A Randomised Controlled Trial
Investigating The Effects Of Nitrogen Dioxide In Classrooms On The Respiratory Health Of Asthmatic Primary School Children.

Monika Nitschke
Department of Medicine
The Queen Elizabeth Hospital

Submitted as a PhD thesis at the University of Adelaide during November 2002
TABLE OF CONTENTS

ABSTRACT ... 10

CHAPTER 1: INTRODUCTION ... 12

CHAPTER 2: LITERATURE REVIEW .. 16
 2.1 Method for literature review .. 16
 2.2 Biological plausibility ... 17
 2.3 Controlled Clinical studies .. 17
 2.3.1 Effects on lung function .. 18
 2.3.2 Effects on bronchial hyper-responsiveness 18
 2.3.3 Effects on allergic responsiveness .. 19
 2.3.4 Summary of clinical studies .. 20
 2.4 Epidemiological studies conducted outdoors ... 21
 2.4.1 General Population studies ... 21
 2.4.1.1 Cohort studies ... 21
 2.4.1.2 Studies including lung function measurements in the general population ... 22
 2.4.1.3 Summary of outdoor studies in the general population 22
 2.4.2 Asthmatic population ... 23
 2.4.2.1 Studies including lung function in the asthmatic population 23
 2.4.2.2 Hospital admissions ... 24
 2.4.2.3 Panel studies ... 25
 2.4.2.4 Summary of outdoor studies in the asthmatic population 27
 2.5 Gas appliances exposure studies not measuring NO2 levels 28
 2.5.1 General population .. 28
 2.5.2 Asthmatic population ... 29
 2.5.2.1 Cross-sectional studies ... 29
 2.5.2.2 Cohort studies .. 32
 2.6 Studies measuring indoor NO2 .. 33
 2.6.1 General population .. 33
 2.6.1.1 Cross-sectional studies ... 33
 2.6.1.2 Cohort studies ... 34
 2.6.2 Asthmatic population ... 36
 2.6.2.1 Case-control studies ... 37
 2.6.2.2 Cohort studies .. 37
 2.6.3 Summary of indoor studies: general population and asthmatics 38
 2.7 Objective lung measurements and indoor NO2 exposure 40
 2.8 NO2 exposure measurements - what are the important issues of exposure ascertainment in epidemiological NO2 studies 42
4.7.3 Environmental tobacco smoke

4.8 Outcome Measurements

4.8.1 Symptom diaries

4.8.2 Lung measurements

4.8.2.1 Personnel

4.8.2.2 Information for Parents

4.8.2.3 Methods of Measurement

4.9 Statistical analysis

4.9.1 Adjustment for clustering

4.9.2 Non clustered (Nn) sample size calculation for asthma symptom rates

4.9.3 Sample size calculation for objective lung measurements

4.9.4 Estimation of source population and asthmatic children

4.9.5 Analysis of lung function results

4.9.6 Analysis of bronchial hyper-responsiveness

4.9.6.1 Calculation of FEV1

4.9.6.2 Calculation of DRS

4.9.7 Statistical analyses of diaries

CHAPTER 5 - RESULTS FROM RANDOMISED CONTROLLED TRIAL

5.1 Randomisation Outcome

5.1.1 Participation

5.1.2 Distribution of baseline variables

5.1.3 Baseline severity of asthma

5.1.4 Discussion of baseline characteristics

5.2 Results from nitrogen dioxide measurements

5.2.1 NO2 concentration in classroom

5.2.1.1 All NO2 measurement badges

5.2.1.2 Mean NO2 levels at classroom level for participating children

5.2.1.3 Classroom measurements of NO2 compared to WHO guidelines

5.2.2 Outdoor levels of NO2

5.2.3 NO2 results from children’s homes

5.2.4 Conclusion and implications from NO2 measurements

5.3 Results for objective lung measurements

5.3.1 Participation in lung measurements

5.3.2 Spirometry results

5.3.2.1 A priori sample

5.3.2.2 Extended sample

5.3.2.3 Combined sample

5.3.2.4 Reversibility

5.3.3 Bronchial hyper-responsiveness results

5.3.3.1 A priori sample

5.3.3.2 Extended group of children and the combined group of children

5.3.3.3 Severity of BHR

5.3.4 Summary of objective lung measurements

3
Abstract

A Randomised Controlled Trial Investigating The Effects Of Nitrogen Dioxide On Asthmatic Children In Primary School Classrooms

(356 words)

The aim of this study was to determine the effects of a randomised controlled trial of unflued gas heater replacement on asthma in children.

18 schools (134 classrooms) using unflued gas heaters in winter were randomly allocated an intervention of heater replacement with either flued gas heaters (4), or electric heating (4), or remained unflued (10). The main eligibility criteria were (i) doctor diagnosed asthma with (ii) no unflued gas sources at home (a priori sample). The sample was extended to asthmatic children with home gas cooking (extended sample). Participants kept a daily diary of symptoms for 12 weeks in order to establish symptom rates in the intervention and control groups. Lung function and bronchial hyper-responsiveness (BHR) tests were performed at the beginning and end of the study period. Indoor NO₂ was monitored in classrooms and homes during the study period.

Mean NO₂ exposure was significantly lower in intervention schools (15.5 ppb SD:4.6) compared to control schools (47.0 ppb SD:26.8). Mean kitchen NO₂ levels were significantly lower in the a priori sample compared to the extended sample (14.3 ppb CI:10.3-18.3 vs 28.7 ppb CI:24.1-33.3; p<0.001).
In the a priori sample there were 45 and 73 children in the intervention and control groups respectively, and 43 in each group in the extended sample.

In the a priori sample, difficulty breathing (RR: 0.32; CI: 0.14-0.69), chest tightness (RR: 0.45; CI:0.25-0.81), and asthma attack (RR: 0.39; CI:0.17-0.93) rates were significantly decreased in the intervention group compared to the control group. In the extended group, symptom rates were not significantly different. Mean %predicted FEV₁% and BHR were similar between intervention and control groups.

Significantly reduced NO₂ levels in classrooms were accompanied by more than a 50% reduction in some asthmatic symptoms in the intervention a priori group. This was not found in the extended sample, likely due to misclassification of exposure associated with home exposure from gas cooking.

Nitrogen dioxide is associated with increased asthma symptoms in children, and replacement of unflued gas heating in schools should become a public health priority for school authorities. Furthermore, the result may implicate unflued gas appliances in environments other than classrooms.