The Influence of Test Conditions on the Results of Pedestrian Headform Impact Tests

Daniel Jeffrey Searson

Centre for Automotive Safety Research
University of Adelaide

April 2012
CONTENTS

3.3 Summary of the theoretical models 46

4 Test method and data .. 51

4.1 Headform testing method ... 52

4.1.1 Test equipment .. 52

4.1.2 Test process ... 54

4.2 Estimation of peak displacement 54

4.2.1 Description of method ... 55

4.2.2 Validation using MADYMO 59

4.2.3 Summary and potential sources of error in the estimation of peak displacement .. 61

4.3 Headform test data ... 64

4.3.1 Test vehicles ... 65

4.3.2 Set A: Varying impact speeds 69

4.3.3 Set B: Different headforms 69

4.3.4 Set C: Comparison between Euro NCAP and GTR child headform tests ... 70

4.3.5 Set D: Comparison between Euro NCAP adult and GTR child headform tests ... 70

4.4 Error when comparing repeated tests 71

4.4.1 Aiming error ... 71

4.4.2 Potential structural differences 72

4.4.3 Differences in test equipment 72

4.4.4 Repeatability ... 73

4.5 Summary ... 73

5 Analysis of test data ... 75

5.1 Method ... 75

5.1.1 General regression model 76

5.1.2 Regression model for impact speed only 78

5.1.3 Regression model for headform mass and diameter 79

5.2 Results ... 80

5.2.1 Effect of normal impact speed on HIC 81

5.2.2 Effect of normal impact speed on peak displacement .. 84
CONTENTS

5.2.3 Effect of headform mass and diameter on HIC 偏远 87
5.2.4 Effect of headform mass and diameter on peak dis-
placement 远端 90
5.2.5 Combined effects 远端 93
5.3 Summary 远端 95

6 HIC conversion: Euro NCAP to GTR
6.1 Category one: child to child 远端 99
 6.1.1 Estimated HIC ratio using theoretical exponents 远端 99
 6.1.2 Estimated HIC ratio using empirical exponents and
 the effect of diameter 远端 100
 6.1.3 Analysis of data in Set C 远端 100
6.2 Category two: adult to child 远端 101
 6.2.1 Estimated HIC ratio using theoretical and empirical
 exponents 远端 103
 6.2.2 Analysis of data in Set D 远端 104
6.3 Category three: adult to adult 远端 106
 6.3.1 Estimated HIC ratio using theoretical and empirical
 exponents 远端 106
6.4 Peak displacement and ‘bottoming out’ 远端 107
 6.4.1 Rate of occurrence of bottoming out 远端 109
 6.4.2 Estimating the change in peak displacement 远端 110
6.5 Summary and discussion 远端 112

7 Vehicle performance: ANCAP to GTR 远端 115
7.1 Vehicle data source 远端 116
7.2 Method 远端 117
 7.2.1 Conversion of HIC values 远端 117
 7.2.2 Method for estimating results for each vehicle 远端 119
7.3 Results 远端 122
 7.3.1 Results for all vehicles 远端 122
 7.3.2 Results for current vehicles only 远端 125
 7.3.3 Comparison between ANCAP and GTR performance 远端 130
7.4 Summary 远端 132
CONTENTS

7.4.1 Sources of Error 133

8 Relationship to real crash speeds 135
 8.1 Equivalent ‘safe speed’ 136
 8.2 HIC distribution for real crash speeds 138
 8.2.1 Crash speed distribution 139
 8.2.2 HIC distribution 140
 8.2.3 Head injury risk distribution 142
 8.2.4 Limitations 145
 8.3 Summary 147

9 Discussion 151
 9.1 Summary 151
 9.2 Discussion of specific issues 158
 9.2.1 Choice of theoretical model 158
 9.2.2 Bottoming out 159
 9.2.3 Comparison with other published results 160
 9.3 General discussion 163
 9.4 Conclusions 167
 9.5 Future work and applications 168

Appendices 173

A Test result listing 173

B Analyses of published data 177

C Numerical simulation of impacts 181

Bibliography 183
Abstract

Pedestrian headform impact tests are used to assess the relative level of danger that a vehicle poses to the head of a struck pedestrian. The tests are conducted using a dummy headform that is launched at specific locations on the front of a stationary vehicle. The conditions of the test are specified in the relevant test protocol, and include the mass of the headform, the impact speed, and the impact angle. There are test protocols for vehicle design regulations and for new car assessment programs, each of which may specify different test conditions.

Previous studies have not examined in detail the influence of the test conditions on the result of the test, as measured via the Head Injury Criterion (HIC). HIC is proportional to the duration and magnitude of the acceleration of the headform during the impact. In this thesis, a theoretical model of a linear spring is used to examine, in the simplest case, the influence that headform mass and impact speed have on HIC and peak dynamic displacement.

These relationships were also studied empirically using real test data. The empirical effect of impact speed on HIC was found to be similar to that predicted by the linear spring model, and the influence of headform mass was found to be slightly weaker than what was predicted theoretically. An effect of headform diameter was also found in the test data. In summary: HIC was found to increase with impact speed, and was found to decrease with increasing headform mass and diameter. Increasing the impact speed, headform mass or diameter resulted in higher peak displacements, leading to a higher likelihood of contact with harder structures beneath the outer vehicle surface.
These relationships were used to predict the compliance of sixty vehicles with the Global Technical Regulation on pedestrian safety, based on their results under the European New Car Assessment Program pedestrian testing protocol. The relationship between HIC and impact speed was also used to compare the performance of theoretical structures that meet different test criteria, across a published distribution of real crash speeds. An injury risk function for HIC was used to demonstrate how test performance at a single crash speed can be related to an overall real world injury risk.

The results presented in this thesis show that HIC and peak displacement can be extrapolated or interpolated from a single test to apply to a wider range of test conditions. This methodology, in its simplest application, can be used to predict how a tested structure performs under different test protocols. A more complex application of this methodology might be a new method for assessing vehicle performance, based on its performance across the full range of conditions encountered in real world pedestrian crashes.
Statement of originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Daniel Searson and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of published works contained within this thesis (as listed below) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University’s digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Daniel Searson
List of publications

Acknowledgements

First and foremost I would like to thank my two supervisors, Robert Anderson and Paul Hutchinson. Their guidance and expertise has been invaluable.

Several organisations have contributed financial or inkind support to this project, and I thank them for their support and for supporting pedestrian safety research. These organisations include the Australian Department for Infrastructure and Transport, the Australasian New Car Assessment Program (ANCAP), Toyota Motor Corporation, General Motors Holden and Hyundai Motors Australia.

I would like to thank my colleagues at the Centre for Automotive Safety Research for making it a great place to work and study. In particular I would like to thank Andrew van den Berg and Giulio Ponte from the impact laboratory and Jaime Royals, the CASR librarian. I would also like to thank fellow student Jeffrey Dutschke for many productive (and unproductive) discussions.

Finally I would like to thank my friends and family, who will probably be greatly surprised to hear that this is all done.