Extensions to the Probabilistic Multi-Hypothesis Tracker for Tracking, Navigation and SLAM

Brian Cheung

Thesis submitted for the degree of

Doctor of Philosophy

THE UNIVERSITY of ADELAIDE

School of Electrical and Electronic Engineering
Faculty of Engineering
The University of Adelaide
Adelaide, South Australia

February 2012
Contents

1 Introduction ... 1
 1.1 Contributions ... 3
 1.2 Thesis Overview 3

2 Background .. 7
 2.1 Data Association 7
 2.1.1 Nearest Neighbour 8
 2.1.2 Probabilistic Data Association Filter 8
 2.1.3 Probabilistic Multi-Hypothesis Tracker 9
 2.2 State Estimation 10
 2.2.1 Problem Definition 11
 2.2.2 Target Dynamic Models 11
 2.2.3 Measurement Model 14
 2.2.4 Kalman Filter 15
 2.2.5 Extended Kalman Filter 16
 2.2.6 Unscented Kalman Filter 17
 2.2.7 Particle Filter 19
 2.3 Probabilistic Multi-Hypothesis Tracker 21
 2.3.1 Problem Definition 21
 2.3.2 PMHT for multi-target tracking 22

3 PMHT with time uncertainty 27
 3.1 Introduction .. 27
 3.2 Problem Formulation 28
 3.3 PMHT for tracking with timing uncertainty 29
CONTENTS

3.4 Performance Analysis ... 34
3.5 Comparison of PMHT-t with other Methods 41
 3.5.1 PMHT-t Solution ... 44
 3.5.2 Sliding Window PMHT-t .. 46
 3.5.3 Alternative Algorithms .. 48
 3.5.4 Performance Analysis ... 49
3.6 Conclusion ... 51

4 PMHT Path Planning .. 53
 4.1 Introduction ... 53
 4.1.1 Background ... 54
 4.1.2 Proposed Approach ... 56
 4.2 Problem Formulation ... 57
 4.3 Path planning problem .. 59
 4.4 PMHT for multiple platform path planning 61
 4.5 Simulation Results .. 65
 4.6 Tradeoff between smoothness and proximity 71
 4.7 Locale Density Dependence .. 73
 4.8 Genetic Algorithm Solution to the Travelling Salesmen Problem 77
 4.8.1 GA-TSP with PMHT Smoother 79
 4.8.2 Path Planning Comparison 79
 4.9 Sliding batch PMHT Path Planning 88
 4.10 PMHT-pp for Indoor Environments 91
 4.10.1 PMHT-pp-pf Indoor Strategies 91
 4.10.2 PMHT-pp-pf Indoor Results 92
 4.11 PMHT-pp with Non-Homogeneous Locales 98
 4.11.1 Non-Homogeneous Locales 98
 4.11.2 PMHT-pp with Priority as a Continuous Density 99
 4.11.3 Simulation Example 102
 4.12 Conclusion ... 105

5 PMHT-c for SLAM ... 107
 5.1 Introduction ... 107
5.2 Problem Formulation .. 110
5.3 SLAM formulation .. 111
5.4 The PMHT with Classification in SLAM 114
5.5 Performance Analysis .. 117
 5.5.1 Simulated results .. 117
 5.5.2 Victoria Park Data ... 123
5.6 Conclusions .. 127

6 Conclusion ... 129
 6.1 Tracking with Time Uncertainty 129
 6.2 Multiple Platform Path Planning 130
 6.3 SLAM with classifications 131
 6.4 Future Work ... 132

A Source Code Listing .. 133
 A.1 PMHT-t Source Code ... 133
 A.2 PMHT-pp Source Code ... 136
 A.3 PMHT-c SLAM Source Code 141
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Time error pmf</td>
<td>35</td>
</tr>
<tr>
<td>3.2</td>
<td>PMHT-t Scenario 1 Tracking Results</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>PMHT-t Scenario 2 Tracking Results</td>
<td>39</td>
</tr>
<tr>
<td>3.4</td>
<td>PMHT-t Scenario 2 with Clutter Tracking Results</td>
<td>42</td>
</tr>
<tr>
<td>4.1</td>
<td>Locale Example Map</td>
<td>58</td>
</tr>
<tr>
<td>4.2</td>
<td>PMHT-pp assigned trajectories evolution for 4 platforms</td>
<td>67</td>
</tr>
<tr>
<td>4.3</td>
<td>Assorted PMHT-pp Planned Trajectories</td>
<td>68</td>
</tr>
<tr>
<td>4.4</td>
<td>Converged estimates of Π^k</td>
<td>70</td>
</tr>
<tr>
<td>4.5</td>
<td>Converged estimates of Π^f</td>
<td>70</td>
</tr>
<tr>
<td>4.6</td>
<td>PMHT-pp Tradeoff using ratio between Q and R</td>
<td>72</td>
</tr>
<tr>
<td>4.7</td>
<td>PMHT-pp with varied grid of locales</td>
<td>74</td>
</tr>
<tr>
<td>4.8</td>
<td>PMHT-pp with varied random locales</td>
<td>76</td>
</tr>
<tr>
<td>4.9</td>
<td>GA-TSP with a grid of locales</td>
<td>78</td>
</tr>
<tr>
<td>4.10</td>
<td>Initial priors for PMHT-pp smoothing</td>
<td>80</td>
</tr>
<tr>
<td>4.11</td>
<td>GA-TSP with PMHT-pp smoothed output</td>
<td>81</td>
</tr>
<tr>
<td>4.12</td>
<td>Results for 4 platforms and grid of locales</td>
<td>83</td>
</tr>
<tr>
<td>4.13</td>
<td>Results for 3 platforms and random locales</td>
<td>84</td>
</tr>
<tr>
<td>4.14</td>
<td>Results for 4 platforms and random locales</td>
<td>85</td>
</tr>
<tr>
<td>4.15</td>
<td>Locale distribution between platforms</td>
<td>87</td>
</tr>
<tr>
<td>4.16</td>
<td>Trajectories separated for the four platforms after 8 iterations</td>
<td>89</td>
</tr>
<tr>
<td>4.17</td>
<td>Trajectories at each iteration</td>
<td>90</td>
</tr>
<tr>
<td>4.18</td>
<td>PMHT-pp-pf with grid of locales</td>
<td>94</td>
</tr>
<tr>
<td>4.19</td>
<td>Comparison between PMHT-pp and PMHT-pp-pf</td>
<td>95</td>
</tr>
<tr>
<td>4.20</td>
<td>PMHT-pp-pf with 4 walls</td>
<td>96</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

4.21 PMHT-pp-pf in an indoor environment ... 97
4.22 PMHT-pp with Priority Map Comparison ... 104

5.1 Example platform trajectory with random landmarks. 119
5.2 Percentage of divergent tracks comparison ... 120
5.3 RMS position estimation error comparison ... 121
5.4 Percentage of divergent tracks with PMHT comparison 122
5.5 RMS position estimation error with PMHT comparison 122
5.6 Divergent tracks with different misclassified measurements 123
5.7 Divergent tracks with mismatched misclassified measurements 124
5.8 Histogram of tree widths ... 125
5.9 PMHT-c estimated trajectory ... 126
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>PMHT-t Scenario 1 Monte Carlo RMS results</td>
<td>38</td>
</tr>
<tr>
<td>3.2</td>
<td>PMHT-t Scenario 2 Monte Carlo RMS results</td>
<td>40</td>
</tr>
<tr>
<td>3.3</td>
<td>PMHT-t Scenario 2 with Clutter Monte Carlo RMS results</td>
<td>43</td>
</tr>
<tr>
<td>3.4</td>
<td>Monte Carlo Position RMS Comparison results</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>Monte Carlo Timing Error Mean RMS Comparison results</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Monte Carlo Timing Error Precision RMS Comparison results</td>
<td>51</td>
</tr>
<tr>
<td>4.1</td>
<td>PMHT-pp Monte Carlo results for grid of locales</td>
<td>75</td>
</tr>
<tr>
<td>4.2</td>
<td>PMHT-pp Monte Carlo results for random locales</td>
<td>75</td>
</tr>
<tr>
<td>4.3</td>
<td>Path Planning Monte Carlo Comparison results</td>
<td>86</td>
</tr>
</tbody>
</table>
Abstract

Multi-target tracking is a problem that involves estimating target states from noisy data whilst simultaneously deciding which measurement was produced by each target. The Probabilistic Multi-Hypothesis Tracker (PMHT) is an algorithm that solves the multi-target tracking problem. This thesis presents extensions to the PMHT to address problems that may arise in the use of real sensors and considers multi-target tracking techniques for use in other applications such as autonomous vehicles.

It is generally assumed that a sensor collects a set of noisy position measurements at known times. In some situations, the time information may not be reliable and cause filtering issues. This thesis derives an extension to the PMHT that introduces an assignment index that identifies the true time at which a measurement was collected. This extension of the PMHT allows for tracking on measurements with time errors, such as time delays. A further extension allows the PMHT algorithm to simultaneously estimate the time error parameters whilst tracking targets.

The above extension is applied to the problem of planning paths for multiple platforms to explore an unknown area. Given a set of locales to be visited and the platform initial positions, the path planning problem has the same mathematical form as a multi-target tracking problem, with locales as measurements and the platforms as targets. The extended PMHT algorithm uses hypothesised time-stamps to associate locales to platforms and times simultaneously.

Autonomous vehicles are expected to use information from their sensors to navigate and map their environment. Simultaneous localisation and mapping (SLAM) is the name given to this task and is essentially a multi-target tracking problem. This thesis proposes the use of PMHT and landmark classification information received with measurements to improve the performance of SLAM.
Declaration

I, Brian Cheung certify that this work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give my consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below*) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signature

Date
Acknowledgements

There are many people who have helped me along the way and to whom I would like to thank you.

To my supervisor at the Defence Science and Technology Organisation, Samuel Davey. Thanks for your open door and guidance every time I was lost. Thanks for being open to my ideas and stepping through ideas with me.

Thanks to Neil Gordon, the head of Tracking and Sensor Fusion group in ISRD. For encouraging me to start a PhD at the beginning and for pushing me to hurry up and finish at the end!

To Professor Doug Gray, of the School of Electrical and Electronic Engineering at the University of Adelaide, for your constructive guidance, demanding a high standard of research and for making me think like a scientific researcher rather than an engineer.

The Intelligence, Surveillance and Reconnaissance Division of DSTO for allowing me the opportunity to undertake these studies and the computing resources to undergo the work. The School of Electrical and Electronic Engineering at the University of Adelaide for their hospitality and learning environment.

To my wife, Lang for her love, support and understanding throughout my studies. For keeping me well nourished, encouraged when down and for listening to my presentations even when they made no sense to her, I thank you!
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Central Processing Unit</td>
</tr>
<tr>
<td>DSTO</td>
<td>Defence Science and Technology Organisation</td>
</tr>
<tr>
<td>EIF</td>
<td>Extended Information Filter</td>
</tr>
<tr>
<td>EKF</td>
<td>Extended Kalman Filter</td>
</tr>
<tr>
<td>EM</td>
<td>Expectation Maximisation</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic Algorithm</td>
</tr>
<tr>
<td>GA-TSP</td>
<td>Genetic Algorithm for Travelling Salesmen Problem</td>
</tr>
<tr>
<td>ISRD</td>
<td>Intelligence, Surveillance and Reconnaissance Division</td>
</tr>
<tr>
<td>JPDA</td>
<td>Joint Probabilistic Data Association</td>
</tr>
<tr>
<td>KF</td>
<td>Kalman Filtering</td>
</tr>
<tr>
<td>LNN</td>
<td>Local Nearest Neighbour</td>
</tr>
<tr>
<td>NN-JPDA</td>
<td>Nearest Neighbour - Joint Probabilistic Data Association</td>
</tr>
<tr>
<td>pdf</td>
<td>probability density function</td>
</tr>
<tr>
<td>PF</td>
<td>Particle Filtering</td>
</tr>
<tr>
<td>PHD</td>
<td>Probability Hypothesis Density</td>
</tr>
</tbody>
</table>
pmf probability mass function
PDA Probabilistic Data Association
PMHT Probabilistic Multi-Hypothesis Tracker
PMHT-c Probabilistic Multi-Hypothesis Tracker with Classification measurements
PMHT-t Probabilistic Multi-Hypothesis Tracker with Time measurements
PMHT-pp Probabilistic Multi-Hypothesis Tracker with Path Planning
PMHT-pp-pf Probabilistic Multi-Hypothesis Tracker Path Planner with Particle Filtering
POMDP Partially Observable Markov Decision Processes
RMS Root Mean Square
SLAM Simultaneous Localisation and Mapping
TSP Travelling Salesman Problem
UKF Unscented Kalman Filter
Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>${\cdot}^T$</td>
<td>Matrix transpose operator.</td>
</tr>
<tr>
<td>C</td>
<td>The confusion matrix, gives the probability of observing a particular class given the true class.</td>
</tr>
<tr>
<td>c_{ij}</td>
<td>An element of the confusion matrix, $C = {c_{ij}}$.</td>
</tr>
<tr>
<td>F</td>
<td>State transition matrix.</td>
</tr>
<tr>
<td>F_t</td>
<td>State transition matrix at scan t.</td>
</tr>
<tr>
<td>g_t</td>
<td>Measurement noise at time t.</td>
</tr>
<tr>
<td>H_t</td>
<td>Measurement matrix at scan t.</td>
</tr>
<tr>
<td>h_t</td>
<td>Nonlinear measurement matrix at scan t.</td>
</tr>
<tr>
<td>K</td>
<td>The set of all assignment indices over the data batch.</td>
</tr>
<tr>
<td>k_n</td>
<td>The assignment index for the nth measurement. Indicates which model is the true source for that measurement.</td>
</tr>
<tr>
<td>k_{nt}</td>
<td>The assignment index for the nth measurement at scan t. Indicates which model is the true source for that measurement.</td>
</tr>
<tr>
<td>k_{ntp}</td>
<td>The assignment index for the nth measurement at scan t from sensor p. Indicates which landmark is the true source for that measurement.</td>
</tr>
<tr>
<td>M</td>
<td>Total number of targets.</td>
</tr>
</tbody>
</table>
m A target index, indicating target m.
N Total number of measurements.
N_s Total number of sample or particle points.
N_t Total number of measurements at scan t.
N_{tp} Total number of measurements from sensor p at scan t.
n A measurement index, indicating measurement n.
P Total number of platforms.
P_d The probability that a target is detected.
$P_{t|t}$ The covariance of the state estimate at scan t.
$P_{t|t-1}$ The covariance of the predicted state at scan t.
P_0 The covariance of the assumed distribution of the initial target state for the linear Gaussian case.
p A platform index, indicating platform p in SLAM.
$Q\left(\cdot | (i)\right)$ The EM auxiliary function that is maximised to obtain the iterative parameter estimates. It is a function of the true parameters and their estimates from the previous EM iteration.
Q The process noise covariance
Q_C The part of the auxiliary function dependent on the confusion matrix. This is maximised to find the confusion matrix estimate.
Q_t The process noise covariance at scan t.
Q_X The part of the auxiliary function dependent on the target states, X.
Q_{XY} The part of the auxiliary function that couples the landmark and sensor states.
Q_Π The part of the auxiliary function dependent on the assignment prior, Π.

\(Q_k^\Pi \) The part of the auxiliary function dependent on the positional assignment prior, \(\Pi^k \).

\(Q_\tau^\Pi \) The part of the auxiliary function dependent on the time stamp assignment prior, \(\Pi^\tau \).

\(Q_\tau \) The part of the auxiliary function dependent on the time stamp, \(\tau \).

\(q_x \) The unit time variance of noise in x units.

\(q_y \) The unit time variance of noise in y units.

\(R_t \) The measurement covariance matrix at scan \(t \).

\(\hat{R}_t^m \) The synthetic sensor measurement covariance matrix for model \(m \) at scan \(t \).

\(r \) A measurement index for measurements at a particular scan.

\(S_t \) The innovation covariance matrix at scan \(t \). Represents the expected measurement scatter given the current state estimate and its covariance.

\(T \) Total number of scans in the batch.

\(t \) A time index, indicating scan number \(t \).

\(u_t \) Process noise at time \(t \).

\(v \) Probability of a correct measurement time being available.

\(v_t \) Measurement innovation at scan \(t \).

\(W_t \) The Kalman Gain at scan \(t \).

\(w_t \) Measurement noise at time \(t \).

\(w_i^t \) The weight that a particular sample point \(i \) represents the state at time \(t \).

\(w_{tm} \) An assignment weight functions. The posterior probability function of a particular assignment to target \(m \) at scan \(t \) given the current estimated parameters.
w_{ntm} \quad \text{An assignment weight. The posterior probability of a particular assignment between measurement } n \text{ to target } m \text{ at scan } t \text{ given the current estimated parameters.}

\(X\) \quad \text{A set of all of the states of all models over the entire batch.}

\(X^m\) \quad \text{A set of all of the states of model } m \text{ over the entire batch.}

\(x_t\) \quad \text{The state at scan } t.

\(x_t^m\) \quad \text{The state of model } m \text{ at scan } t.

\(x_t^i\) \quad \text{Particle } i \text{ to represent the state at scan } t.

\(\hat{x}_{t|t-1}\) \quad \text{The predicted state at scan } t.

\(\hat{x}_t^m\) \quad \text{The state estimate for model } m \text{ at scan } t.

\(Y^p\) \quad \text{A set of all of the states of platform } p \text{ over all scans.}

\(y_t^p\) \quad \text{The state of platform } p \text{ at scan } t.

\(Z\) \quad \text{A set of all of the measurements for the entire batch.}

\(Z^{(x)}\) \quad \text{A set of all of the positional measurements for the entire batch.}

\(Z^{(k)}\) \quad \text{A set of all of the classification measurements for the entire batch.}

\(Z\) \quad \text{A set of all of the measurements for the entire batch.}

\(z_n\) \quad \text{The } n^{th} \text{ measurement.}

\(z_t\) \quad \text{The measurement at scan } t.

\(z_{ntp}^x\) \quad \text{The } n^{th} \text{ positional measurement at scan } t \text{ produced by sensor } p.

\(z_{ntp}^k\) \quad \text{The } n^{th} \text{ classification measurement at scan } t \text{ produced by sensor } p.

\(z_n\) \quad \text{The } n^{th} \text{ measurement received by the sensor or the } n^{th} \text{ locale in the set of locales.}
z_{nt} The nth measurement at scan t.

z_n^x The position of measurement n.

z_n^τ The time stamp of measurement n.

z_t^m The synthetic measurement for target m at scan t.

\hat{z}_t The predicted measurement at scan t.

χ^i_t Sample point i to represent the state at time t.

Δ Pixel size of a uniform grid of locales.

Δt Time difference between measurement updates.

η_n Priority of locale n.

λ Unknown parameter to estimate the inverse variance of the time stamp error.

μ Unknown parameter to estimate the mean time stamp error.

$\phi^p_0(y^p_0)$ The prior probability density function for the state of sensor p.

$\phi^p_t(y^p_t|y^p_{t-1})$ The evolution probability density function for sensor p at scan t.

Π The set of all assignment priors for the batch.

Π^k The set of all positional assignment priors for the batch.

Π^τ The set of all time stamp assignment priors for the batch.

π^m_t The assignment prior for model m at scan t.

π^k_{nm} The assignment prior for measurement n to model m.

π^τ_{nt} The assignment prior for measurement n at scan t.

$\psi_0(x_0)$ The prior probability density function for the state.

$\psi^m_0(x^m_0)$ The prior probability density function for the state of model m.
The evolution probability density function for the target at scan t.

The evolution probability density function for model m at scan t.

Intensity of locales.

The set of all time assignment indices over the data batch.

The true collection time of measurement n.

Associated class of each landmark measurement.

The measurement probability density at scan t.

The measurement probability density for model m at scan t.
Publications

xxiii