FUNCTIONAL CHARACTERISTICS AND MOLECULAR REGULATION OF LYMPHANGIOGENESIS DURING GECKO TAIL REGENERATION: EVIDENCE FOR THE ROLES OF VEGF-C, VEGF-D AND THE RECEPTOR VEGFR-3

HELEN BLACKER
B.Sc. (Hons)

Department of Ecology and Evolutionary Biology
School of Earth and Environmental Sciences
The University of Adelaide
South Australia

August 2011

A thesis submitted for the degree of Doctor of Philosophy at The University of Adelaide
Chapter One
INSIGHTS INTO LYMPHANGIOGENESIS AND LIZARD TAIL REGENERATION

1.1. OVERVIEW ... 1

1.2. THE LYMPHATIC SYSTEM .. 1

1.2.1. LYMPHATIC SYSTEM STRUCTURE ... 1

1.2.2. LYMPHATIC SYSTEM FUNCTION ... 6

1.2.3. LYMPHATICS IN OTHER VERTEBRATES .. 7

1.2.3.1. Fish .. 7

1.2.3.2. Amphibians ... 8

1.2.3.3. Birds .. 8

1.2.3.4. Reptiles ... 9

1.2.4. LYMPHATICS OF THE LIZARD TAIL .. 12

1.3. LYMPHANGIOGENESIS .. 12

1.3.1. FACTORS DRIVING LYMPHANGIOGENESIS .. 12

1.3.2. EMBRYOGENESIS OF THE LYMPHATIC SYSTEM .. 13

1.3.3. WOUND HEALING AND REPAIR ... 18

1.4. PATHOLOGY OF THE LYMPHATIC SYSTEM .. 19

1.4.1. LYPHOEDEMA ... 20

1.4.2. INFLAMMATION .. 22

1.4.3. TUMOUR LYMPHANGIOGENESIS .. 24

1.5. THE VEGF FAMILY: ANGIOGENIC AND LYMPHANGIOGENIC GROWTH
FACTORS ... 26

1.5.1. THE KEY LYMPHANGIOGENIC PATHWAY: VEGF-C, VEGF-D AND THEIR
RECEPTOR VEGFR-3 ... 29

1.5.1.1. VEGF-C ... 32

1.5.1.2. VEGF-D ... 35

1.5.1.3. VEGFR-3 .. 36

1.5.3. VEGFs IN NON-MAMMALS ... 38
Chapter Two
HOW REGENERATING LYMPHATICS FUNCTION: LESSONS FROM LIZARD TAILS

2.1. STATEMENT OF AUTHORSHIP ... 58
2.2. SUMMARY AND CONTEXTUAL LINKAGE ... 60

Chapter Three
DIFFERENTIAL mRNA EXPRESSION OF LYMPHANGIOGENIC GROWTH FACTORS (VEGF-C AND -D) AND THEIR RECEPTOR (VEGFR-3) DURING TAIL REGENERATION IN A GECKO

3.1. STATEMENT OF AUTHORSHIP ... 70
3.2. SUMMARY AND CONTEXTUAL LINKAGE ... 71

Chapter Four
ISOLATION AND CHARACTERISATION OF FULL LENGTH VEGF-C, VEGF-D AND VEGFR-3 SEQUENCES FROM THE GECKO Christinus marmoratus

4.1. INTRODUCTION .. 92
4.2. MATERIALS AND METHODS .. 96
4.2.1. RNA EXTRACTION .. 96
4.2.2. cDNA SYNTHESIS .. 97
4.2.3. DEGENERATE POLYMERASE CHAIN REACTION (PCR) 97
4.2.4. AGAROSE GEL ELECTROPHORESIS ... 100
4.2.5. PCR CLEAN-UP, CLONING AND DNA SEQUENCING 100
4.2.6. 5’ AND 3’ RAPID AMPLIFICATION OF cDNA ENDS (RACE) 102
4.2.7. SEQUENCE ANALYSIS AND BIOINFORMATICS .. 105
 4.2.7.1. Phylogenetic analysis ... 105
 4.2.7.2. Molecular Modelling .. 106

4.3. RESULTS .. 107
 4.3.1. ISOLATION OF NUCLEOTIDE SEQUENCES ENCODING FULL-LENGTH
 PROTEIN CODING REGIONS FOR gVEGF-C, gVEGF-D AND gVEGFR-3 107
 4.3.2. ANALYSIS OF gVEGF-C, gVEGF-D AND gVEGFR-3 AMINO ACID
 SEQUENCES ... 121
 4.3.3. SEQUENCE COMPARISON OF gVEGF-C, gVEGF-D AND gVEGFR-3 WITH
 OTHER KNOWN VERTEBRATE SEQUENCES .. 139
 4.3.4. MOLECULAR MODELLING OF gVEGF-C, gVEGF-D AND gVEGFR-3 141

4.4. DISCUSSION ... 151
 4.4.1. gVEGF-C, gVEGF-D AND gVEGFR-3: CONSERVATION OF FUNCTIONALLY
 IMPORTANT RESIDUES ... 151
 4.4.2. COMPARISON OF gVEGF-C, gVEGF-D AND gVEGFR-3 WITH OTHER
 SPECIES ... 155
 4.4.3. STRUCTURAL ANALYSIS OF gVEGF-C, gVEGF-D AND gVEGFR-3 162
 4.4.4. CONCLUSION ... 163

Chapter Five
PROTEIN ANALYSIS OF gVEGF-C, gVEGF-D AND gVEGFR-3

5.1. INTRODUCTION .. 165

5.2. MATERIALS AND METHODS .. 167
 5.2.1. PROTEIN EXTRACTION .. 167
 5.2.1.1. Tri-reagent extraction of protein .. 167
 5.2.1.2. Guanidine and triton extraction of protein ... 168
 5.2.2. PROTEIN FILTRATION TO REMOVE CONTAMINANTS AND
 CONCENTRATE PROTEIN ... 168
 5.2.3. TOTAL PROTEIN QUANTIFICATION .. 169
 5.2.4. SDS-PAGE AND WESTERN BLOTTING ON GECKO TAIL EXTRACTS 169
 5.2.5. ELISA VALIDATION AND ATTEMPTS TO QUANTIFY gVEGF-C, gVEGF-D
 AND gVEGFR-3 WITHIN PROTEIN EXTRACTS ... 171
 5.2.5.1. Sandwich ELISA .. 171
 5.2.5.2. Direct ELISA ... 172
 5.2.6. IMMUNOHISTOCHEMISTRY ON FIXED GECKO TAIL TISSUE 174

5.3. RESULTS ... 176
 5.3.1. PROTEIN EXTRACTION AND FILTRATION .. 176
 5.3.2. WESTERN BLOTTING ... 177
Chapter Six
GENERAL DISCUSSION

6.1. FUNCTIONAL EVIDENCE FOR THE PRESENCE OF LYMPHANGIOGENESIS IN THE REGENERATING GECKO TAIL

6.2. MOLECULAR EVIDENCE FOR THE PRESENCE AND ROLE OF THE VEGF-C/D/R3 PATHWAY IN THE REGULATION OF LYMPHANGIOGENESIS IN THE REGENERATING GECKO TAIL

6.3. LIMITATIONS OF THE STUDY/ PROBLEMS ENCOUNTERED

6.4. FUTURE DIRECTIONS

6.5. CRITIQUE OF THE PROPOSAL OF THE REGENERATING GECKO TAIL AS A MODEL FOR LYMPHANGIOGENESIS

6.6. CONCLUSION

APPENDIX ONE: MATERIALS SUPPLIERS

APPENDIX TWO: AMINO ACID CODE

APPENDIX THREE: LUMINOL SOLUTION

REFERENCES
Amendments to Thesis

Helen Blacker

Id: 1062833

Thesis title:

FUNCTIONAL CHARACTERISTICS AND MOLECULAR REGULATION OF LYMPHANGIOGENESIS DURING GECKO TAIL REGENERATION: EVIDENCE FOR THE ROLES OF VEGF-C, VEGF-D AND THE RECEPTOR VEGFR-3

Reviewer One

Reviewer one stated he/she was happy with the thesis as is and no changes were requested. However, suggestions were provided for future publications and future research and these have been gratefully received and noted. A reference was added as requested on Page 150, line 16 to provide clarification.

Reviewer Two

Some page changes have occurred as a result of amendments to the thesis. The paragraph and line changes requested by the reviewer are given first (P= paragraph, L= line) and then where applicable the new paragraph and line numbers are provided in brackets.

Abstract – Reworded section to strengthen the description of the justification for the study.

Chapter 1

P.1-2. (P.2.L.1, 3 and 7) References added as requested
P.7, L.11. Typo corrected
P.9, L.2. ’Aquatic’ deleted as requested
P. 9-10. L.25.Deleted this statement, as difficult to clarify (for simplicity)

Fig. 1.3. 17 is in the figure but is obscured by dark shading of the pelvic area in this region. I have deleted the reference to 17 in the figure legend given that it is not readily obvious.

P. 10, L.6. Changed sentence to remove ambiguity

Fig. 1.7. Have deleted this figure due to poor quality and inability to get a better quality image

P.42, L.20. Changed to Gekkonidae

P.43, L.5. Lacerta Italicized as requested

Fig. 1.9. Changed to lower case r in Representation as requested
Chapter 4

P. 96 (and others). A global search was performed highlighting the word “insight” and sentences were recast removing this word where appropriate. In particular, as a result of making these changes the last paragraph of the introduction (P.97, L.5, 6 and 7) was changed.

P. 96. (P.97, L.11-14) Added in a sentence stating that RNA was the same as that extracted in Chapter 3 (and therefore animals were the same and tails collected in the same way)

P107, L.7-8. (P108, L.8) Word changed to ‘using these primers’, as suggested

Figs. 4.5, 4.6 and 4.7. Abbreviation of ‘g’ for gecko added to figure caption as requested. Gecko data have been highlighted by the addition of an arrow at each row

P.149, 2nd last line and P. 15-, L.2. (P.150, last line; P.151, L.3) Figs. 5.10A and 5.10B changed to 4.10A and 4.10B as requested

P.151, L.13-17. (P.152, L.13, 18 and 25) References added as requested

P.152, L.15. (P.153, L18, 19) Deleted “has also been found to” and “is believed to” as requested. Likewise performed global search on these terms to remove them where appropriate

P.163, L.7. (P.164, L.7) Deleted second full stop

P.163, L.16. (P.164, L.16) Deleted ‘highly’ as requested

Chapter 5

P.167, 5.2.1. (P.168, L.3-6) Details of gecko tails used in this chapter added as requested

Fig.5.6. Changed caption as requested

P.203, L.8. (P.205, L.8) Changed ‘vessles’ to ‘vessels’ as requested

P.204, A discussion regarding the homology of the immunogenic sites of the antibodies in comparison to the gecko sequence is provided on P.206, L.3-16. The specific immunogenic region (sequences) for the VEGF-C and VEGF-D antibodies were unavailable due to patents by the developers. The sequence for the VEGFR-3 immunogen is accessible and is discussed on P.206, L.13-16.

Chapter 6

6.1. (P.209, L.17) Added that lymphangiogenesis could occur as a combination of both de novo or sprouting mechanisms

As earlier addressed have removed “have been shown to” statements where appropriate

P. 220, L.5. (P.222, L.5) Word wasn’t missing but an extra word had not been deleted. Deleted to clarify the sentence as requested

Further suggestions for future work

I thank the reviewer for his/her interest in this study and for the valuable suggestions for future studies/publications.
Specifically, the *Anolis carolinensis* sequence will be included in the manuscript of the work described in Chapter 4 for publication.

Further work in this area would almost certainly be warranted on the suggested skink species to examine the process in an animal with fewer lipid stores. A paragraph with this suggestion has been included in the Future Directions section of the thesis (P.218, L.5-10).
ABSTRACT

The Australian marbled gecko, *Christinus marmoratus* has the ability to voluntarily shed its tail (autotomy) and subsequently regenerate the lost tail. The lymphatic vessels of the gecko tail are severed during autotomy and yet the regenerated tail is not lymphoedematous, indicating that the mechanisms for interstitial fluid drainage are maintained, presumably by the growth of new lymphatic vessels (lymphangiogenesis). In contrast, disruption to the lymphatic system in humans can readily result in lymphoedema due to inadequate lymphatic regenerative capacity. Hence, the regenerating gecko tail offers an excellent model to study the process of and fundamental molecular mechanisms behind lymphatic regeneration. Here, I examine lymphangiogenesis within regenerating gecko tails. I hypothesise that physiological function of lymphatic vasculature is recovered by tail regeneration. Further, I hypothesise that lymphatic regeneration is, in part, regulated by vascular endothelial growth factor C (VEGF-C) and VEGF-D via binding to their receptor, VEGFR-3, a key lymphangiogenic pathway in mammals.

Lymphatic uptake and transport, of different sized radiolabelled tracers, were examined using lymphoscintigraphy. Basic lymphatic function is apparent at 6 weeks of regeneration, however lymph clearance and velocity are not restored to near original levels until 12 weeks of regeneration. Differential clearance and lymph velocity between tracers are likely influenced by changes in the cellular matrix and lymphatic vessel permeability.

Molecular control of lymphangiogenesis within regenerating gecko tails was studied by identifying and characterising VEGF-C, VEGF-D and VEGFR-3 in gecko tail tissue extracts. This is the first study to demonstrate the presence of these genes within any reptile. Sequence alignments and molecular modelling highlight conservation of many lymphangiogenic functional residues within the gecko proteins at both a sequence and structural level.
Real time PCR established differential expression profiles of VEGF-C, VEGF-D and VEGFR-3 mRNA throughout tail regeneration, with up-regulation during the early, late and mid-phases of regeneration, respectively. These data are consistent with mammalian studies in wound healing and suggest differing roles during gecko tail regeneration and potentially the lymphangiogenic process following autotomy.

Sites of expression of VEGF-C and VEGF-D in regenerating gecko tails, demonstrated by immunohistochemistry, include keratinocytes and fibroblasts. Positive staining lining blood and lymphatic-like vessels is demonstrated for VEGF-D and VEGF-C, respectively indicating possible associations of the proteins with VEGFRs on endothelial cell surfaces and hence angiogenic and lymphangiogenic capabilities. Strong positive staining of VEGF-C and VEGFR-3 is also observed in adipose tissue in both regenerated and original tail tissue suggesting potential roles in adipogenesis and lymphangiogenesis during fat store expansion.

Positive immunostaining using the LYVE-1 lymphatic endothelium marker demonstrates that lymphangiogenesis does occur during tail regeneration. Technical limitations, possibly related to antibody cross-reactivity prevented detection of VEGFR-3 staining on lymphatic (or blood) endothelial cells in all regenerated and original tails. A suspected lack of mammalian-derived antibody reactivity to the reptilian proteins was also encountered with ELISA and western blotting analyses, with both yielding inconclusive results.

In conclusion, this study demonstrates that adequate lymphatic vasculature and function are restored during gecko tail regeneration. Furthermore, this study provides several lines of evidence, through sequence conservation and mRNA and tissue expression profiles, that VEGF-C, VEGF-D and VEGFR-3 play a role in lymphatic regeneration in a reptile.
DECLARATION

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person except where due reference has been made in the text.

I give consent to this copy of my thesis when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

The author acknowledges that copyright of the published works contained within this thesis (see below*) resides with the copyright holder(s) of those works.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Helen Blacker
August 2011

*Publications included within this thesis:

ACKNOWLEDGEMENTS

I sincerely wish to thank my principal supervisor Associate Professor Sandra Orgeig for all your patience, guidance and support over the many long years of this project. Thankyou Sandy for your encouragement, your belief in me and for putting up with the many obstacles that came my way (even when they were obstacles I had created myself). Thanks also for being readily available whenever I needed assistance and in particular in the preparation and critical assessment of this thesis. I could not have completed this project without you.

Many thanks also to my co-supervisor Professor Christopher Daniels who was instrumental in the conceptualisation of this work. Thankyou Chris for developing my interest in the world of gecko tails, your enthusiasm and support.

I am grateful to the two best research assistants a lab could want, Ceilidh Marchant and Tamara Crittenden. Thankyou both for your technical expertise and assistance, I could not have gotten the results I did without you.

Thankyou also to past and present lab and office mates who have worked alongside me. In particular, Dr Carol Lang, Dr Natalie Foot, Dr Debra Gum, Suri Lakshmi, Srinivasa Kunchala and everyone in the UniSA Reid building 0-05 and 1-13 offices for their friendship and support and for listening to me whinge when things weren’t going well and cheer when things were.

I also thank Frank Madaras for his invaluable knowledge of protein biochemistry and Andrew Beck for training in histology and immunohistochemistry techniques. Thankyou both also for sharing your knowledge on a wide range of topics, your advice and your interest in my work.

Thanks also to Rupal Pradhan for processing tissue samples and providing lab space for the histology and immunohistochemistry components of my work. Thanks to Jessica
Logan and Professor Tony Woods for use of reagents, lab space and training in the failed in situ hybridisation studies.

I also thank Chris Leigh and Dr Julie Haynes for helping me to determine the histology of the gecko tail sections I was working with. Thanks also to Dr Steve Donnellan for his critical review of the phylogenetic analysis work in this thesis.

I would like to thank my parents, Ron and Julie Blacker, and my parents in law, Clive and Cherylyn Harrison, for your love, support and many hours of babysitting you have provided over the years so that I could achieve this goal. I also acknowledge my sister Nicole Godfrey and very good friends Lori Pope and Nina Sweet along with my wider family and friends; thankyou for sharing my life and this experience with me.

Finally, I would like to thank my husband Chris and daughter Maya for your love, laughter and unwavering support throughout this journey. Thankyou for your patience, understanding, and encouragement even when things got tough and deadlines kept being passed without being met. Thankyou for sharing the ups and downs with me, continually helping me to see the bigger picture and making it all worthwhile.

All experiments were performed in accordance with the National Health and Medical Research Council guidelines for the use of animals and with approval from both the Adelaide University Animal Ethics Committee (S-18-2003) and Institute of Medical and Veterinary Sciences (IMVS) Animal Ethics Committee (47/04 and 117/08). Adult Australian marbled geckos were collected and housed with permission from South Australia National Parks and Wildlife (permit numbers: E24650 and A24420-7/8) This research was supported by Australian Research Council (ARC) grants to SO and also by a grant from the Breast Cancer Research Association Inc. as trustee for the Breast Cancer Research Trust.
BIBLIOGRAPHY

Journal Articles

Blacker HA and Orgeig S. Differential mRNA and tissue expression of lymphangiogenic growth factors (VEGF-C and –D) and their receptor (VEGFR-3) during tail regeneration in a gecko. Journal of Comparative Physiology B (2011) DOI 10.1007/s00360-011-0604-0

Published Abstract

Unpublished Abstracts

Helen A. Blacker, Sandra Orgeig, Grant W. Booker. (2009). Presenting Vascular endothelial growth factor C (VEGF-C) of the gecko Christinus marmoratus – Sequence and model. The Australian Society for Medical Research (ASMR) SA Scientific Meeting, Adelaide, Australia.

LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>µCT</td>
<td>Micro-computed tomography</td>
</tr>
<tr>
<td>99mTc-ATC</td>
<td>99mTechnetium-antimony trisulphide</td>
</tr>
<tr>
<td>99mTc-DTPA</td>
<td>99mTc-diethylenetriaminepentaacetic acid</td>
</tr>
<tr>
<td>99mTc-TFC</td>
<td>99mTc-tin fluoride colloid</td>
</tr>
<tr>
<td>ADSC</td>
<td>Adipose tissue derived stem cell</td>
</tr>
<tr>
<td>Ang-1</td>
<td>Angiopoietin-1</td>
</tr>
<tr>
<td>Ang-2</td>
<td>Angiopoietin-2</td>
</tr>
<tr>
<td>BCA</td>
<td>Bicinchoninic acid</td>
</tr>
<tr>
<td>BEC</td>
<td>Blood endothelial cell</td>
</tr>
<tr>
<td>CAM</td>
<td>Chorioallantoic membrane</td>
</tr>
<tr>
<td>cDNA</td>
<td>Complementary DNA</td>
</tr>
<tr>
<td>cVEGF-C(-D)(R-3)</td>
<td>Chicken VEGF-C, VEGF-D or VEGFR-3</td>
</tr>
<tr>
<td>ECM</td>
<td>Extracellular matrix</td>
</tr>
<tr>
<td>ELISA</td>
<td>Enzyme linked immunosorbent assay</td>
</tr>
<tr>
<td>FGFs</td>
<td>Fibroblast growth factors</td>
</tr>
<tr>
<td>Flt4</td>
<td>Fms-like tyrosine kinase 4</td>
</tr>
<tr>
<td>fVEGF-C(-D)(R-3)</td>
<td>Frog VEGF-C, VEGF-D or VEGFR-3</td>
</tr>
<tr>
<td>GSP</td>
<td>Gene specific primer</td>
</tr>
<tr>
<td>gVEGF-C(-D)(R-3)</td>
<td>Gecko VEGF-C, VEGF-D or VEGFR-3</td>
</tr>
<tr>
<td>HIER</td>
<td>Heat induced epitope recovery</td>
</tr>
<tr>
<td>hVEGF-C(-D)(R-3)</td>
<td>Human VEGF-C, VEGF-D or VEGFR-3</td>
</tr>
<tr>
<td>Ig-like</td>
<td>Immunoglobulin-like</td>
</tr>
<tr>
<td>IHC</td>
<td>Immunohistochemistry</td>
</tr>
<tr>
<td>LB</td>
<td>Luria-Bertani</td>
</tr>
<tr>
<td>LEC</td>
<td>Lymphatic endothelial cell</td>
</tr>
<tr>
<td>LYVE-1</td>
<td>Lymphatic endothelial hyaluronan receptor-1</td>
</tr>
<tr>
<td>MMF</td>
<td>Morgan-Mercer-Flodin</td>
</tr>
<tr>
<td>mVEGF-C(-D)(R-3)</td>
<td>Mouse VEGF-C, VEGF-D or VEGFR-3</td>
</tr>
<tr>
<td>NJ</td>
<td>Neighbour-joining</td>
</tr>
<tr>
<td>NRP</td>
<td>Neuropilin</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
</tbody>
</table>
PBS-T
Phosphate buffered saline-Tween20

PCR
Polymerase chain reaction

PDB
Protein data base

PIGF
Placenta growth factor

QC
Quality control

qPCR
Quantitative real time PCR

rAAV
Recombinant adeno-associated virus

RACE
Rapid amplification of cDNA ends

rhVEGF-C
Recombinant human VEGF-C

rhVEGF-D
Recombinant human VEGF-D

rhVEGFR-3
Recombinant human VEGFR-3

rVEGF-C(-D)(R-3)
Rat VEGF-C, VEGF-D or VEGFR-3

rVEGF-C/D
Reptilian VEGF-C/VEGF-D homologue

SDS-PAGE
Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SLC
Secondary lymphoid chemokine

SOC
Super optimal broth with carbolite repression

SS
Signal sequence

sVEGFR-2
Soluble VEGFR-2

TBS
Tris buffered saline

UTR
Untranslated region

VEGF(-A)
Vascular endothelial growth factor (-A)

VEGF-B
Vascular endothelial growth factor B

VEGF-C
Vascular endothelial growth factor C

VEGF-D
Vascular endothelial growth factor D

VEGF-E
Vascular endothelial growth factor E

VEGF-F
Vascular endothelial growth factor F

VEGFR-1
Vascular endothelial growth factor receptor 1

VEGFR-2
Vascular endothelial growth factor receptor 2

VEGFR-3
Vascular endothelial growth factor receptor 3

VHD
VEGF homology Domain

zVEGF-C(-D)(R-3)
Zebrafish VEGF-C, VEGF-D or VEGFR-3