample space. 

For more efficient computation (5.1) can be factorized, giving 

( , ) SLS( , )

bin( , )( ) SLS( , , )( , )s h
g h n

h p h n p g h

≤ ∈ ⋅

= ⋅∑ ∑
s u r s

u s r s  

bin( , )( ) E( , SLS( , , ))s hp h n p

≤

= ⋅∑
s u

u s r s  (5.2)  

where in this context the overloaded operator h is formally defined by ( , )h g h h= .  

In the above equations it is clear from the context whether the overloaded symbol 

h represents one of the random variables ( , , )h g hs  or ( , )h g h  or a bound 

variable h. 

Equation (5.2) can be rewritten as the expectation of a random variable, 

defined by the λ-expression E( , SLS( , , ))hh n p⋅r # , on the product-binomial 

distribution bin( , )spu , viz. 

 =E(E( , SLS( , , )), bin( , ))h sh h n p p⋅r # u . (5.3) 

This nested expectation is a succinct expression for h  that fully encapsulates the 

notion of the two stage M3SLS process.  This is an example related to the general 

expression for expectation of a mixture given by Bean (p 374).  
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In the above expressions E( , SLS( , , ))hh n p⋅r s  can be efficiently evaluated as 

follows.  For the case when n⋅ ≤r s  then (3.4) applies and the expected value is 

( ) hp⋅r s .  When n⋅ >r s  then consider using one of the expressions (3.13)-(3.17), 

(3.19), (3.20), (3.23)-(3.27), (3.29) or (3.30). 

5.3 Properties 

5.3.1 An example plot 

In this section properties of E( , M3SLS( , , , , ))s hh h n p p= r u  will be discussed.  

Figure 5.2 is an example plot showing h  as a function of 1r  and 2r , the maximum 

number of shots available from two weapons.  In this example h  is symmetric 

with respect to 1r  and 2r . 

5.3.2 Linearity when shots do not exceed targets 

In Figure 5.2 it can be seen that h  is a linear function of 1r  and 2r  as long as 

1 2r r n+ ≤ .  In general consider the case when the maximum number of shots is 

less than or equal to the number of targets.  Then an attempt will be made to fire 

all shots.  Each shot contributes s hp p  to the expected number of targets 

destroyed.  Summing over all shots gives h .  This result is stated in the following 

corollary. 

Corollary 5.1 

If m n⋅ = ≤r u  then s hh p p m= . 

Proof (algebraic) 

An optional alternative proof is given here which derives the result algebraically 

from (5.2).  Firstly, from (3.4), for all ≤s u  it follows that 

 E( , SLS( , , ))h hh n p p⋅ = ⋅r s r s . 

Use this substitution to simplify (5.2), then it is required to prove that 

 bin( , )( )s h s hp p p p

≤

⋅ = ⋅∑
s u

u s r s r u . (5.4) 

Consider without loss of generality the coefficient of 1r .  It is required to prove 

that 

 1 1bin( , )( )s h s hp p s p p u

≤

=∑
s u

u s . 
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Let †
2 , ,( )cu uu ⋯= , then partially specifying the order of the lhs summation 

gives 

 
1

† † 1 1 1 1
1

1† † 01

bin( , )( )

u
s u s

s s s h
s

u
p p q p s

s
−

=≤

 
 
 

∑ ∑
s u

u s . 

Changing the order of summation and extracting common factors gives 

 
1

† †1 1 1 1
1

1 † †01

bin( , )( )

u
s u s

h s s s
s

u
p s p q p

s
−

= ≤

 
 
 

∑ ∑
s u

u s . 

Applying (2.16) and (2.13) reduces this expression to 1s hp p u  as required. ♦ 

5.3.3 Asymptotic upper bound 

In Figure 5.2 three asymptotic planes are apparent, the first of which is associated 

with the convergence of h  to an upper bound as both 1 2,r r →∞ .  The value is 

2(1 )sn q− , which follows from the fact that 21 sq−  is the probability that at least 

one weapon is serviceable.  The corresponding general result is given in the 

following corollary. 
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Figure 5.2 Plot of 1 2E( , M3SLS(3, ( , ), (1,1),0.6,0.8))h r r  
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Corollary 5.2 

If jr →∞  for all j, then (1 )sh n q→ − u . 

Proof 

The probability that at least one weapon is serviceable, that is ≠s 0  where 0 is a 

list of all zeroes, is given by 1 sq− u .  For any ≠s 0  the number of shots available 

⋅ → ∞r s , and so E( , SLS( , , ))hh n p n⋅ →r s .  The other case, when no weapons 

are serviceable, that is =s 0 , occurs with probability sq u , but in this case 

E( , SLS( , , )) 0hh n p⋅ →r 0 .  Summing the products 0 (1 )s sq n q+ −u u  gives the 

required result. ♦ 

From the corollary it is clear that in order to achieve the goal that h n→ , it is 

in general necessary that the number of weapons Σ →∞u .  That is, to be almost 

certain of destroying all targets, it is necessary to have a large number of weapons.  

It is not sufficient to have a large number of shots but from only a few weapons. 

5.3.4 General asymptotic behaviour 

From Figure 5.2, notice that, for 1r n≤ , h  tends to a linear function of 1r  as 

2r →∞ .  This property is symmetric with respect to 1r  and 2r .  As a result of this, 

two further asymptotic planes can be seen in the figure. 

The corresponding general property is stated in the following corollary.   

Corollary 5.3 

Suppose that u and r can be decomposed into , , and′ ′′ ′ ′′r r u u  such that n′ ′⋅ ≤r u  

and jr →∞  for all jr ′′∈ r , then 

 (1 )s s s hh n q q p p
′′ ′′

′ ′→ − + ⋅
u u

r u . (5.5) 

Observe that the right hand side of (5.5) is a linear function of the jr ′∈ r . 

Proof of Corollary 5.3 

Consider the expression for h  given by (5.2).  Decompose ≤s u  into ′ ′≤s u  and 

′′ ′′≤s u .  When ′′ =s 0  then n′ ′⋅ = ⋅ ≤r s r s  for all ′ ′≤s u  and from (3.4) it follows 

that E( , SLS( , , ))h hh n p p ′ ′⋅ = ⋅r s r s .  When ′′ ≠s 0  then ⋅ → ∞r s  and so 

E( , SLS( , , ))hh n p n⋅ →r s .  The probability that ′′ =s 0  is sq
′′u
.  It follows that 
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 (1 ) bin( , )( )s s s hh n q q p p
′′ ′′

′ ′≤

′ ′ ′ ′→ − + ⋅∑
u u

s u

u s r s . 

Now apply the equality (5.4) to obtain (5.5) as required. ♦ 

For example, Corollary 5.3 applied to the case depicted in Figure 5.2, with 

1r n≤  and 2r →∞  gives 1s s s hh n p q p p r→ + . 

Corollary 5.1 is just the special case of Corollary 5.3 with ′ =u u  and φ′′ =u .  

At the opposite extreme when φ′ =u  and ′′ =u u  then Corollary 5.3 reduces to 

Corollary 5.2. 

5.3.5 Regional linearity for perfect hit rate 

In this section the nature of h  is considered for the degenerate case when 1hp = .  

Recall from (3.6) that if 1hp =  then E( , SLS( , ,1)) min( , )h n m n m= , a piecewise 

linear function of m that achieves its maximum value, n, abruptly, unlike the 

example plot of E( , SLS( , , ))h n m p  shown in Figure 3.4 that converges gradually 

to n.  Consequently when 1hp =  then (5.2) reduces to   

 bin( , )( ) min( , )sh p n

≤

= ⋅∑
s u

u s r s  

which may be regarded as a regionally linear function of the jr . 

Figure 5.3 is an example plot of 1 2=E( , M3SLS(10, ( , ), (2,1),0.5,1))h h r r  as a 

function of 1r  and 2r .  In the figure bold lines mark the boundaries between the 

linear regions.  In general these boundaries are defined by n⋅ =r s  for all ≤s u .  

Figure 5.3 has a multifaceted appearance, in contrast to the smooth form of 

Figure 5.2. 

The region n⋅ ≤r u  has already been shown in Corollary 5.1 to be linear for 

all values of hp .  There is also an association between some of the linear regions 

as discussed in this section with the convergences of Corollaries 5.2 and 5.3.  In 

those corollaries when 1hp =  then the condition jr →∞  may be replaced by the 

condition jr n≥  and the convergence of h  to a limiting value may be replaced by 

equality with that value. 

5.3.6 Aggregation of indistinguishable weapons 

Given the definition of the M3SLS process and h , Corollaries 5.4 and 5.5 stated 

in this section and the next must be true.  The corollaries may be exploited to 

reduce the argument lists.  In each section the optional algebraic proofs 

additionally serve to demonstrate how the computation of h  is thereby made more 

efficient. 
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Consider the example E( , M3SLS( , (3, 4,3), (3,1, 2), , ))s hh h n p p= = =r u  in 

which 1 3u =  and 3 2u =  weapons are indistinguishable since each can each fire 

up to 1 3 3r r= =  shots.  Aggregation of the indistinguishable weapons reduces the 

expression for h  to E( , M3SLS( , (3,4), (5,1), , ))s hh n p p= =r u . 

More generally suppose that an argument list ′u  includes two values for the 

number of weapons,  and u u′ ′′ , for both of which the corresponding number of 

shots is identically r.  Consider a second argument list †
u , similar to ′u  but with 

the values  and u u′ ′′  replaced by the single value +u u u′ ′′=  and for which the 

corresponding number of shots has the same value r.  Since the total number of 

weapons that can fire r shots has not changed the expected number of targets 

destroyed, h , must remain unchanged.  This property is restated as a corollary as 

follows. 

Corollary 5.4 

The value of h  is invariant under aggregation of indistinguishable weapons. 
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Figure 5.3 Plot of 1 2E( , M3SLS(10, ( , ), (2,1),0.5,1))h r r  



80     Chapter Five 

   

   

Proof (algebraic) 

An optional alternative proof is given here which uses expressions for h  given 

by (5.2).  Without loss of generality suppose that the arguments are ordered such 

that they can be described by ( , )u u′ ′ ′′∪u u= , that is  and u u′ ′′  are appended 

to u , ( , )r r′ ∪r r= , † ( )u∪u u=  and † ( )r∪r r= .  It is required to show that 

 
† † † †

† †

bin( , )( ) E( , SLS( , , ))

bin( , )( ) E( , SLS( , , )).

s h

s h

p h n p

p h n p

′ ′≤

≤

′ ′ ′ ′⋅

= ⋅

∑

∑

s u

s u

u s r s

u s r s

 (5.6) 

Partially specify the order of summation of the lhs of this equation to obtain the 

form 

 

( ) ( )

0 ( , ) ( , )

bin( , )( )

E( ,SLS( , ( ( , )), )).

u
s s u u s s

s s s
s s s u us

h

u u
p p q

s s

h n s s p

′ ′′ ′ ′′ ′ ′′+ + − +

′ ′′ ′ ′′≤ = ≤

′ ′′   ∗  ′ ′′  

′ ′ ′′⋅ ∪

∑ ∑ ∑
s u

u s

r s

  

 

Substituting s s s′ ′′+ =  and †( ( , )) ( ( ))s s s′ ′ ′′⋅ ∪ = ⋅ ∪r s r s  factorise to get the form 

 

†

0

( , ) ( , )

bin( , )( ) E( ,SLS( , ( ( )), )) *

.

u
s u s

s s s h
s

s s u us

p p q h n s p

u u
s s

−

≤ =

′ ′′ ′ ′′≤

⋅ ∪

′ ′′  
  ′ ′′  

∑ ∑

∑

s u

u s r s

 

Apply the Chu-Vandermonde convolution (2.15) to reduce this to 

†

0

bin( , )( ) E( ,SLS( , ( ( )), ))
u

s u s
s s s h

s

u
p p q h n s p

s
−

≤ =

  ⋅ ∪ 
 

∑ ∑
s u

u s r s  

which equals the rhs of (5.6) as required. ♦ 

5.3.7 Reduction when weapons can fire no shots 

Consider the example E( , M3SLS( , (3,0,4), (3, 2,1), , ))s hh h n p p= = =r u  in 

which 2 2u =  weapons can fire no shots.  Leaving out the weapons that fire no 

shots reduces the expression for h  to E( , M3SLS( , (3,4), (3,1), , ))s hh n p p= =r u . 
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More generally suppose that argument lists ′r  and ′u  include corresponding 

values 0 and u respectively, representing u weapons that can fire zero shots.  

Ignore these weapons by reducing the argument lists by dropping the values 0 

and u.  This cannot change the expected number of targets destroyed h .  This 

property was first explicitly pointed out by C. Gabrisch and is restated as a 

corollary as follows. 

Corollary 5.5 

The value of h  is independent of weapons that can fire no shots. 

Proof (algebraic) 

An optional alternative proof is given here which uses expressions for h  given 

by (5.2).  Without loss of generality suppose that the arguments are ordered such 

that they can be described by ( )u′ ∪u u= , that is u is appended to u , and 

(0)′ ∪r r= .  It is required to show that 

 

bin( , )( ) E( , SLS( , , ))

bin( , )( ) E( , SLS( , , )).

s h

s h

p h n p

p h n p

′ ′≤

≤

′ ′ ′ ′⋅

= ⋅

∑

∑

s u

s u

u s r s

u s r s

 (5.7) 

Partially specify the order of summation of the lhs of this equation to obtain the 

form 

 

0

bin( , )( ) E( ,SLS( , ( ( )), )).
u

s u s
s s s h

s

u
p p q h n s p

s
−

≤ =

  ′ ⋅ ∪ 
 

∑ ∑
s u

u s r s  

Substitute ( ( ))s′ ⋅ ∪ = ⋅r s r s  and factorise to get the form 

 

0

bin( , )( )E( ,SLS( , , )) .
u

s u s
s h s s

s

u
p h n p p q

s
−

≤ =

 ⋅  
 

∑ ∑
s u

u s r s  

Applying (2.12) reduces this to the rhs of (5.7) as required. ♦ 

5.3.8 Optimal allocation of limited shots to weapons 

In this section consideration is given to the optimal allocation of a limited number 

of shots amongst a limited number of weapons.  It will be shown that an even 

distribution is always optimal, but the converse is true only for certain relations 

between the number of targets, weapons and shots.  These relations stem from the 

nature of the concavity of ( )E ,SLS( , #, )hh n p . 

Let the total number of shots m and the maximum number of weapons maxu  

be fixed.  An allocation of the shots amongst the weapons represented by m or 
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( , )r u  is equivalent to a partition of m into a maximum of maxu  integer parts.  

Recall the set of all possible integer partitions is denoted maxIP( , )m u .  An 

example with 5m =  and max 3u =  is 5 4 1 3 2 3 1 1 2 2 1= + = + = + + = + + .  In this 

example 2 2 1+ +  is the balanced partition and corresponds to the shot allocation 

(2,2,1)=m  or equivalently (1, 2)=r  and (1, 2)=u .  Recall that sections 5.3.6 

and 5.3.7 showed that tallying repeated values and dropping zeroes does not affect 

E( , M3SLS( , , , , ))s hh h n p p= r u .  More formally this section considers 

maximisation of h  over max maxIP( , ) {( , ) | , }m u m u u= ⋅ = Σ = ≤r u r u u .  If maxu  

divides m then the balanced partition is max( )m u=r  and max( )u=u , otherwise 

it is max max( , )m u m u=       r  and max max max( mod , mod )u m u m u= −u . 

For example let 3n =  and max 2u =  as in Figure 5.2.  From Corollary 5.1 h  

has the same value for all values of 1r  and 2r  such that 1 2r r m n+ = ≤  for 

1, 2 and 3m = .  When 4m =  the arg max comprises 3 1+  and 2 2+  but not 

4 0 4+ = .  When 5m ≥  the arg max comprise just the balanced partitions 3 2+ , 

3 3+ , 4 3,+ ⋯ .  From Corollary 5.2, if both 1r →∞  and 2r →∞ , then h  is 

approximately equal to the maximum value for almost all partitions of m. 

For another example let 4n = , 5m =  and max 3u = , 0 1sp< < , then the 

arg max comprises 3 1 1+ +  and 2 2 1+ +  and excludes 5, 4 1+  and 3 2+ . 

Theorem 5.1 

Let m, n, maxu , hp  and sp  be fixed.  
IP( , )max

argmax
m u

h  includes the balanced 

partition. 

Proof 

Begin with the expression for h  given by (5.2).  Partially specify the order of 

summation and write in the form 

 ( )
max

max

0

E ,SLS( , , )

u
u ss

s s h
s s

p q h n p
−

= ≤

  ⋅ 
 

∑ ∑
s u

u
r s

s
. (5.8) 

For fixed s consider the summation over s≤s u .  The product maxu ss
s sp q

−
 is 

constant and ( )max E ,SLS( , #, )
u ss

s s hp q h n p
−

 is a concave function, hence 

Theorem 2.2 with the tallied form of sum (2.35) applies and the summation over 

s≤s u  is maximised by the balanced partition.  This is true for each term of the 

summation over s and so the entire summation must also be maximised by the 

balanced partition. ♦ 
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Alternatively in the above proof (5.8) could have been replaced by 

 ( )
max

max

0

E ,SLS( , , )

u
u ss

s s h
s s

p q h n p
−

= ⊂

Σ∑ ∑
a m

a  

and Theorem 2.2 with the raw form of sum (2.32) applied. 

Corollary 5.1 in Section 5.3.2 implies that when m n≤ , or equivalently 

0 m n< − , then the arg max comprises all of maxIP( , )m u .  Theorem 5.2 below 

covers the transition when 
max

0
m

m n
u

< − ≤  and the arg max is a proper subset of 

maxIP( , )m u .  Theorem 5.3 covers the slightly overlapping case 
max

2m
m n

u

−
− >  for 

which the arg max comprises solely the balanced partition. 

Theorem 5.2 

Let max 2u ≥ , 0 1hp< <  and 0 1sp< < .  
IP( , )max

argmax
m u

h  is the proper subset 

 max{( , ) | , }ju m r n for all jΣ = − ≤r u u  (5.9) 

and the maximum is 

 ( )max max E ,SLS( , , )
u u

s h s h s hp p m p p m p h n m p− +  (5.10) 

if and only if 

 
max

0
m

m n
u

< − ≤ . (5.11) 

The condition jm r n− ≤  for all j is equivalent to minm r n− ≤  where 

min min j
j

r r= . 

When m n≤  the theorem still applies in a degenerate way with the exception 

that the arg max comprises the whole of maxIP( , )m u , it is not a proper subset.  

The restriction maxuΣ =u  is not required, minm r n− ≤  is always true, and 

applying (3.4) to (5.10) reduces it to s hp p m  in agreement with Corollary 5.1. 

Proof of Theorem 5.2 

Firstly it will be shown that if the arg max is the given subset, and is a proper 

subset, then (5.11) holds.  If 0m n− ≤  then Corollary 5.1 would hold, h  would 

be equal and hence maximal for all integer partitions and so the arg max would 
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not be a proper subset, hence 0 m n< − .  Now it will be shown that 

max

m
m n

u
− ≤ .  If ( , )r u  is in the set (5.9), then minm n r− ≤  and clearly 

min
max

m
r

u
≤ .  Chaining these inequalities gives the required result. 

Now assume (5.11) holds.  Firstly it will be shown that the set (5.9) is not 

empty because it contains the balanced partition.  If maxu  divides m then for the 

balanced partition max( )m u=r  and max( )u=u .  Given that 
max

m
m n

u
− ≤  it is 

straightforward to confirm that ( , )r u  satisfies the conditions for membership of 

the set (5.9).  If maxu  does not divide m then for the balanced partition 

max max( , )m u m u=       r .  Given that 
max

m
m n

u
− ≤  and m n− ∈ℤ  then 

max

m
m n

u

 
− ≤  

 
 must also be true and hence min

max

m
m r m n

u

 
− = − ≤ 

 
, as 

required for membership of the set (5.9). 

It will now be shown that h  reduces to the expression (5.10) for all elements 

of the set (5.9).  Two derivations are given.  The first uses probabilistic reasoning 

while the second is algebraic.  If there were targets for all shots then 

s hh p p m= .  This is valid except for the case when all weapons are serviceable 

which occurs with probability maxu
sp .  To correct for this case it is necessary to 

replace the expected number of targets destroyed hp m  with ( )E ,SLS( , , )hh n m p .  

This completes the first derivation. 

The algebraic derivation begins with the expression for h  given by (5.2).  

Partially specify the order of summation to obtain the form 

 ( )
max

0

bin( , )( )E ,SLS( , , )

u

s h
s s

p h n p

= ≤

⋅∑ ∑
s u

u s r s . 

When 0s =  the summand is zero.  When maxs u=  the summand equals 

( )maxE ,SLS( , , )
u
s hp h n m p⋅ =r s .  For the remaining summands the condition 

minm r n− ≤  implies that (3.4) applies and so substituting 

( )E ,SLS( , , )h hh n p p⋅ = ⋅r s r s  and rearranging gives the remaining sum 

 

1max
max

1

u
u ss

h s s
s s

p p q

−
−

= ≤

 ⋅  
 

∑ ∑
s u

u
r s

s
. 
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Apply (2.22) and rearrange to get 

 

1max
max max

1

1

1

u
u ss

h s s
s

u
p p q

s

−
−

=

− ⋅  − 
∑r u . 

Apply (2.23), substitute m⋅ =r u and expand to get the remaining summands in 

the form of (5.10).  This completes the second derivation. 

Next it will be shown that (5.10) equals the maximum value of h  over 

maxIP( , )m u .  It was confirmed above that the balanced partition is included in the 

set (5.9).  The required result follows from Theorem 5.1. 

Now it will be shown that the set (5.9) is a proper subset of maxIP( , )m u .  

This is easily verified by giving the trivial example where all shots are allocated to 

a single weapon. 

The final part of the proof will be a demonstration that elements not in the 

set (5.9) are not in the arg max.  If a partition in maxIP( , )m u  has less than maxu  

weapons then, as shown in Section 5.3.7, adding weapons with no shots does not 

alter h .  Therefore it will be sufficient to show that if maxuΣ =u  but 

minm r n− >  then h  is not maximal.  Recall that when proving the set (5.9) is not 

empty, it was shown that for the balanced partition minm r n− ≤ .  Therefore if 

minm r n− >  then the partition is not balanced and so max min 2r r− ≥ .  Reallocate 

a shot from a weapon with maxr  shots to a weapon with minr  shots.  Lemma 2.1 

applies to each term in the sum over s in the expression for h  given by (5.8), so 

none of the terms decreases.  Consider the sum over s≤s u  when max 1s u= − .  

Only two terms are affected by the reallocation, and the sum of these two terms 

increases from 

 ( ) ( )min maxE ,SLS( , , ) E ,SLS( , , )h hh n m r p h n m r p− + −  

to 

 ( ) ( )min maxE ,SLS( , 1, ) E ,SLS( , 1, )h hh n m r p h n m r p− − + − + . 

This is a strict increase because minm r n− >  and ( )E ,SLS( , #, )hh n p  is strictly 

concave when the argument is greater than n.  Hence the original unbalanced 

partition was not in the arg max. ♦ 
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Theorem 5.3 

Let m, n, maxu , 0 1hp< <  and 0 1sp< <  be fixed, then 
IP( , )max

argmax
m u

h  is unique 

    ⇔   
max

2m
m n

u

−
− > . (5.12) 

Proof 

Firstly it will be shown that if 

 
max

2m
m n

u

−
− ≤  (5.13) 

 

Then, in addition to the balanced partition, there exists another partition in the 

arg max, namely max
max max

2 2
, ( 1)

m m
m u

u u

    − −
= − −         

r  and ( )max 1,1u= −u .  The 

difference between the elements of r  is max
max

2
2

m
m u

u

 −
− ≥ 

 
, showing that this 

partition is not balanced.  The inequality min
max

2m
m r m n

u

 −
− = − ≤ 

 
 follows from 

(5.13) because both m and n are integers, hence ( , )r u  is in the set (5.9).  From 

Theorem 5.2 and its proof, ignoring the restriction that 0 m n< −  which is only 

required to establish that the arg max is a proper subset of maxIP( , )m u , this 

implies that ( , )r u  is in the arg max.  In general there may be several other 

partitions in the arg max but for the proof it was sufficient to give just one 

example. 

For the second part of the proof assume that (5.12) holds.  Let minr  and maxr  

be the minimum and maximum number of shots respectively.  For an unbalanced 

partition max min 2r r− ≥ .  Clearly max min max( 1)m u r r≥ − + .  From these two 

statements it follows that max min 2m u r≥ +  which can be rearranged to give 

min
max

2m
r

u

−
≥ .  Chaining the latter inequality with (5.12) yields minm n r− >  or on 

rearranging minm r n− > .  In these circumstances reallocating a shot from a 

weapon with maxr  shots to a weapon with minr  shots would strictly increase h  as 

shown in the proof of Theorem 5.2.  Hence an unbalanced partition cannot be in 

the arg max. ♦ 
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A nomogram such as that in Figure 5.4 gives a visual representation of the 

combinations of n, m and maxu  which satisfy the conditions expressed in 

Corollary 5.1, and Theorems 5.2 and 5.3.  In the nomogram m n−  increase in the 

vertical direction. 

When both the right hand inequality of (5.11) and (5.12) apply then h  is 

given by (5.10) and the arg max is restricted to the balanced partition.  This is 

restricted to a limited number of combinations in which max0,1modm u≡ . 

Together the proofs of Theorems 5.2 and 5.3 show how multiple partitions 

may have the same maximal value of h .  Similarly it is possible for distinct 

partitions to have the same non maximal value of h , for example let 5n = , 7m =  

and max 3u = , then the partitions 3 3 1+ +  and 4 2 1+ +  have identical values ofh . 

The practical significance of this section is the formal proof of the benefits of 

overlapping coverage of weapons for the homogeneous M3SLS process.  Explicit 

conditions have been given which determine when the distribution of shots 

amongst weapons is sufficiently dispersed for optimality to be achieved, and 

evaluation of h  allows the benefits to be quantified.  This could be applied to the 

saying “don’t put all of your eggs in one basket”, if n is interpreted as the required 
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Figure 5.4 Nomogram 
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number of eggs, m is the available number of eggs, and hp  and sp  are the 

probabilities of survival attached to eggs and baskets respectively. 

5.3.9 Separability when availability rate is low 

When sp is small h  may be approximated by a simpler expression, as shown by 

the following corollary. 

Corollary 5.6 

0,sAs p →  

 ( )E ,SLS( , , )s j j h
j

h p u h n r p→ ∑ . (5.14) 

By threading over r  the rhs of (5.14) can be written in the subscriptless form 

( )E ,SLS( , , )s hp h n p⋅u r .  Note the difference between the threaded expression 

( )E ,SLS( , , )hh n pr  and the expression ( )E ,SLS( , , )h n m p  introduced in 

Chapter 4 to represent h  for the heterogeneous SLS process. 

Proof of Corollary 5.6 

Begin with the expression for h  given by (5.2).  Partially specify the order of 

summation and extract common factors to get the form 

 ( )
0

E ,SLS( , , )
u

s u s
s s h

s s

p q h n p−

= ≤

  ⋅ 
 

∑ ∑
s u

u
r s

s
. 

The summand vanishes when 0s =  so this may be rewritten as 

 ( )1 2

1

E ,SLS( , , ) o( )u
s s h sp q h n p p−

≤

  ⋅ + 
 

∑
s u

u
r s

s
 

where 2o( )sp  represents all terms containing sp  raised to the second or higher 

power.  For small enough sp , 2o( )sp  is negligible in comparison to the first term, 

and 1sq → , and so too does 1u
sq − .  Now consider the values taken by 1≤s u .  

These are vectors of the form (0, ,0,1,0, ,0)⋯ ⋯  where the 1 is in position 

1, ,j c= ⋯ .  For such an s  the simplifications ju
  = 
 

u
s

 and jr⋅ =r s  apply.  This 

completes the proof. ♦ 
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A non-linear function ( )φ x  which can be written in the form 

 1 2 21
( ) ( ) ( ) ( )c cx x xφ φ φ φ= + + +x ⋯  

is called separable (Moder et al., p 131).  It follows from Corollary 5.6 that, for 

small values of sp , when h  is regarded as a function of the number of shots 

available from each weapon, it may be approximated by a separable function.  

When considering optimisation of this function, subject to the constraint that 

m⋅ =r u  is constant, Theorem 2.2 with the degenerate sum (2.33) may be applied.  

This is a special case of the more general optimisation already covered in 

Section 5.3.8. 

If sp is small, and in addition 1n =  and 1hp =  then the approximation for h  

given by (5.14) may be simplified further by applying (3.7) to get 

 

. . 0
s j

j s t rj

h p u

≠

≈ ∑ . 

This can be written in the subscriptless form 

 sgn( )sh p≈ ⋅u r . (5.15) 

If weapons that can fire no shots have been dropped from the argument list in 

accordance with Section 5.3.7, that is >r 0  where (0, ,0)= ⋯0 , then this can be 

further simplified to sh p u≈  where u = Σu .  The interpretation of these 

expressions is that the expected number of targets destroyed, which in this case is 

the probability of destroying the single target, is approximately proportional to the 

number of weapons capable of engaging the target, and independent of the number 

of rounds available at each weapon. 

 

5.3.10 Degeneracy for perfect availability 

From the description of the M3SLS process it is clear that if the availability rate 

1sp =  then the process degenerates to the SLS process.  It follows that 

 

E( , M3SLS( , , , 1, ))

E( , SLS( , , ))

s h

h

h h n p p

h n p

= =

= ⋅

r u

r u
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This result could also be derived from the expression for h  given by (5.2) by 

noting that the only non zero term is that for which =s u  and then 

bin( , )( ) 1sp =u s . 

5.3.11 Degeneracy when weapons can fire only one shot 

Suppose that each weapon can fire exactly one shot.  Then the determination of 

ultimate success, which depends on weapon availability and the conditional single 

shot hit probability, could be evaluated at any time and depends only on the 

product s hp p .  Suppose that s h s hp p p p′ ′=  then 

 

E( , M3SLS( , (1), ( ), , ))

E( , M3SLS( , (1), ( ), , )).

s h

s h

h h n u p p

h n u p p

= = =

′ ′= = =

r u

r u

 

In particular letting 1sp′ =  and =h s hp p p′  and applying Section 5.3.10 gives 

 E( , SLS( , , )).s hh h n u p p=  (5.16) 

Alternatively, letting s s hp p p′ = , =1hp′  and applying (3.6), (5.2) reduces to give 

 

0

min( , ) bin( , )( )
u

s h
s

h s n u p p s

=

= ∑  

which from (3.9) is also equivalent to (5.16). 

This property means that for weapons which can effectively only fire one 

shot, there is nothing to be gained by considering the weapon availability rate 

separately from the single shot destruction probability.  For efficient computation, 

whenever the conditions are satisfied, the reduction should be made. 

Now suppose that only some of the weapons can fire no more than one shot.  

Even in this case a useful reduction can be made, by applying results given below 

for the heterogeneous case.  Firstly select the weapons that can fire exactly one 

shot and consider them to belong to a new version.  This is the reverse of the 

reduction process presented below in Section 6.3.12.  Then proceed as for the first 

case considered below in Section 6.3.11. 

5.4 Comparison of objective functions for optimisation 

Consider the problem of comparing the effectiveness of one collection of weapons 

and shots, described by m or the equivalent ( , )r u  say, with other slightly different 

collections.  One possible measure of effectiveness is 

E( , M3SLS( , , , , ))s hh h n p p= r u .  Two other much simpler measures exist, but 

these will not in general lead to the best choice of ( , )r u . 
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The first simple measure is given by m⋅ = Σ =r u m , the total number of 

shots.  The second simple measure is given by sgn( )⋅u r , the number of weapons 

capable of engaging the target.  The measure ⋅r u  fails to place any value on 

overlapping coverage and fails to acknowledge the diminishing returns whenever 

the number of available shots exceeds the number of targets.  The measure 

sgn( )⋅u r  does place value on overlapping coverage, but fails to place any value 

on available shots other than the first from each weapon. 

The measure h  is a unified measure, in the sense that the other two measures 

can be derived from it as special cases.  If m n⋅ = ≤r u  then, by Corollary 5.1, h  

simplifies to h svp p m , which is proportional to m = ⋅r u .  The measures h  and 

m = ⋅r u  will therefore find the same optimum value.  In fact any measure that is a 

strictly increasing function of m = ⋅r u  will find the same optimum.  The measure 

h  satisfies this criterion for all values of m and n as long as 1hp <  and 1sp = .  

Under the condition 1sp = , E( , M3SLS( , , , 1, ))s hh h n p p= =r u  degenerates to 

E( , SLS( , , ))hh n m p , as discussed in Section 5.3.10.  The condition 1hp <  

prevents further degeneracy to min( , )n m , as discussed in Section 3.7. 

If 1n = , 1hp =  and sp  is small, then from (5.15) h  approximately equals 

sgn( )sp ⋅u r , which is proportional to sgn( )⋅u r .  It follows that in this case the 

measures h  and sgn( )⋅u r  will find the same optimum value. 

The three measures will not always find the same optimum value.  An 

example is given in Table 5.1.  Three values of m are given, and the three 

measures produce three different optimum choices.  Assuming that the values for 

n, sp  and hp  are appropriate, and that the M3SLS model is appropriate, only h  

succeeds in finding the correct optimum. 

m m = ⋅r u  sgn( )⋅u r  h  

(5)  5 1 1.59 

(1,1,1)  3 3 1.58 

(2,2)  4 2 1.73 

Table 5.1 A comparison of measures for 2n = , 0.8sp =  

and 0.75hp =  
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The measure h  successfully accommodates the competing aims of 

maximising the number of shots and maximising the overlapping coverage of 

weapons in the presence of diminishing returns for increased capability.  In 

summary, it is a measure of sufficient distributed firepower.  For the 

heterogeneous case to be discussed in the next chapter, where weapons may be of 

different types, this can be extended to the summary statement that h  is a measure 

of sufficient distributed combined firepower. 
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Chapter Six 

6    The Heterogeneous M3SLS 

Process 

6.1 The heterogeneous M3SLS process 

In this chapter the M3SLS process is generalised, similarly to the generalisation of 

the SLS process which was presented in Chapter 4, by allowing the shots, and also 

in this case the weapons, to be heterogeneous in the sense that they may have 

different single shot hit probabilities and availability rates, respectively. 

Let the list of lists 

 1,1 1, ,1 ,1
(( , , ), , ( , , ))u v v uv

m m m m=M ⋯ ⋯ ⋯  

or displayed in a matrix-like form, but with possibly varying row lengths, 

 
1,1 1, 1

,1 ,

u

v v uv

m m

m m

 
 =
 
  

M

⋯

⋮

⋯

 

be the maximum number of shots that can be fired by each of ( )1,  ,  vu u=u ⋯  

weapons by type.  In M the first indices 1, ,i v= ⋯  identify the weapon type, while 

the second indices 1, , iu⋯  identify individual weapons within the weapon type.  

The values in M can be tallied resulting in 

 

1,1 1, ,1 ,1

1,1 1, 1

,1 ,

(( , , ), , ( , , ))c v v cv

c

v v cv

r r r r

r r

r r

=

 
 =
 
  

R ⋯ ⋯ ⋯

⋯

⋮

⋯

 

which lists the distinct maximum number of shots and 
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1,1 1, ,1 ,1

1,1 1, 1

,1 ,

(( , , ), , ( , , ))c v v cv

c

v v cv

u u u u

u u

u u

=

 
 =
 
  

U ⋯ ⋯ ⋯

⋯

⋮

⋯

 

which lists the corresponding number of weapons, where Σ uU =  and 

1( , , )vm mΣ ⋅ = = mM = R U ⋯  the total number of shots by type.  In R and U the 

first indices 1, ,i v= ⋯  again identify weapon type while the second indices 

1, , ij c= ⋯  identify the class for the maximum number of shots that can be fired 

by each single weapon.  The definition of u in this chapter differs from that in the 

previous chapter.  The definition of m in this chapter also differs from that in the 

previous chapter but is similar to its definition in Chapter 4.  The ,i ju  weapons of 

type i and shots class j are treated as indistinguishable. 

As before let the number of targets be n.  Denote the total number of weapons 

by u = Σu  and the total maximum number of shots by m = Σm . 

Let 
1

( , , )h h hv
p p=p ⋯ , where hi

p  is the conditional probability of a single 

shot of type i  destroying a single target, given that the weapon firing the shot is 

serviceable.  Define 1h h= −q p .   

Let si
p  be the availability rate of weapons of type i.  Denote by 

1
( , , )s s sv
p p=p ⋯ the availability rates by type, and define 1s s= −q p . 

Figure 6.1 is an illustration depicting 4n =  targets, 3v =  types of weapons,   

 
5 2 1 1
3 , and 1 .

4 1 3 1 1 1

   
   = =
      

M = R U  

The number of weapons by type is ( )2,  1,  3= Σ =u U .  The total number of 

weapons is 6u = Σ =u .  The maximum number of shots by type is 

(7,3,8)Σm = M = .  The total maximum number of shots is 18m = Σ =m . 

The M3SLS process is similar to that described in Section 5.1 for a 

homogeneous weapon collection.  In the first stage the serviceability status is 

determined stochastically and independently for each weapon.  Let ,i js  be the 

number of serviceable weapons of type i and shots class j, and  
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Figure 6.1 Four targets and up to ((5, 2), (3), (4,1,3))=M  shots by type by 

weapon 
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1,1 1, ,1 ,1

1,1 1, 1

,1 ,

(( , , ), , ( , , ))

.

c v v cv

c

v v cv

s s s s

s s

s s

=

 
 =
 
  

⋯ ⋯ ⋯

⋯

⋮

⋯

S

 

The probability of S serviceable weapons is bin( , )( )spU S . 

The list ⋅R S  is the maximum number of shots by type available from S 

serviceable weapons.  In the second stage the ⋅R S  shots from the serviceable 

weapons are fired at the n targets using the heterogeneous SLS process described 

in Section 4.1, but with m  replaced by ⋅R S .  As before, this is equivalent to the 

shots from the serviceable weapons being pooled and then fired sequentially using 

shoot-look-shoot tactics, with each shot selected randomly from rounds remaining 

in the pool.  Shooting ceases either when all n targets are destroyed, or all 

available shots have been expended, whichever occurs first. 

Let 1( , , )vg g=g ⋯  be the number of shots fired by type, and let 

1( , , )vh h=h ⋯  be the number of hits by type.  Denote the total number of hits 

1

v
ii

h
=∑  by Σ h .  If all targets are destroyed, that is if nΣ =h , then 

≤ ≤ ⋅h g R S .  If one or more targets remain, that is if nΣ <h , then ≤ = ⋅h g R S .  

Denote by M3SLS( , , )n R U  the sample space comprising the values of ( , , )g hS  

satisfying the constraints described above.  Denote both the pmf giving the 

probability of ( , , )g hS  and the corresponding distribution by 

M3SLS( , , , , )s hn p pR U .  Then 

 M3SLS( , , , , )( , , ) bin( , )( ) SLS( , , )( , )s h s hn n= ⋅p p g h p p g hR U S U S R S . 

The elements of the M3SLS( , , )n R U  sample space are not necessarily 

uniquely characterised by the exponents of si
p , si

q , hi
p  and hi

q  in their 

probability expressions.  This is because the exponents of si
p  and si

q  depend on 

the row sums of S rather than the individual ,i js  values. 

6.2 Expected number of targets destroyed 

Let h be a random variable representing the number of targets destroyed.  

Formally ( , , ) ii
h h= = Σ∑g h hS .  The expected number of targets destroyed is 
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( , , )

( , , )

E( , M3SLS( , , , , ))

( )M3SLS( , , , , )( , , ) ,

( ) bin( , )( ) SLS( , , )( , )

s h

s h

s h

h h n

n

n

=

= Σ

= Σ ⋅

∑

∑

g h

g h

p p

h p p g h

h p p g h

R U

R U S

U S R S

S

S

 (6.1) 

where the sum is over all ( , , )g hS  in the sample space. 

For more efficient computation (6.1) can be factorized, giving 

( , ) SLS( , )

bin( , )( ) ( ) SLS( , , )( , )s h
n

h n

≤ ∈ ⋅

= Σ ⋅∑ ∑
g h

p h p g h

U R S

U S R S

S

 

bin( , )( ) E( , SLS( , , ))s hh n

≤

= ⋅∑ p p

U

U S R S

S

 (6.2) 

where in this context the overloaded operator h is formally defined by 

( , ) ii
h h= = Σ∑g h h .  In the above equations it is clear from the context which 

alternate, ( , , )h g hS  or ( , )h g h , the overloaded operator h represents. 

Equation (6.2) can be rewritten as the expectation of a random variable, 

defined by the λ-expression E( , SLS( , , ))hh n ⋅ pR # , on the product-binomial 

distribution bin( , )spU , viz. 

 =E(E( , SLS( , , )), bin( , ))h sh h n ⋅ p pR # U . (6.3) 

This nested expectation is a succinct expression for h  that fully encapsulates the 

notion of the two stage M3SLS process. 

In the above expressions E( , SLS( , , ))hh n ⋅ pR S  can be evaluated as follows.  

For the case when m nΣ ⋅ = ≤R U  then (4.4) can be used.  For m n>  then 

consider using one of the expressions (4.6), (4.7), (4.9) or (4.11). 

6.3 Properties 

6.3.1 An example plot 

In this section properties of E( , M3SLS( , , , , ))s hh h n= p pR U  will be discussed.  

For almost all of the properties there is a corresponding homogeneous property 

which has already been discussed in Section 5.4.  The discussion of many of the 

heterogeneous properties will be limited to little more than presentation of the 

heterogeneous versions of the relevant expressions and equations. 
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Figure 6.2 is an example plot showing h  as a function of 1,1r  and 2,1r , the 

maximum number of shots available from two weapons of different types.  In this 

example h  is not symmetric with respect to 1,1r  and 2,1r . 

6.3.2 Linearity when shots do not exceed targets 

In Figure 6.2 it can be seen that h  is a linear function of 1,1r  and 2,1r  as long as 

1,1 2,1r r n+ ≤ .  In general consider the case when the maximum number of shots is 

less than or equal to the number of targets.  Then an attempt will be made to fire 

all shots.  Each shot of type i contributes s hi i
p p  to the expected number of 

targets destroyed.  Summing over all shots gives h .  This result is stated in the 

following corollary.  Corollary 5.1 gave the analogous result for the homogeneous 

M3SLS process. 

Corollary 6.1 

If m n= Σ ⋅ ≤R U  then s hh = Σ ⋅p p R U . 
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Figure 6.2 Plot of 1,1 2,1E( , M3SLS(3, (( ), ( )), ((1), (1)), (0.4, 0.5), (0.8, 0.7)))h r r     
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Proof (algebraic) 

An optional alternative proof is given here which uses mathematical induction 

applied to (6.2).  Firstly, from (4.4), for all ≤S U  it follows that 

 E( , SLS( , , )) (h h hh n ⋅ = ⋅ ⋅ = Σ ⋅p p pR S R S) R S . 

Use this substitution to simplify (6.2), then it is required to prove that 

 bin( , )( )s h s h
≤

Σ ⋅ = Σ ⋅∑ p p p p

U

U S R S R U

S

. (6.4) 

The induction begins with [ ](( ))r r= =R  and [ ](( ))u u= =U .  The lhs of 

(6.4) reduces to 
0 1 1
bin( , )( )

u
s hs

u p s p r s
=∑ .  Applying (2.16) reduces this to 

1 1s hp p r u  which equals the rhs of (6.4) as required. 

Now assume (6.4) holds for arbitrary R and U and for the inductive step 

consider the addition of u weapons, each with maximum shots r.  Without loss of 

generality suppose that the arguments are ordered such that u is appended to the 

first row of U, giving 

 †
1

1,1 1, 1

,1 ,

( )
c

v v cv

u u u

u u
u

 
 =
 
  

∪
⋯

⋮

⋯

U = U , 

where the operator 1∪  appends ( )u  to the first row of U.  Similarly 

let †
1 ( )r∪R = R .  It must be shown that 

 † † † † † †

† †

bin( , )( )s h s h

≤

Σ ⋅ = Σ ⋅∑ p p p p

S U

U S R S R U . 

Partially specifying the order of the lhs summation and substituting 
† †

1h h hp r sΣ ⋅ = Σ ⋅p pR S R S+  gives 

 
1 1 1

0

bin( , )( ) ( )
u

s u s
s s s h h

s

u
p q p r s

s
−

≤ =

  Σ ⋅ 
 

∑ ∑ p p

U

U S R S+

S

. 

Separating the summation into two terms, changing the order of summation and 

extracting common factors gives 
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1 1
0

1 1 1
0

bin( , )( )

bin( , )( ).

u
s u s

s h s s
s

u
s u s

h s s s
s

u
p q

s

u
r p s p q

s

−

≤ =

−

= ≤

 Σ ⋅  
 

 +  
 

∑ ∑

∑ ∑

p p

p

U

U

U S R S

U S

S

S

 

Applying (2.12), (2.16) and (2.14) and the inductive assumption (6.4) reduces this 

expression to † †
1 1s h s h s hp p r uΣ ⋅ = Σ ⋅p p p pR U+ R U  as required. ♦ 

6.3.3 Asymptotic upper bound 

Figure 6.2 shows convergence to an upper bound resulting in a horizontal 

asymptotic plane.  The general result is stated in the following corollary, which is 

the heterogeneous extension of Corollary 5.2. 

Corollary 6.2 

If ,i jr →∞  for all i and j, then (1 )sh n→ − q
U . 

The proof is similar to the proof of Corollary 5.2.  A separate proof for 

Corollary 6.2 will not be given. 

 

6.3.4 General asymptotic behaviour 

Two further asymptotic planes can be seen in Figure 6.2.  The general result is 

stated in the following corollary, which is the heterogeneous extension of 

Corollary 5.3. 

Corollary 6.3 

Suppose that U and R can be decomposed into , , and′ ′′ ′ ′′R R U U  such 

that n′ ′Σ ⋅ ≤R U  and ,i jr →∞  for all ,i jr ′′∈R , then 

 (1 )s s s hh n
′′ ′′

′′ ′′ ′ ′ ′ ′→ − + Σ ⋅q q p p
U U

R U . 

The proof is similar to the proof of Corollary 5.3.  A separate proof for 

Corollary 6.3 will not be given. 

6.3.5 Regional linearity for perfect hit rate 

In this section the nature of h  is considered for the degenerate case when 

(1, ,1)h =p ⋯ .  In this case application of Corollary 4.2 and (3.6) reduces 

E( , SLS( , , (1, ,1))hh n =m p ⋯  to min( , )n Σm .  Consequently (6.2) reduces to 
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 bin( , )( ) min( , )sh n

≤

= Σ ⋅∑ p

U

U S R S

S

 

which may be regarded as a regionally linear function of the ,i jr . 

Figure 6.3 is an example plot of 

1,1 2,1=E( , M3SLS(12, (( ), ( )), ((2), (3)), (0.3, 0.4), (1,1)))h h r r     as a function of 1,1r  

and 2,1r .  In the figure bold lines mark the boundaries between the linear regions.  

In general these boundaries are defined by nΣ ⋅ =R S  for all ≤S U .  Figure 6.3 

has a multifaceted appearance, in contrast to the smooth form of Figure 6.2. 

The region nΣ ⋅ ≤R U  has already been shown in Corollary 6.1 to be linear 

for all values of hp .  There is also an association between some of the linear 

regions as discussed in this section with the convergences of Corollaries 6.2 

and 6.3.  In those corollaries when (1, ,1)h =p ⋯  then the condition ,i jr →∞  may 
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Figure 6.3  Plot of 1,1 2,1E( , M3SLS(12, (( ), ( )), ((2), (3)), (0.3, 0.4), (1,1)))h r r     
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be replaced by the condition ,i jr n≥  and the convergence of h  to a limiting value 

may be replaced by equality with that value. 

6.3.6 Aggregation of indistinguishable weapons 

Suppose that some row of an argument list ′U  includes two values for the number 

of weapons,  and u u′ ′′ , for both of which the corresponding number of shots is 

identically r.  Consider a second argument list †
U , similar to ′U  but with the 

values  and u u′ ′′  replaced by the single value +u u u′ ′′=  and for which the 

corresponding number of shots has the same value r.  Since the total number of 

weapons of the given type that can fire r shots has not changed the expected 

number of targets destroyed, h , must remain unchanged.  This property is restated 

as a corollary as follows. 

Corollary 6.4 

The value of h  is invariant under aggregation of indistinguishable weapons. 

Proof (algebraic) 

An optional alternative proof is given here which uses expressions for h  given 

by (6.2).  Without loss of generality suppose that the arguments are ordered such 

that they can be described by 1 ( , )u u′ ′ ′′∪U = U , that is  and u u′ ′′  are appended to 

the first row of U, 1 ( , )r r′ ∪R = R , †
1 ( )u∪U = U  and †

1 ( )r∪R = R .  It is 

required to show that 

 
† † † †

† †

bin( , )( ) E( , SLS( , , ))

bin( , )( ) E( , SLS( , , )).

s h

s h

h n

h n

′ ′≤

≤

′ ′ ′ ′⋅

= ⋅

∑

∑

p p

p p

U

S U

U S R S

U S R S

S

 (6.5) 

Partially specify the order of summation of the lhs of this equation to obtain the 

form 

 

( ) ( )
1 1

0 ( , ) ( , )

1

bin( , )( )

E( ,SLS( , ( ( , )), )).

u
s s u u s s

s s s
s s s u us

h

u u
p q

s s

h n s s

′ ′′ ′ ′′ ′ ′′+ + − +

′ ′′ ′ ′′≤ = ≤

′ ′′   ∗  ′ ′′  

′ ′ ′′⋅ ∪

∑ ∑ ∑ p

p

U

U S

R S

S

 

Substituting s s s′ ′′+ =  and †
1 1( ( , )) ( ( ))s s s′ ′ ′′⋅ ∪ = ⋅ ∪R S R S  factorise to get the 

form 
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†
11 1

0

( , ) ( , )

bin( , )( ) E( ,SLS( , ( ( )), ))

.

u
s u s

s s s h
s

s s u us

p q h n s

u u
s s

−

≤ =

′ ′′ ′ ′′≤

⋅ ∪ ∗

′ ′′  
  ′ ′′  

∑ ∑

∑

p p

U

U S R S

S

 

Apply the Chu-Vandermonde convolution (2.15) to reduce this to 

†
11 1

0

bin( , )( ) E( ,SLS( , ( ( )), ))
u

s u s
s s s h

s

u
p q h n s

s
−

≤ =

  ⋅ ∪ 
 

∑ ∑ p p

U

U S R S

S

 

which equals the rhs of (6.5) as required. ♦ 

6.3.7 Reduction when weapons can fire no shots 

Suppose that a pair of corresponding rows of argument lists ′R  and ′U  includes 

corresponding values 0 and u respectively, representing u weapons of some type 

that can fire zero shots.  Ignore these weapons by reducing the argument lists by 

dropping the values 0 and u.  This cannot change the expected number of targets 

destroyed h .  This property is restated as a corollary as follows. 

Corollary 6.5 

The value of h  is independent of weapons that can fire no shots. 

Proof (algebraic) 

An optional alternative proof is given here which uses expressions for h  given 

by (6.2).  Without loss of generality suppose that the arguments are ordered such 

that they can be described by 1 ( )u′ ∪U = U , that is u is appended to the first row 

of U, and 1 (0)′ ∪R = R .  It is required to show that 

 

bin( , )( ) E( , SLS( , , ))

bin( , )( ) E( , SLS( , , )).

s h

s h

h n

h n

′ ′≤

≤

′ ′ ′ ′⋅

= ⋅

∑

∑

p p

p p

U

S U

U S R S

U S R S

S

 (6.6) 

Partially specify the order of summation of the lhs of this equation to obtain the 

form 

 11 1
0

bin( , )( ) E( ,SLS( , ( ( )), ))
u

s u s
s s s h

s

u
p q h n s

s
−

≤ =

  ′ ⋅ ∪ 
 

∑ ∑ p p

U

U S R S

S

. 

Substitute 1( ( ))s′ ⋅ ∪ = ⋅R S R S  and factorise to get the form 
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1 1

0

bin( , )( )E( ,SLS( , , ))
u

s u s
s h s s

s

u
h n p q

s
−

≤ =

 ⋅  
 

∑ ∑p p

U

U S R S

S

 

Applying (2.12) reduces this to the rhs of (6.6) as required. ♦ 

6.3.8 Optimal allocation of limited shots to weapons 

In this section consideration is given to the optimal allocation of a limited number 

of shots amongst a limited number of weapons.  Firstly let maxu denote the fixed 

maximum number of weapons by type and let m also be fixed.  Let maxIP( , )m u  

be the combinatorial product of the sets maxIP( , )i i
m u .  By reasoning similar to 

that detailed in Section 5.3.8 for the homogeneous case it follows that 

IP( , )max

argmax
h

m u
 includes the case where all partitions are balanced. 

Also by similar reasoning to Section 5.3.8, if maxΣ = uU  and ,i jm r n− ≤  for 

all i, j then 

 max ( E( ,SLS( , , )))s h s h hh h n= Σ − ⋅ −u
p p m p p m m p  

and max( , ) IP( , )∈ m uR U . 

Next consider the optimal allocation of shots when maxu  and m are fixed.  

That is consider maximising h  over 

 max
. .

IP( , )
s t

mΣ =
m
m

m u∪ . 

For example consider max (2,1)=u , 8m = , 4n = , (0.1,0.2)s =p  and 

(0.7,0.9)h =p .  Notice 
2 1s sp p>  and 

2 1h hp p>  and so the superiority of the 

second type of shot and weapon competes with the benefits of balanced partitions.  

In this example the maximum value 0.957h =  is achieved at the compromise 

partition (2 2, 4)+  or equivalently ((2,2), (4))=M . 

Finally consider the optimal allocation of shots when maxu , the total 

maximum number of weapons, and m are fixed.  That is consider maximising h  

over 

 max
, . .max

max max

IP( , )
s t

m
u

Σ =
Σ =

m u

m
u

m u∪ . 
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For example consider max 3u = , 8m = , (0.05,0.21)s =p  and (0.9,0.21)h =p .  

Notice 
2 1s sp p>  but 

1 1 2 2
0.045 0.441s h s hp p p p= > =  and so neither weapon 

and shot type has a clear superiority.  Table 6.1 shows the arg max partitions and 

maximum value of h  for all possible values of n.  For 1, 2n =  the availability rate 

dominates and a balanced partition of all type 2 shots is optimal.  For 5n ≥  the 

product s hi i
p p  dominates and partitions of all type 1 shots are optimal.  When 

5n =  the balanced partition is the unique optimal partition, but as n increases the 

arg max expands until for 8n m≥ =  the arg max comprises all 10 partitions of 

maxIP( (8,0), (3,0))= =m u .  For 3,4n =  mixtures of the two types of weapons 

and shots are optimal. 

6.3.9 Separability when availability rate is low 

When si
p  for all i are small h  may be approximated by a simpler expression, as 

shown by the following corollary. 

n arg max max 

1 (0,3 3 2)+ +  0.2646 

2 (0,3 3 2)+ +  0.3377 

3 (2,3 3)+  0.3510 

4 (2 2, 4)+  0.3555 

5 (3 3 2,0)+ +  0.3585 

6 (4 2 2,0)+ + , (3 3 2,0)+ +  0.3598 

7 (6 1 1,0)+ + , (5 2 1,0)+ + , (4 3 1,0)+ + , (4 2 2,0)+ + , 
(3 3 2,0)+ +  

0.3599 

8≥  (8,0) , (7 1,0)+ , (6 2,0)+ , (6 1 1,0)+ + , (5 3,0)+ , 
(5 2 1,0)+ + , (4 4,0)+ , (4 3 1,0)+ + , (4 2 2,0)+ + , 

(3 3 2,0)+ +  

0.36 

Table 6.1 Examples of optimal weapon selections and shot allocations 
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Corollary 6.6 

(0, ,0),sAs h→ →p ⋯  

 ( ), ,E ,SLS( , , )s i j i j hi i
i j

p u h n r p∑ ∑ . (6.7) 

By threading over R  and hp  expression (6.7) can be written in the 

subscriptless form 

 ( ) ( )( )E ,SLS( , , ) E ,SLS( , , )s h s hh n h nΣ Σ = ⋅ ⋅p p p pU R U R . 

Note the difference between the threaded expression ( )E ,SLS( , , )hh n pR  and 

either the expression ( )E ,SLS( , , )h n m p  introduced in Chapter 4 to represent h  

for the heterogeneous SLS process or the threaded expression ( )E ,SLS( , , )hh n pr  

introduced in Section 5.3.9. 

Corollary 6.6 can be proved similarly to Corollary 5.6. 

Consider the constrained optimisation problem with the total number of shots 

m and the number of weapons by type u fixed.  If Corollary 6.6 applies then (6.7) 

has the form of (2.34) and Gross’s criterion applies to the optimisation of h . 

If si
p  for all i are small, and in addition 1n =  and (1, ,1)h =p ⋯  then the 

approximation for h  given by (6.7) may be simplified further by applying (3.7) to 

get 

 ,
. . 0,

s i ji
i j s t ri j

h p u

≠

≈∑ ∑ . 

This can be written in the subscriptless form 

 ( sgn( ))sh ≈ ⋅ ⋅p U R . 

If weapons that can fire no shots have been dropped from the argument list in 

accordance with Section 6.3.7, that is , 0i jr >  for all i and j, then this can be 

further simplified to sh ≈ ⋅p u  where = Σu U . 

6.3.10 Degeneracy for perfect availability 

If the availability rate of one of the weapon types equals one, then the feasible 

combinations of serviceable weapons is reduced.  Without loss of generality 

suppose that 
1

1sp = .  Denote 
2

( , , )s s sv
p p− =p ⋯  and similarly let −R  and −

U  

denote removal of the first sublists from the corresponding objects.  Denote the 
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first sublists by 1r  and 1u  respectively.  Then the expression for h  given by (6.2) 

reduces to 

 1 1bin( , )( ) E( , SLS( , ( ) , ))s hh h n− − −

−≤

= ⋅ ∪ ⋅∑ p r u p

U

U S R S

S

. 

If the availability rates of all weapon types equal one, that is (1, ,1)s =p ⋯ , 

then the process degenerates to the heterogeneous SLS process and 

 E( , SLS( , , ))hh h n= ⋅ pR U . 

6.3.11 Degeneracy when weapons can fire only one shot 

Suppose that some weapons of type i can fire exactly one shot.  Then the 

determination of ultimate success, which depends on weapon availability and the 

conditional single shot hit probability, could be evaluated at any time and depends 

only on the product s hi i
p p .  This can be exploited to shorten the computation 

of h . 

Firstly consider the case when all weapons of some type can fire exactly one 

shot.  Without loss of generality suppose that the arguments are ordered so that the 

type is 1i = .  For simplicity assume that indistinguishable weapons have been 

aggregated as discussed in Section 6.3.6 so that the first sublists of R and U 

comprise the single elements 1,1 1r =  and 1,1u  respectively.  Consider replacing 

1s
p  and 

1h
p  with 

1s
p′  and 

1h
p′  respectively.  If 

1 1 1 1s h s hp p p p′ ′=  then h  is 

invariant.  In particular letting 
1

1sp′ =  and 
1 1 1h s hp p p′ =  and applying 

Section 6.3.10 gives 

 1,1 1 1 2
bin( , )( ) E( , SLS( , ( ) , ( , , , )))s s h h hv

h h n u p p p p− − −

−≤

= ∪ ⋅∑ p

U

U S R S ⋯

S

. 

Alternatively let 
1

1hp′ =  and 
1 1 1s s hp p p′ =  then (6.2) reduces to 

1 1 2 2
bin( , ( , , , ))( ) E( , SLS( , , (1, , , )))s h s s h hv v

h p p p p h n p p

≤

= ⋅∑
U

U S R S⋯ ⋯

S

  

where, applying Corollary 4.4, 

1,1 1,1 1,1
2

1,1

( , , ), for
E( , SLS( , , (1, , , )))

, for .
h

h hv

s E n s R S s n
h n p p

n s n

− − − + − ⋅ ≤⋅ =  ≥

p
R S ⋯  

Next consider the case when only some weapons of type i can fire exactly one 

shot.  Disaggregate these weapons into a separate type according to Section 6.3.12 

which follows.  Then proceed as described in the preceding paragraph.  



108     Chapter Six 

   

   

Lastly consider the case when all weapons of all types can fire exactly one 

shot.  For simplicity again assume that indistinguishable weapons have been 

aggregated as discussed in Section 6.3.6 so that ((1), , (1))=R ⋯  and 

1,1 ,1(( ), , ( ))vu u=U ⋯ .  Let (1, ,1)s′ =p ⋯  and h s h′ =p p p  then (6.2) reduces to 

 1,1 ,1E( , SLS( , ( , , ), ))v s hh h n u u= p p⋯ . (6.8) 

Alternatively let (1, ,1)h′ =p ⋯  and s s h′ =p p p  then apply Corollary 4.2 and (3.6) 

to reduce (6.2) to 

 1,1 ,1bin( , )( ) min( , )s h vh n s s

≤

= + +∑ p p

U

U S ⋯

S

. (6.9) 

The equivalence of (6.8) and (6.9) is an application of (4.5). 

6.3.12 Aggregation of indistinguishable types of weapons and shots 

This section considers the degenerate case when two types of weapons and shots 

have identical availability rates and conditional single shot hit probabilities.  There 

is no corresponding homogeneous property. 

Let the argument list ′U  include the sublists  and ′ ′′u u  and let ′R  include the 

corresponding sublists  and ′ ′′r r .  Suppose that for the sublists  and ′ ′u r  and for 

the sublists  and ′′ ′′u r  the corresponding availability rates in s′p  identically equal 

the duplicated value sp  and the conditional single shot hit probabilities in h′p  

identically equal the duplicated value hp .  Consider a second argument list †
U , 

similar to ′U  but with the sublists  and ′ ′′u u  replaced by the single concatenated 

sublist † ′ ′′= ∪u u u .  Similarly in †R  let  and ′ ′′r r  be replaced by † ′ ′′= ∪r r r .  

Let †
sp  and 

†
h

p  contain the corresponding non duplicated probabilities sp  and hp  

respectively.  Since the numbers of weapons, and corresponding numbers of shots, 

availability rates and conditional single shot hit probabilities has not changed the 

expected number of targets destroyed, h , must remain unchanged.  This property 

is restated as a corollary as follows. 

Corollary 6.7 

The value of h  is invariant under aggregation of indistinguishable types of 

weapons and shots. 

Proof (algebraic) 

An optional alternative proof is given here which uses expressions for h  given 

by (6.2).  Without loss of generality suppose that the arguments are ordered such 

that they can be described by ( , )′ ′ ′′∪ u uU = U , ( , )′ ′ ′′∪ r rR = R , 
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( , )s s s sp p′ = ∪p p , ( , )h h h hp p′ = ∪p p , † †( )u= ∪U U , † †( )r= ∪R R , 

† ( )s s sp= ∪p p  and 
†

( )h hh
p= ∪p p .  It is required to show that 

 
†† † † † †

† †

bin( , )( ) E( , SLS( , , ))

bin( , )( ) E( , SLS( , , )).

s h

s h

h n

h n

′ ′≤

≤

′ ′ ′ ′ ′ ′⋅

= ⋅

∑

∑

p p

p p

U

S U

U S R S

U S R S

S

 

Partially specify the orders of summation of both sides of this equation to obtain 

the form 

 

( ) ( )bin( , )( )

E( ,SLS( , ( ( , )), ))

s s s s s

h

p q p q

h n

′ ′ ′ ′′ ′′ ′′Σ Σ − Σ Σ −

′ ′ ′′ ′′≤ ≤ ≤

′ ′′    ∗   ′ ′′   

′ ′ ′′ ′⋅ ∪

∑ ∑ ∑ s u s s u s

s u s u

u u
p

s s

s s p

U

U S

R S

S

 

 

† † † †
( )

†
† †

†† †

bin( , )( )

E( ,SLS( , ( ( )), )).

s s s

h

p q

h n

Σ Σ −

≤ ≤

 
= ∗  

 

⋅ ∪

∑ ∑ s u s

s u

u
p

s

s p

U

U S

R S

S

 

There is a one to one correspondence of terms on the lhs and rhs with † ′ ′′= ∪s s s .  

Corollary 4.3 implies that the lhs and rhs expectations are equal, and clearly the 

rest of each corresponding term is equal.  This completes the proof. ♦ 

Aggregating indistinguishable types of weapons and shots should increase 

computational efficiency.  While the summations over ′ ′≤ US  and † †≤S U  have 

the same number of terms, the evaluation of the aggregated form 
†† †E( ,SLS( , ( ( )), ))
h

h n ⋅ ∪ s pR S  should be quicker. 

The aggregation process can be reversed, that is some of the weapons and 

shots of a particular version may be arbitrarily selected and considered to belong 

to a new version.  The single shot destruction probability and availability rate 

remain the same.  Useful applications of this process were given in 

Sections 5.3.11 and 6.3.11. 
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