Probabilistic shoot-look-shoot combat models

Stephen Bourn
B Sc (Ma) Hons, Grad Dip Comp Sc

Thesis submitted for the degree of
Doctor of Philosophy
at
The University of Adelaide
School of Mathematical Sciences
Disciplines of Applied Mathematics and Pure Mathematics

May 2012
Contents

Abstract ... vii

Statement .. ix

Acknowledgements .. xi

1 Introduction ... 1

 1.1 Shoot-look-shoot (SLS) processes .. 1

 1.2 Air Defence Command Post Automation (ADCPA) .. 3

 1.3 Chapter organisation and major results .. 5

2 Preliminaries .. 9

 2.1 Notation .. 9

 2.1.1 General .. 9

 2.1.2 Multi-index notation .. 11

 2.1.3 Probability theory notation .. 15

 2.1.4 Anonymous functions .. 22

 2.2 Identities ... 23

 2.2.1 Useful identities .. 23

 2.2.2 Recursion and expectation ratios for Bernoulli trial sequences 26

 2.2.3 Limited expected value .. 28

 2.3 Concave functions .. 29

3 The Many-on-many Shoot-look-shoot (SLS) Process .. 33

 3.1 Description of the SLS process ... 33

 3.1.1 Introduction to the SLS process ... 33

 3.1.2 The SLS sample space ... 34
3.1.3 The SLS distribution .. 36
3.2 Expected number of targets destroyed .. 38
3.3 Other computational methods .. 46
 3.3.1 Recursion ... 46
 3.3.2 Markov chain model ... 47
3.4 The gamma/Poisson (GP) process .. 49
 3.4.1 The GP sample space and distribution 49
 3.4.2 Expected number of arrivals ... 51
3.5 Other types of allocation of shots to targets 54
 3.5.1 Random and uniform shot allocation 54
 3.5.2 Practical allocation ... 55
4 The Heterogeneous SLS Process ... 57
 4.1 The heterogeneous SLS process ... 57
 4.1.1 Introduction to the heterogeneous SLS process 57
 4.1.2 The heterogeneous SLS sample space 59
 4.1.3 The heterogeneous SLS distribution 60
 4.2 Expected number of targets destroyed .. 61
 4.3 Non random firing sequences ... 64
 4.4 Properties .. 66
 4.4.1 An example plot, linearity and asymptotic upper bound 66
 4.4.2 Reduction when there are no shots of a given type 66
 4.4.3 Aggregation of indistinguishable shot types 66
 4.4.4 Degeneracy for perfect hit rate ... 68
 4.4.5 Concavity with respect to the number of targets 68
 4.4.6 Bounds and constrained minima and maxima 69
5 The Many-on-many-by-many Shoot-look-shoot (M3SLS) Process 71
 5.1 Description of the M3SLS process ... 71
5.2 Expected number of targets destroyed .. 74
5.3 Properties .. 75
 5.3.1 An example plot ... 75
 5.3.2 Linearity when shots do not exceed targets 75
 5.3.3 Asymptotic upper bound ... 76
 5.3.4 General asymptotic behaviour .. 77
 5.3.5 Regional linearity for perfect hit rate 78
 5.3.6 Aggregation of indistinguishable weapons 78
 5.3.7 Reduction when weapons can fire no shots 80
 5.3.8 Optimal allocation of limited shots to weapons 81
 5.3.9 Separability when availability rate is low 88
 5.3.10 Degeneracy for perfect availability 89
 5.3.11 Degeneracy when weapons can fire only one shot 90
5.4 Comparison of objective functions for optimisation 90
6 The Heterogeneous M3SLS Process ... 93
 6.1 The heterogeneous M3SLS process ... 93
 6.2 Expected number of targets destroyed .. 96
 6.3 Properties ... 97
 6.3.1 An example plot ... 97
 6.3.2 Linearity when shots do not exceed targets 98
 6.3.3 Asymptotic upper bound .. 100
 6.3.4 General asymptotic behaviour .. 100
 6.3.5 Regional linearity for perfect hit rate 100
 6.3.6 Aggregation of indistinguishable weapons 102
 6.3.7 Reduction when weapons can fire no shots 103
 6.3.8 Optimal allocation of limited shots to weapons 104
 6.3.9 Separability when availability rate is low 105
6.3.10 Degeneracy for perfect availability ... 106
6.3.11 Degeneracy when weapons can fire only one shot............... 107
6.3.12 Aggregation of indistinguishable types of weapons and shots.. 108

Bibliography.. 111
Figures

Figure 1.1 Taxonomy of shoot-look-shoot processes................................. 2
Figure 2.1 Sample spaces represented on Pascal’s triangle........................ 21
Figure 3.1 Four targets and up to 18 shots ... 34
Figure 3.2 Tree diagram representing an SLS process with three targets and up to six shots ... 35
Figure 3.3 Tree diagram redrawn with overlaying branches 36
Figure 3.4 Plot of $I_{0.6}(x,y)$ and representation of $\text{SLS}(3,7,0.4)$ 37
Figure 3.5 Plot of $E(h, \text{SLS}(3,m,0.85))$.. 39
Figure 3.6 Plot of $E(h, \text{SLS}(n,3,0.85))$... 40
Figure 3.7 Convergence of $E(h,\text{SLS}(n,m,p))$ to $E(h,\text{GP}(n,\beta))$ with $n=2$ 53
Figure 3.8 Expected hits for different shot allocation schemes with $p=0.6$ 55
Figure 4.1 Four targets and up to $m = (7,3,8)$ shots by type 58
Figure 4.2 Possible outcomes for two targets and up to $m = (2,1)$ shots by type ... 59
Figure 4.3 Plot of $E(h, \text{SLS}(3,(m_1,m_2),(0.8,0.4)))$ 67
Figure 5.1 Four targets and up to $m = (5,2,3,4,1,3)$ shots by weapon 72
Figure 5.2 Plot of $E(h, \text{M3SLS}(3,(\eta_1,\eta_2),(1,1),0.6,0.8))$ 76
Figure 5.3 Plot of $E(h, \text{M3SLS}(10,(\eta_1,\eta_2),(2,1),0.5,1))$ 79
Figure 5.4 Nomogram... 87
Figure 6.1 Four targets and up to $M = ((5,2),(3),(4,1,3))$ shots by type by weapon ... 95
Figure 6.2 Plot of $E(h, \text{M3SLS}(3,((\eta_1,1),(r_{2,1})),((1),(1)),(0.4,0.5),(0.8,0.7)))$ 98
Figure 6.3 Plot of $E(h, \text{M3SLS}(12,((\eta_1,1),(r_{2,1})),((2),(3)),(0.3,0.4),(1,1)))$... 101
Tables

Table 5.1 A comparison of measures for $n = 2$, $p_s = 0.8$ and $p_h = 0.75$ 91

Table 6.1 Examples of optimal weapon selections and shot allocations 105
Abstract

In military operations research the term shoot-look-shoot (SLS) describes repetitive shots at a target until the target is hit. A many-on-many SLS engagement involves multiple targets. The expected number of targets hit is of interest when the maximum number of shots is limited. For the homogeneous case an algebraic expression for expected hits is known. The expression was derived indirectly as a limited expected value function applied to a binomial distribution. For the case when shots are heterogeneous expected hits can be calculated from a known set of recursive equations.

This thesis explicitly constructs a homogeneous SLS probability space using a hybrid of the binomial and negative binomial distributions. Expected hits is then calculated directly as the expected number of successes. Similarly an explicit heterogeneous SLS probability space is constructed and used to derive an algebraic expression for expected hits. The many-on-many SLS model is then enhanced to explicitly include weapons, where each weapon is characterised by its maximum number of shots and stochastic availability rate in addition to the single shot probability of a hit. Both the homogeneous and heterogeneous cases are considered.

A generalised result concerning constrained optimisation of concave functions was proved and applied to show that in the homogeneous case the expected number of hits is maximised when shots are evenly distributed amongst weapons. A similar tendency for the heterogeneous case has been successfully applied in the Air Defence Command Post Automation (ADCPA) software package to optimise the deployment of surface-to-air missile fire units.

Three other noteworthy results are as follows. A continuous function is derived that coincides with expected hits for homogenous SLS distributions as the number of targets and maximum number of shots varies. Secondly for any distribution based on a sequence of Bernoulli trials it is shown that the expected number of successes, failures and trials have common ratios determined by the single trial probability of success. Finally a hybrid of the gamma and Poisson distributions is presented as a limiting case of the homogeneous SLS distribution.
Statement

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Stephen Bourn and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines.

..
Signature Date
Acknowledgements

Firstly I would like to acknowledge the guidance received from my academic supervisors Charles Pearce and Rey Casse.

A number of Defence Science and Technology Organisation (DSTO) supervisors and managers have also given support that enabled the theoretical development described in this thesis, its application to the optimisation algorithm in the ADCPA software and adoption by the Australian Army. Accordingly I would like to thank John Coleby, David Fogg, Robin Nicholson and Neville Curtis.

I am indebted to Hugh Graham. This thesis would never have come about without his initial request for an optimisation capability in ADCPA.

I thank Carsten Gabrisch for creating Figures 3.1, 4.1, 5.1 and 6.1.

Finally thanks are due to family and friends for their long-standing support and encouragement.